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Preface

The standard second course in computer science has traditionally covered the fun-
damental data structures and algorithms, but more recently these topics have been
included in the broader topic of abstract data types. This book is no exception,
with the main focus on the design, use, and implementation of abstract data types.
The importance of designing and using abstract data types for easier modular pro-
gramming is emphasized throughout the text. The traditional data structures are
also presented throughout the text in terms of implementing the various abstract
data types. Multiple implementations using different data structures are used
throughout the text to reinforce the abstraction concept. Common algorithms are
also presented throughout the text as appropriate to provide complete coverage of
the typical data structures course.

Overview
The typical data structures course, which introduces a collection of fundamental
data structures and algorithms, can be taught using any of the different program-
ming languages available today. In recent years, more colleges have begun to adopt
the Python language for introducing students to programming and problem solv-
ing. Python provides several benefits over other languages such as C++ and Java,
the most important of which is that Python has a simple syntax that is easier to
learn. This book expands upon that use of Python by providing a Python-centric
text for the data structures course. The clean syntax and powerful features of the
language are used throughout, but the underlying mechanisms of these features
are fully explored not only to expose the “magic” but also to study their overall
efficiency.

For a number of years, many data structures textbooks have been written to
serve a dual role of introducing data structures and providing an in-depth study
of object-oriented programming (OOP). In some instances, this dual role may
compromise the original purpose of the data structures course by placing more focus
on OOP and less on the abstract data types and their underlying data structures.
To stress the importance of abstract data types, data structures, and algorithms, we
limit the discussion of OOP to the use of base classes for implementing the various
abstract data types. We do not use class inheritance or polymorphism in the main
part of the text but instead provide a basic introduction as an appendix. This
choice was made for several reasons. First, our objective is to provide a “back to
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basics” approach to learning data structures and algorithms without overwhelming
the reader with all of the OOP terminology and concepts, which is especially
important when the instructor has no plans to cover such topics. Second, different
instructors take different approaches with Python in their first course. Our aim is
to provide an excellent text to the widest possible audience. We do this by placing
the focus on the data structures and algorithms, while designing the examples to
allow the introduction of object-oriented programming if so desired.

The text also introduces the concept of algorithm analysis and explores the
efficiency of algorithms and data structures throughout the text. The major pre-
sentation of complexity analysis is contained in a single chapter, which allows it to
be omitted by instructors who do not normally cover such material in their data
structures course. Additional evaluations are provided throughout the text as new
algorithms and data structures are introduced, with the major details contained in
individual sections. When algorithm analysis is covered, examples of the various
complexity functions are introduced, including amortized cost. The latter is im-
portant when using Python since many of the list operations have a very efficient
amortized cost.

Prerequisites
This book assumes that the student has completed the standard introduction to
programming and problem-solving course using the Python language. Since the
contents of the first course can differ from college to college and instructor to
instructor, we assume the students are familiar with or can do the following:

� Design and implement complete programs in Python, including the use of
modules and namespaces

� Apply the basic data types and constructs, including loops, selection state-
ments, and subprograms (functions)

� Create and use the built-in list and dictionary structures

� Design and implement basics classes, including the use of helper methods and
private attributes

Contents and Organization
The text is organized into fourteen chapters and four appendices. The basic con-
cepts related to abstract data types, data structures, and algorithms are presented
in the first four chapters. Later chapters build on these earlier concepts to present
more advanced topics and introduce the student to additional abstract data types
and more advanced data structures. The book contains several topic threads that
run throughout the text, in which the topics are revisited in various chapters as
appropriate. The layout of the text does not force a rigid outline, but allows for the
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reordering of some topics. For example, the chapters on recursion and hashing can
be presented at any time after the discussion of algorithm analysis in Chapter 4.

Chapter 1: Abstract Data Types. Introduces the concept of abstract data types
(ADTs) for both simple types, those containing individual data fields, and the more
complex types, those containing data structures. ADTs are presented in terms
of their definition, use, and implementation. After discussing the importance of
abstraction, we define several ADTs and then show how a well-defined ADT can
be used without knowing how its actually implemented. The focus then turns to
the implementation of the ADTs with an emphasis placed on the importance of
selecting an appropriate data structure. The chapter includes an introduction to
the Python iterator mechanism and provides an example of a user-defined iterator
for use with a container type ADT.

Chapter 2: Arrays. Introduces the student to the array structure, which is im-
portant since Python only provides the list structure and students are unlikely to
have seen the concept of the array as a fixed-sized structure in a first course using
Python. We define an ADT for a one-dimensional array and implement it using a
hardware array provided through a special mechanism of the C-implemented ver-
sion of Python. The two-dimensional array is also introduced and implemented
using a 1-D array of arrays. The array structures will be used throughout the text
in place of the Python’s list when it is the appropriate choice. The implementa-
tion of the list structure provided by Python is presented to show how the various
operations are implemented using a 1-D array. The Matrix ADT is introduced and
includes an implementation using a two-dimensional array that exposes the stu-
dents to an example of an ADT that is best implemented using a structure other
than the list or dictionary.

Chapter 3: Sets and Maps. This chapter reintroduces the students to both
the Set and Map (or dictionary) ADTs with which they are likely to be familiar
from their first programming course using Python. Even though Python provides
these ADTs, they both provide great examples of abstract data types that can be
implemented in many different ways. The chapter also continues the discussion of
arrays from the previous chapter by introducing multi-dimensional arrays (those
of two or more dimensions) along with the concept of physically storing these
using a one-dimensional array in either row-major or column-major order. The
chapter concludes with an example application that can benefit from the use of a
three-dimensional array.

Chapter 4: Algorithm Analysis. Introduces the basic concept and importance
of complexity analysis by evaluating the operations of Python’s list structure and
the Set ADT as implemented in the previous chapter. This information will be used
to provide a more efficient implementation of the Set ADT in the following chapter.
The chapter concludes by introducing the Sparse Matrix ADT and providing a more
efficient implementation with the use of a list in place of a two-dimensional array.



xvi PREFACE

Chapter 5: Searching and Sorting. Introduces the concepts of searching and
sorting and illustrates how the efficiency of some ADTs can be improved when
working with sorted sequences. Search operations for an unsorted sequence are
discussed and the binary search algorithm is introduced as a way of improving this
operation. Three of the basic sorting algorithms are also introduced to further
illustrate the use of algorithm analysis. A new implementation of the Set ADT is
provided to show how different data structures or data organizations can change
the efficiency of an ADT.

Chapter 6: Linked Structures. Provides an introduction to dynamic structures
by illustrating the construction and use of the singly linked list using dynamic
storage allocation. The common operations — traversal, searching, insertion, and
deletion — are presented as is the use of a tail reference when appropriate. Several
of the ADTs presented in earlier chapters are reimplemented using the singly linked
list, and the run times of their operations are compared to the earlier versions.
A new implementation of the Sparse Matrix is especially eye-opening to many
students as it uses an array of sorted linked lists instead of a single Python list as
was done in an earlier chapter.

Chapter 7: Stacks. Introduces the Stack ADT and includes implementations
using both a Python list and a linked list. Several common stack applications
are then presented, including balanced delimiter verification and the evaluation of
postfix expressions. The concept of backtracking is also introduced as part of the
application for solving a maze. A detailed discussion is provided in designing a
solution and a partial implementation.

Chapter 8: Queues. Introduces the Queue ADT and includes three different
implementations: Python list, circular array, and linked list. The priority queue
is introduced to provide an opportunity to discuss different structures and data
organization for an efficient implementation. The application of the queue presents
the concept of discrete event computer simulations using an airline ticket counter
as the example.

Chapter 9: Advanced Linked Lists. Continues the discussion of dynamic struc-
tures by introducing a collection of more advanced linked lists. These include the
doubly linked, circularly linked, and multi linked lists. The latter provides an
example of a linked structure containing multiple chains and is applied by reimple-
menting the Sparse Matrix to use two arrays of linked lists, one for the rows and
one for the columns. The doubly linked list is applied to the problem of designing
and implementing an Edit Buffer ADT for use with a basic text editor.

Chapter 10: Recursion. Introduces the use of recursion to solve various pro-
gramming problems. The properties of creating recursive functions are presented
along with common examples, including factorial, greatest common divisor, and
the Towers of Hanoi. The concept of backtracking is revisited to use recursion for
solving the eight-queens problem.
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Chapter 11: Hash Tables. Introduces the concept of hashing and the use of hash
tables for performing fast searches. Different addressing techniques are presented,
including those for both closed and open addressing. Collision resolution techniques
and hash function design are also discussed. The magic behind Python’s dictionary
structure, which uses a hash table, is exposed and its efficiency evaluated.

Chapter 12: Advanced Sorting. Continues the discussion of the sorting problem
by introducing the recursive sorting algorithms—merge sort and quick sort—along
with the radix distribution sort algorithm, all of which can be used to sort se-
quences. Some of the common techniques for sorting linked lists are also presented.

Chapter 13: Binary Trees. Presents the tree structure and the general binary
tree specifically. The construction and use of the binary tree is presented along
with various properties and the various traversal operations. The binary tree is
used to build and evaluate arithmetic expressions and in decoding Morse Code
sequences. The tree-based heap structure is also introduced along with its use in
implementing a priority queue and the heapsort algorithm.

Chapter 14: Search Trees. Continues the discussion from the previous chapter
by using the tree structure to solve the search problem. The basic binary search
tree and the balanced binary search tree (AVL) are both introduced along with
new implementations of the Map ADT. Finally, a brief introduction to the 2-3
multi-way tree is also provided, which shows an alternative to both the binary
search and AVL trees.

Appendix A: Python Review. Provides a review of the Python language and
concepts learned in the traditional first course. The review includes a presentation
of the basic constructs and built-in data structures.

Appendix B: User-Defined Modules. Describes the use of modules in creating
well structured programs. The different approaches for importing modules is also
discussed along with the use of namespaces.

Appendix C: Exceptions. Provides a basic introduction to the use of exceptions
for handling and raising errors during program execution.

Appendix D: Classes. Introduces the basic concepts of object-oriented program-
ming, including encapsulation, inheritance, and polymorphism. The presentation
is divided into two main parts. The first part presents the basic design and use
of classes for those instructors who use a “back to basics” approach in teaching
data structures. The second part briefly explores the more advanced features of
inheritance and polymorphism for those instructors who typically include these
topics in their course.



xviii PREFACE

Acknowledgments
There are a number of individuals I would like to thank for helping to make this
book possible. First, I must acknowledge two individuals who served as mentors
in the early part of my career. Mary Dayne Gregg (University of Southern Mis-
sissippi), who was the best computer science teacher I have ever known, shared
her love of teaching and provided a great role model in academia. Richard Prosl
(Professor Emeritus, College of William and Mary) served not only as my graduate
advisor but also shared great insight into teaching and helped me to become a good
teacher.

A special thanks to the many students I have taught over the years, especially
those at Washington and Lee University, who during the past five years used draft
versions of the manuscript and provided helpful suggestions. I would also like to
thank some of my colleagues who provided great advice and the encouragement
to complete the project: Sara Sprenkle (Washington and Lee University), Debbie
Noonan (College of William and Mary), and Robert Noonan (College of William
and Mary).

I am also grateful to the following individuals who served as outside review-
ers and provided valuable feedback and helpful suggestions: Esmail Bonakdarian
(Franklin University), David Dubin (University of Illinois at Urbana-Champaign)
Mark E. Fenner (Norwich University), Robert Franks (Central College), Charles J.
Leska (Randolph-Macon College), Fernando Martincic (Wayne State University),
Joseph D. Sloan (Wofford College), David A. Sykes (Wofford College), and Stan
Thomas (Wake Forest University).

Finally, I would like to thank everyone at John Wiley & Sons who helped make
this book possible. I would especially like to thank Beth Golub, Mike Berlin, and
Amy Weintraub, with whom I worked closely throughout the process and who
helped to make this first book an enjoyable experience.

Rance D. Necaise



CHAPTER 1
Abstract Data Types

The foundation of computer science is based on the study of algorithms. An al-
gorithm is a sequence of clear and precise step-by-step instructions for solving a
problem in a finite amount of time. Algorithms are implemented by translating
the step-by-step instructions into a computer program that can be executed by
a computer. This translation process is called computer programming or sim-
ply programming . Computer programs are constructed using a programming
language appropriate to the problem. While programming is an important part
of computer science, computer science is not the study of programming. Nor is
it about learning a particular programming language. Instead, programming and
programming languages are tools used by computer scientists to solve problems.

1.1 Introduction
Data items are represented within a computer as a sequence of binary digits. These
sequences can appear very similar but have different meanings since computers
can store and manipulate different types of data. For example, the binary se-
quence 01001100110010110101110011011100 could be a string of characters, an in-
teger value, or a real value. To distinguish between the different types of data, the
term type is often used to refer to a collection of values and the term data type to
refer to a given type along with a collection of operations for manipulating values
of the given type.

Programming languages commonly provide data types as part of the language
itself. These data types, known as primitives, come in two categories: simple
and complex. The simple data types consist of values that are in the most
basic form and cannot be decomposed into smaller parts. Integer and real types,
for example, consist of single numeric values. The complex data types, on the
other hand, are constructed of multiple components consisting of simple types or
other complex types. In Python, objects, strings, lists, and dictionaries, which can
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contain multiple values, are all examples of complex types. The primitive types
provided by a language may not be sufficient for solving large complex problems.
Thus, most languages allow for the construction of additional data types, known
as user-defined types since they are defined by the programmer and not the
language. Some of these data types can themselves be very complex.

1.1.1 Abstractions
To help manage complex problems and complex data types, computer scientists
typically work with abstractions. An abstraction is a mechanism for separat-
ing the properties of an object and restricting the focus to those relevant in the
current context. The user of the abstraction does not have to understand all of
the details in order to utilize the object, but only those relevant to the current task
or problem.

Two common types of abstractions encountered in computer science are proce-
dural, or functional, abstraction and data abstraction. Procedural abstraction
is the use of a function or method knowing what it does but ignoring how it’s
accomplished. Consider the mathematical square root function which you have
probably used at some point. You know the function will compute the square root
of a given number, but do you know how the square root is computed? Does it
matter if you know how it is computed, or is simply knowing how to correctly use
the function sufficient? Data abstraction is the separation of the properties of a
data type (its values and operations) from the implementation of that data type.
You have used strings in Python many times. But do you know how they are
implemented? That is, do you know how the data is structured internally or how
the various operations are implemented?

Typically, abstractions of complex problems occur in layers, with each higher
layer adding more abstraction than the previous. Consider the problem of repre-
senting integer values on computers and performing arithmetic operations on those
values. Figure 1.1 illustrates the common levels of abstractions used with integer
arithmetic. At the lowest level is the hardware with little to no abstraction since it
includes binary representations of the values and logic circuits for performing the
arithmetic. Hardware designers would deal with integer arithmetic at this level
and be concerned with its correct implementation. A higher level of abstraction
for integer values and arithmetic is provided through assembly language, which in-
volves working with binary values and individual instructions corresponding to the
underlying hardware. Compiler writers and assembly language programmers would
work with integer arithmetic at this level and must ensure the proper selection of
assembly language instructions to compute a given mathematical expression. For
example, suppose we wish to compute x = a + b − 5. At the assembly language
level, this expression must be split into multiple instructions for loading the values
from memory, storing them into registers, and then performing each arithmetic
operation separately, as shown in the following psuedocode:

loadFromMem( R1, 'a' )
loadFromMem( R2, 'b' )
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add R0, R1, R2
sub R0, R0, 5
storeToMem( R0, 'x' )

To avoid this level of complexity, high-level programming languages add an-
other layer of abstraction above the assembly language level. This abstraction
is provided through a primitive data type for storing integer values and a set of
well-defined operations that can be performed on those values. By providing this
level of abstraction, programmers can work with variables storing decimal values
and specify mathematical expressions in a more familiar notation (x = a + b− 5)
than is possible with assembly language instructions. Thus, a programmer does
not need to know the assembly language instructions required to evaluate a math-
ematical expression or understand the hardware implementation in order to use
integer arithmetic in a computer program.

Hardware
Implementation

Hardware
Implementation

Assembly Language
Instructions

Assembly Language
Instructions

High-Level Language
Instructions

High-Level Language
Instructions

Software-Implemented
Big Integers

Software-Implemented
Big Integers

Lower Level

Higher Level

Figure 1.1: Levels of abstraction used with integer arithmetic.

One problem with the integer arithmetic provided by most high-level languages
and in computer hardware is that it works with values of a limited size. On 32-bit
architecture computers, for example, signed integer values are limited to the range
−231 . . . (231 − 1). What if we need larger values? In this case, we can provide
long or “big integers” implemented in software to allow values of unlimited size.
This would involve storing the individual digits and implementing functions or
methods for performing the various arithmetic operations. The implementation
of the operations would use the primitive data types and instructions provided by
the high-level language. Software libraries that provide big integer implementations
are available for most common programming languages. Python, however, actually
provides software-implemented big integers as part of the language itself.

1.1.2 Abstract Data Types
An abstract data type (or ADT ) is a programmer-defined data type that spec-
ifies a set of data values and a collection of well-defined operations that can be
performed on those values. Abstract data types are defined independent of their
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implementation, allowing us to focus on the use of the new data type instead of
how it’s implemented. This separation is typically enforced by requiring interac-
tion with the abstract data type through an interface or defined set of operations.
This is known as information hiding . By hiding the implementation details and
requiring ADTs to be accessed through an interface, we can work with an ab-
straction and focus on what functionality the ADT provides instead of how that
functionality is implemented.

Abstract data types can be viewed like black boxes as illustrated in Figure 1.2.
User programs interact with instances of the ADT by invoking one of the several
operations defined by its interface. The set of operations can be grouped into four
categories:

� Constructors: Create and initialize new instances of the ADT.

� Accessors: Return data contained in an instance without modifying it.

� Mutators: Modify the contents of an ADT instance.

� Iterators: Process individual data components sequentially.

User
Program

User
Program

str()

upper()

User programs interact with
ADTs through their interface

or set of operations.

The implementation
details are hidden

as if inside a black box.

string ADT

:
lower()

Figure 1.2: Separating the ADT definition from its implementation.

The implementation of the various operations are hidden inside the black box,
the contents of which we do not have to know in order to utilize the ADT. There
are several advantages of working with abstract data types and focusing on the
“what” instead of the “how.”

� We can focus on solving the problem at hand instead of getting bogged down
in the implementation details. For example, suppose we need to extract a
collection of values from a file on disk and store them for later use in our
program. If we focus on the implementation details, then we have to worry
about what type of storage structure to use, how it should be used, and
whether it is the most efficient choice.

� We can reduce logical errors that can occur from accidental misuse of storage
structures and data types by preventing direct access to the implementation. If
we used a list to store the collection of values in the previous example, there
is the opportunity to accidentally modify its contents in a part of our code
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where it was not intended. This type of logical error can be difficult to track
down. By using ADTs and requiring access via the interface, we have fewer
access points to debug.

� The implementation of the abstract data type can be changed without having
to modify the program code that uses the ADT. There are many times when
we discover the initial implementation of an ADT is not the most efficient or
we need the data organized in a different way. Suppose our initial approach
to the previous problem of storing a collection of values is to simply append
new values to the end of the list. What happens if we later decide the items
should be arranged in a different order than simply appending them to the
end? If we are accessing the list directly, then we will have to modify our code
at every point where values are added and make sure they are not rearranged
in other places. By requiring access via the interface, we can easily “swap out”
the black box with a new implementation with no impact on code segments
that use the ADT.

� It’s easier to manage and divide larger programs into smaller modules, al-
lowing different members of a team to work on the separate modules. Large
programming projects are commonly developed by teams of programmers in
which the workload is divided among the members. By working with ADTs
and agreeing on their definition, the team can better ensure the individual
modules will work together when all the pieces are combined. Using our pre-
vious example, if each member of the team directly accessed the list storing
the collection of values, they may inadvertently organize the data in different
ways or modify the list in some unexpected way. When the various modules
are combined, the results may be unpredictable.

1.1.3 Data Structures
Working with abstract data types, which separate the definition from the imple-
mentation, is advantageous in solving problems and writing programs. At some
point, however, we must provide a concrete implementation in order for the pro-
gram to execute. ADTs provided in language libraries, like Python, are imple-
mented by the maintainers of the library. When you define and create your own
abstract data types, you must eventually provide an implementation. The choices
you make in implementing your ADT can affect its functionality and efficiency.

Abstract data types can be simple or complex. A simple ADT is composed
of a single or several individually named data fields such as those used to represent
a date or rational number. The complex ADTs are composed of a collection of
data values such as the Python list or dictionary. Complex abstract data types
are implemented using a particular data structure , which is the physical rep-
resentation of how data is organized and manipulated. Data structures can be
characterized by how they store and organize the individual data elements and
what operations are available for accessing and manipulating the data.
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There are many common data structures, including arrays, linked lists, stacks,
queues, and trees, to name a few. All data structures store a collection of values,
but differ in how they organize the individual data items and by what operations
can be applied to manage the collection. The choice of a particular data structure
depends on the ADT and the problem at hand. Some data structures are better
suited to particular problems. For example, the queue structure is perfect for
implementing a printer queue, while the B-Tree is the better choice for a database
index. No matter which data structure we use to implement an ADT, by keeping
the implementation separate from the definition, we can use an abstract data type
within our program and later change to a different implementation, as needed,
without having to modify our existing code.

1.1.4 General Definitions
There are many different terms used in computer science. Some of these can have
different meanings among the various textbooks and programming languages. To
aide the reader and to avoid confusion, we define some of the common terms we
will be using throughout the text.

A collection is a group of values with no implied organization or relationship
between the individual values. Sometimes we may restrict the elements to a specific
data type such as a collection of integers or floating-point values.

A container is any data structure or abstract data type that stores and orga-
nizes a collection. The individual values of the collection are known as elements
of the container and a container with no elements is said to be empty . The orga-
nization or arrangement of the elements can vary from one container to the next as
can the operations available for accessing the elements. Python provides a number
of built-in containers, which include strings, tuples, lists, dictionaries, and sets.

A sequence is a container in which the elements are arranged in linear order
from front to back, with each element accessible by position. Throughout the text,
we assume that access to the individual elements based on their position within
the linear order is provided using the subscript operator. Python provides two
immutable sequences, strings and tuples, and one mutable sequence, the list. In
the next chapter, we introduce the array structure, which is also a commonly used
mutable sequence.

A sorted sequence is one in which the position of the elements is based on
a prescribed relationship between each element and its successor. For example,
we can create a sorted sequence of integers in which the elements are arranged in
ascending or increasing order from smallest to largest value.

In computer science, the term list is commonly used to refer to any collection
with a linear ordering. The ordering is such that every element in the collection,
except the first one, has a unique predecessor and every element, except the last
one, has a unique successor. By this definition, a sequence is a list, but a list is
not necessarily a sequence since there is no requirement that a list provide access
to the elements by position. Python, unfortunately, uses the same name for its
built-in mutable sequence type, which in other languages would be called an array
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list or vector abstract data type. To avoid confusion, we will use the term list to
refer to the data type provided by Python and use the terms general list or list
structure when referring to the more general list structure as defined earlier.

1.2 The Date Abstract Data Type
An abstract data type is defined by specifying the domain of the data elements
that compose the ADT and the set of operations that can be performed on that
domain. The definition should provide a clear description of the ADT including
both its domain and each of its operations as only those operations specified can be
performed on an instance of the ADT. Next, we provide the definition of a simple
abstract data type for representing a date in the proleptic Gregorian calendar.

1.2.1 Defining the ADT
The Gregorian calendar was introduced in the year 1582 by Pope Gregory XIII to
replace the Julian calendar. The new calendar corrected for the miscalculation of
the lunar year and introduced the leap year. The official first date of the Gregorian
calendar is Friday, October 15, 1582. The proleptic Gregorian calendar is an
extension for accommodating earlier dates with the first date on November 24,
4713 BC. This extension simplifies the handling of dates across older calendars
and its use can be found in many software applications.

Define Date ADT

A date represents a single day in the proleptic Gregorian calendar in which the
first day starts on November 24, 4713 BC.

� Date( month, day, year ): Creates a new Date instance initialized to the
given Gregorian date which must be valid. Year 1 BC and earlier are indicated
by negative year components.

� day(): Returns the Gregorian day number of this date.

� month(): Returns the Gregorian month number of this date.

� year(): Returns the Gregorian year of this date.

� monthName(): Returns the Gregorian month name of this date.

� dayOfWeek(): Returns the day of the week as a number between 0 and 6 with
0 representing Monday and 6 representing Sunday.

� numDays( otherDate ): Returns the number of days as a positive integer be-
tween this date and the otherDate.

� isLeapYear(): Determines if this date falls in a leap year and returns the
appropriate boolean value.
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� advanceBy( days ): Advances the date by the given number of days. The date
is incremented if days is positive and decremented if days is negative. The
date is capped to November 24, 4714 BC, if necessary.

� comparable ( otherDate ): Compares this date to the otherDate to deter-
mine their logical ordering. This comparison can be done using any of the
logical operators <, <=, >, >=, ==, !=.

� toString (): Returns a string representing the Gregorian date in the format
mm/dd/yyyy. Implemented as the Python operator that is automatically called
via the str() constructor.

The abstract data types defined in the text will be implemented as Python
classes. When defining an ADT, we specify the ADT operations as method pro-
totypes. The class constructor, which is used to create an instance of the ADT, is
indicated by the name of the class used in the implementation.

Python allows classes to define or overload various operators that can be used
more naturally in a program without having to call a method by name. We define
all ADT operations as named methods, but implement some of them as operators
when appropriate instead of using the named method. The ADT operations that
will be implemented as Python operators are indicated in italicized text and a brief
comment is provided in the ADT definition indicating the corresponding operator.
This approach allows us to focus on the general ADT specification that can be
easily translated to other languages if the need arises but also allows us to take
advantage of Python’s simple syntax in various sample programs.

1.2.2 Using the ADT
To illustrate the use of the Date ADT, consider the program in Listing 1.1, which
processes a collection of birth dates. The dates are extracted from standard input
and examined. Those dates that indicate the individual is at least 21 years of age
based on a target date are printed to standard output. The user is continuously
prompted to enter a birth date until zero is entered for the month.

This simple example illustrates an advantage of working with an abstraction
by focusing on what functionality the ADT provides instead of how that function-
ality is implemented. By hiding the implementation details, we can use an ADT
independent of its implementation. In fact, the choice of implementation for the
Date ADT will have no effect on the instructions in our example program.

N
O

TE i Class Definitions. Classes are the foundation of object-oriented
programing languages and they provide a convenient mechanism for

defining and implementing abstract data types. A review of Python classes
is provided in Appendix D.
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Listing 1.1 The checkdates.py program.

1 # Extracts a collection of birth dates from the user and determines
2 # if each individual is at least 21 years of age.
3 from date import Date
4
5 def main():
6 # Date before which a person must have been born to be 21 or older.
7 bornBefore = Date(6, 1, 1988)
8
9 # Extract birth dates from the user and determine if 21 or older.

10 date = promptAndExtractDate()
11 while date is not None :
12 if date <= bornBefore :
13 print( "Is at least 21 years of age: ", date )
14 date = promptAndExtractDate()
15
16 # Prompts for and extracts the Gregorian date components. Returns a
17 # Date object or None when the user has finished entering dates.
18 def promptAndExtractDate():
19 print( "Enter a birth date." )
20 month = int( input("month (0 to quit): ") )
21 if month == 0 :
22 return None
23 else :
24 day = int( input("day: ") )
25 year = int( input("year: ") )
26 return Date( month, day, year )
27
28 # Call the main routine.
29 main()

1.2.3 Preconditions and Postconditions
In defining the operations, we must include a specification of required inputs and
the resulting output, if any. In addition, we must specify the preconditions and
postconditions for each operation. A precondition indicates the condition or
state of the ADT instance and inputs before the operation can be performed. A
postcondition indicates the result or ending state of the ADT instance after the
operation is performed. The precondition is assumed to be true while the postcon-
dition is a guarantee as long as the preconditions are met. Attempting to perform
an operation in which the precondition is not satisfied should be flagged as an er-
ror. Consider the use of the pop(i) method for removing a value from a list. When
this method is called, the precondition states the supplied index must be within
the legal range. Upon successful completion of the operation, the postcondition
guarantees the item has been removed from the list. If an invalid index, one that
is out of the legal range, is passed to the pop() method, an exception is raised.

All operations have at least one precondition, which is that the ADT instance
has to have been previously initialized. In an object-oriented language, this pre-
condition is automatically verified since an object must be created and initialized
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via the constructor before any operation can be used. Other than the initialization
requirement, an operation may not have any other preconditions. It all depends
on the type of ADT and the respective operation. Likewise, some operations may
not have a postcondition, as is the case for simple access methods, which simply
return a value without modifying the ADT instance itself. Throughout the text,
we do not explicitly state the precondition and postcondition as such, but they are
easily identified from the description of the ADT operations.

When implementing abstract data types, it’s important that we ensure the
proper execution of the various operations by verifying any stated preconditions.
The appropriate mechanism when testing preconditions for abstract data types is
to test the precondition and raise an exception when the precondition fails. You
then allow the user of the ADT to decide how they wish to handle the error, either
catch it or allow the program to abort.

Python, like many other object-oriented programming languages, raises an ex-
ception when an error occurs. An exception is an event that can be triggered
and optionally handled during program execution. When an exception is raised
indicating an error, the program can contain code to catch and gracefully handle
the exception; otherwise, the program will abort. Python also provides the assert
statement, which can be used to raise an AssertionError exception. The assert
statement is used to state what we assume to be true at a given point in the pro-
gram. If the assertion fails, Python automatically raises an AssertionError and
aborts the program, unless the exception is caught.

Throughout the text, we use the assert statement to test the preconditions
when implementing abstract data types. This allows us to focus on the implemen-
tation of the ADTs instead of having to spend time selecting the proper exception
to raise or creating new exceptions for use with our ADTs. For more information
on exceptions and assertions, refer to Appendix C.

1.2.4 Implementing the ADT
After defining the ADT, we need to provide an implementation in an appropriate
language. In our case, we will always use Python and class definitions, but any
programming language could be used. A partial implementation of the Date class is
provided in Listing 1.2, with the implementation of some methods left as exercises.

Date Representations

There are two common approaches to storing a date in an object. One approach
stores the three components—month, day, and year—as three separate fields. With
this format, it is easy to access the individual components, but it’s difficult to
compare two dates or to compute the number of days between two dates since the
number of days in a month varies from month to month. The second approach
stores the date as an integer value representing the Julian day, which is the number
of days elapsed since the initial date of November 24, 4713 BC (using the Gregorian
calendar notation). Given a Julian day number, we can compute any of the three
Gregorian components and simply subtract the two integer values to determine
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which occurs first or how many days separate the two dates. We are going to use
the latter approach as it is very common for storing dates in computer applications
and provides for an easy implementation.

Listing 1.2 Partial implementation of the date.py module.

1 # Implements a proleptic Gregorian calendar date as a Julian day number.
2
3 class Date :
4 # Creates an object instance for the specified Gregorian date.
5 def __init__( self, month, day, year ):
6 self._julianDay = 0
7 assert self._isValidGregorian( month, day, year ), \
8 "Invalid Gregorian date."
9

10 # The first line of the equation, T = (M - 14) / 12, has to be changed
11 # since Python's implementation of integer division is not the same
12 # as the mathematical definition.
13 tmp = 0
14 if month < 3 :
15 tmp = -1
16 self._julianDay = day - 32075 + \
17 (1461 * (year + 4800 + tmp) // 4) + \
18 (367 * (month - 2 - tmp * 12) // 12) - \
19 (3 * ((year + 4900 + tmp) // 100) // 4)
20
21 # Extracts the appropriate Gregorian date component.
22 def month( self ):
23 return (self._toGregorian())[0] # returning M from (M, d, y)
24
25 def day( self ):
26 return (self._toGregorian())[1] # returning D from (m, D, y)
27
28 def year( self ):
29 return (self._toGregorian())[2] # returning Y from (m, d, Y)
30
31 # Returns day of the week as an int between 0 (Mon) and 6 (Sun).
32 def dayOfWeek( self ):
33 month, day, year = self._toGregorian()
34 if month < 3 :
35 month = month + 12
36 year = year - 1
37 return ((13 * month + 3) // 5 + day + \
38 year + year // 4 - year // 100 + year // 400) % 7
39
40 # Returns the date as a string in Gregorian format.
41 def __str__( self ):
42 month, day, year = self._toGregorian()
43 return "%02d/%02d/%04d" % (month, day, year)
44
45 # Logically compares the two dates.
46 def __eq__( self, otherDate ):
47 return self._julianDay == otherDate._julianDay
48

(Listing Continued)
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Listing 1.2 Continued . . .

49 def __lt__( self, otherDate ):
50 return self._julianDay < otherDate._julianDay
51
52 def __le__( self, otherDate ):
53 return self._julianDay <= otherDate._julianDay
54
55 # The remaining methods are to be included at this point.
56 # ......
57
58 # Returns the Gregorian date as a tuple: (month, day, year).
59 def _toGregorian( self ):
60 A = self._julianDay + 68569
61 B = 4 * A // 146097
62 A = A - (146097 * B + 3) // 4
63 year = 4000 * (A + 1) // 1461001
64 A = A - (1461 * year // 4) + 31
65 month = 80 * A // 2447
66 day = A - (2447 * month // 80)
67 A = month // 11
68 month = month + 2 - (12 * A)
69 year = 100 * (B - 49) + year + A
70 return month, day, year

Constructing the Date

We begin our discussion of the implementation with the constructor, which is shown
in lines 5–19 of Listing 1.2. The Date ADT will need only a single attribute to store
the Julian day representing the given Gregorian date. To convert a Gregorian date
to a Julian day number, we use the following formula1 where day 0 corresponds to
November 24, 4713 BC and all operations involve integer arithmetic.

T = (M - 14) / 12
jday = D - 32075 + (1461 * (Y + 4800 + T) / 4) +

(367 * (M - 2 - T * 12) / 12) -
(3 * ((Y + 4900 + T) / 100) / 4)

Before attempting to convert the Gregorian date to a Julian day, we need
to verify it’s a valid date. This is necessary since the precondition states the
supplied Gregorian date must be valid. The isValidGregorian() helper method
is used to verify the validity of the given Gregorian date. This helper method,
the implementation of which is left as an exercise, tests the supplied Gregorian
date components and returns the appropriate boolean value. If a valid date is
supplied to the constructor, it is converted to the equivalent Julian day using the
equation provided earlier. Note the statements in lines 13–15. The equation for
converting a Gregorian date to a Julian day number uses integer arithmetic, but

1Seidelmann, P. Kenneth (ed.) (1992). Explanatory Supplement to the Astronomical Almanac,
Chapter 12, pp. 604—606, University Science Books.
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TE
i Comments. Class definitions and methods should be properly com-

mented to aide the user in knowing what the class and/or methods do.
To conserve space, however, classes and methods presented in this book
do not routinely include these comments since the surrounding text provides
a full explanation.

the equation line T = (M - 14) / 12 produces an incorrect result in Python due to
its implementation of integer division, which is not the same as the mathematical
definition. By definition, the result of the integer division -11/12 is 0, but Python
computes this as b−11/12.0c resulting in -1. Thus, we had to modify the first line
of the equation to produce the correct Julian day when the month component is
greater than 2.

C
A

U
TI

O
N !

Protected Attributes and Methods. Python does not provide a tech-
nique to protect attributes and helper methods in order to prevent their

use outside the class definition. In this text, we use identifier names, which
begin with a single underscore to flag those attributes and methods that
should be considered protected and rely on the user of the class to not at-
tempt a direct access.

The Gregorian Date

To access the Gregorian date components the Julian day must be converted back
to Gregorian. This conversion is needed in several of the ADT operations. Instead
of duplicating the formula each time it’s needed, we create a helper method to
handle the conversion as illustrated in lines 59–70 of Listing 1.2.

The toGregorian() method returns a tuple containing the day, month, and
year components. As with the conversion from Gregorian to Julian, integer arith-
metic operations are used throughout the conversion formula. By returning a tuple,
we can call the helper method and use the appropriate component from the tuple
for the given Gregorian component access method, as illustrated in lines 22–29.

The dayOfWeek() method, shown in lines 32–38, also uses the toGregorian()
conversion helper method. We determine the day of the week based on the Gre-
gorian components using a simple formula that returns an integer value between 0
and 6, where 0 represents Monday, 1 represents Tuesday, and so on.

The toString operation defined by the ADT is implemented in lines 41–43 by
overloading Python’s str method. It creates a string representation of a date in
Gregorian format. This can be done using the string format operator and supplying
the values returned from the conversion helper method. By using Python’s str
method, Python automatically calls this method on the object when you attempt
to print or convert an object to a string as in the following example:
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firstDay = Date( 9, 1, 2006 )
print( firstDay )

Comparing Date Objects

We can logically compare two Date instances to determine their calendar order.
When using a Julian day to represent the dates, the date comparison is as simple
as comparing the two integer values and returning the appropriate boolean value
based on the result of that comparison. The “comparable” ADT operation is
implemented using Python’s logical comparison operators as shown in lines 46–53
of Listing 1.2. By implementing the methods for the logical comparison operators,
instances of the class become comparable objects. That is, the objects can be
compared against each other to produce a logical ordering.

You will notice that we implemented only three of the logical comparison op-
erators. The reason for this is that starting with Python version 3, Python will
automatically swap the operands and call the appropriate reflective method when
necessary. For example, if we use the expression a > b with Date objects in our
program, Python will automatically swap the operands and call b < a instead since
the lt method is defined but not gt . It will do the same for a >= b and
a <= b. When testing for equality, Python will automatically invert the result
when only one of the equality operators (== or !=) is defined. Thus, we need only
define one operator from each of the following pairs to achieve the full range of
logical comparisons: < or >, <= or >=, and == or !=. For more information on
overloading operators, refer to Appendix D.

TI
P

Overloading Operators. User-defined classes can implement meth-
ods to define many of the standard Python operators such as +, *, %,

and ==, as well as the standard named operators such as in and not in.
This allows for a more natural use of the objects instead of having to call
specific named methods. It can be tempting to define operators for every
class you create, but you should limit the definition of operator methods for
classes where the specific operator has a meaningful purpose.

1.3 Bags
The Date ADT provided an example of a simple abstract data type. To illustrate
the design and implementation of a complex abstract data type, we define the Bag
ADT. A bag is a simple container like a shopping bag that can be used to store a
collection of items. The bag container restricts access to the individual items by
only defining operations for adding and removing individual items, for determining
if an item is in the bag, and for traversing over the collection of items.
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1.3.1 The Bag Abstract Data Type
There are several variations of the Bag ADT with the one described here being a
simple bag. A grab bag is similar to the simple bag but the items are removed
from the bag at random. Another common variation is the counting bag, which
includes an operation that returns the number of occurrences in the bag of a given
item. Implementations of the grab bag and counting bag are left as exercises.

Define Bag ADT

A bag is a container that stores a collection in which duplicate values are allowed.
The items, each of which is individually stored, have no particular order but they
must be comparable.

� Bag(): Creates a bag that is initially empty.

� length (): Returns the number of items stored in the bag. Accessed using
the len() function.

� contains ( item ): Determines if the given target item is stored in the bag
and returns the appropriate boolean value. Accessed using the in operator.

� add( item ): Adds the given item to the bag.

� remove( item ): Removes and returns an occurrence of item from the bag.
An exception is raised if the element is not in the bag.

� iterator (): Creates and returns an iterator that can be used to iterate over
the collection of items.

You may have noticed our definition of the Bag ADT does not include an
operation to convert the container to a string. We could include such an operation,
but creating a string for a large collection is time consuming and requires a large
amount of memory. Such an operation can be beneficial when debugging a program
that uses an instance of the Bag ADT. Thus, it’s not uncommon to include the
str operator method for debugging purposes, but it would not typically be used

in production software. We will usually omit the inclusion of a str operator
method in the definition of our abstract data types, except in those cases where it’s
meaningful, but you may want to include one temporarily for debugging purposes.

Examples

Given the abstract definition of the Bag ADT, we can create and use a bag without
knowing how it is actually implemented. Consider the following simple example,
which creates a bag and asks the user to guess one of the values it contains.
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myBag = Bag()
myBag.add( 19 )
myBag.add( 74 )
myBag.add( 23 )
myBag.add( 19 )
myBag.add( 12 )

value = int( input("Guess a value contained in the bag.") )
if value in myBag:
print( "The bag contains the value", value )

else :
print( "The bag does not contain the value", value )

Next, consider the checkdates.py sample program from the previous section
where we extracted birth dates from the user and determined which ones were
for individuals who were at least 21 years of age. Suppose we want to keep the
collection of birth dates for later use. It wouldn’t make sense to require the user to
re-enter the dates multiple times. Instead, we can store the birth dates in a bag as
they are entered and access them later, as many times as needed. The Bag ADT
is a perfect container for storing objects when the position or order of a specific
item does not matter. The following is a new version of the main routine for our
birth date checking program from Listing 1.1:

#pgm: checkdates2.py (modified main() from checkdates.py)
from linearbag import Bag
from date import Date

def main():
bornBefore = Date( 6, 1, 1988 )
bag = Bag()

# Extract dates from the user and place them in the bag.
date = promptAndExtractDate()
while date is not None :
bag.add( date )
date = promptAndExtractDate()

# Iterate over the bag and check the age.
for date in bag :
if date <= bornBefore :
print( "Is at least 21 years of age: ", date )

Why a Bag ADT?

You may be wondering, why do we need the Bag ADT when we could simply
use the list to store the items? For a small program and a small collection of
data, using a list would be appropriate. When working with large programs and
multiple team members, however, abstract data types provide several advantages
as described earlier in Section 1.1.2. By working with the abstraction of a bag,
we can: a) focus on solving the problem at hand instead of worrying about the
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implementation of the container, b) reduce the chance of introducing errors from
misuse of the list since it provides additional operations that are not appropriate
for a bag, c) provide better coordination between different modules and designers,
and d) easily swap out our current implementation of the Bag ADT for a different,
possibly more efficient, version later.

1.3.2 Selecting a Data Structure
The implementation of a complex abstract data type typically requires the use of
a data structure for organizing and managing the collection of data items. There
are many different structures from which to choose. So how do we know which to
use? We have to evaluate the suitability of a data structure for implementing a
given abstract data type, which we base on the following criteria:

1. Does the data structure provide for the storage requirements as specified by
the domain of the ADT? Abstract data types are defined to work with a
specific domain of data values. The data structure we choose must be capable
of storing all possible values in that domain, taking into consideration any
restrictions or limitations placed on the individual items.

2. Does the data structure provide the necessary data access and manipulation
functionality to fully implement the ADT? The functionality of an abstract
data type is provided through its defined set of operations. The data structure
must allow for a full and correct implementation of the ADT without having
to violate the abstraction principle by exposing the implementation details to
the user.

3. Does the data structure lend itself to an efficient implementation of the oper-
ations? An important goal in the implementation of an abstract data type is
to provide an efficient solution. Some data structures allow for a more effi-
cient implementation than others, but not every data structure is suitable for
implementing every ADT. Efficiency considerations can help to select the best
structure from among multiple candidates.

There may be multiple data structures suitable for implementing a given ab-
stract data type, but we attempt to select the best possible based on the context
in which the ADT will be used. To accommodate different contexts, language
libraries will commonly provide several implementations of some ADTs, allowing
the programmer to choose the most appropriate. Following this approach, we in-
troduce a number of abstract data types throughout the text and present multiple
implementations as new data structures are introduced.

The efficiency of an implementation is based on complexity analysis, which is
not introduced until later in Chapter 3. Thus, we postpone consideration of the
efficiency of an implementation in selecting a data structure until that time. In
the meantime, we only consider the suitability of a data structure based on the
storage and functional requirements of the abstract data type.



18 CHAPTER 1 Abstract Data Types

We now turn our attention to selecting a data structure for implementing the
Bag ADT. The possible candidates at this point include the list and dictionary
structures. The list can store any type of comparable object, including duplicates.
Each item is stored individually, including duplicates, which means the reference
to each individual object is stored and later accessible when needed. This satisfies
the storage requirements of the Bag ADT, making the list a candidate structure
for its implementation.

The dictionary stores key/value pairs in which the key component must be
comparable and unique. To use the dictionary in implementing the Bag ADT, we
must have a way to store duplicate items as required by the definition of the ab-
stract data type. To accomplish this, each unique item can be stored in the key
part of the key/value pair and a counter can be stored in the value part. The
counter would be used to indicate the number of occurrences of the corresponding
item in the bag. When a duplicate item is added, the counter is incremented; when
a duplicate is removed, the counter is decremented.

Both the list and dictionary structures could be used to implement the Bag
ADT. For the simple version of the bag, however, the list is a better choice since
the dictionary would require twice as much space to store the contents of the bag
in the case where most of the items are unique. The dictionary is an excellent
choice for the implementation of the counting bag variation of the ADT.

Having chosen the list, we must ensure it provides the means to implement the
complete set of bag operations. When implementing an ADT, we must use the
functionality provided by the underlying data structure. Sometimes, an ADT op-
eration is identical to one already provided by the data structure. In this case, the
implementation can be quite simple and may consist of a single call to the corre-
sponding operation of the structure, while in other cases, we have to use multiple
operations provided by the structure. To help verify a correct implementation
of the Bag ADT using the list, we can outline how each bag operation will be
implemented:

� An empty bag can be represented by an empty list.

� The size of the bag can be determined by the size of the list.

� Determining if the bag contains a specific item can be done using the equivalent
list operation.

� When a new item is added to the bag, it can be appended to the end of the
list since there is no specific ordering of the items in a bag.

� Removing an item from the bag can also be handled by the equivalent list
operation.

� The items in a list can be traversed using a for loop and Python provides for
user-defined iterators that be used with a bag.

From this itemized list, we see that each Bag ADT operation can be imple-
mented using the available functionality of the list. Thus, the list is suitable for
implementing the bag.
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1.3.3 List-Based Implementation
The implementation of the Bag ADT using a list is shown in Listing 1.3. The
constructor defines a single data field, which is initialized to an empty list. This
corresponds to the definition of the constructor for the Bag ADT in which the
container is initially created empty. A sample instance of the Bag class created from
the example checkdates2.py program provided earlier is illustrated in Figure 1.3.

Listing 1.3 The linearbag.py module.

1 # Implements the Bag ADT container using a Python list.
2 class Bag :
3 # Constructs an empty bag.
4 def __init__( self ):
5 self._theItems = list()
6
7 # Returns the number of items in the bag.
8 def __len__( self ):
9 return len( self._theItems )

10
11 # Determines if an item is contained in the bag.
12 def __contains__( self, item ):
13 return item in self._theItems
14
15 # Adds a new item to the bag.
16 def add( self, item ):
17 self._theItems.append( item )
18
19 # Removes and returns an instance of the item from the bag.
20 def remove( self, item ):
21 assert item in self._theItems, "The item must be in the bag."
22 ndx = self._theItems.index( item )
23 return self._theItems.pop( ndx )
24
25 # Returns an iterator for traversing the list of items.
26 def __iter__( self, item ):
27 ......

Most of the implementation details follow the specifics discussed in the previous
section. There are some additional details, however. First, the ADT definition
of the remove() operation specifies the precondition that the item must exist
in the bag in order to be removed. Thus, we must first assert that condition
and verify the existence of the item. Second, we need to provide an iteration
mechanism that allows us to iterate over the individual items in the bag. We delay

theItems

Bag 0 1 2 3 4

1919 7474 2323 1919 1212

Figure 1.3: Sample instance of the Bag class implemented using a list.



20 CHAPTER 1 Abstract Data Types

the implementation of this operation until the next section where we discuss the
creation and use of iterators in Python.

A list stores references to objects and technically would be illustrated as shown
in the figure to the right. To conserve space and reduce the clutter that can result
in some figures, however, we illustrate objects in the text as boxes with rounded

Bag

1919 7474 2323 1919

    
0 1 2 3 4

Bag
1212

Bag

theItems

edges and show them stored directly
within the list structure. Variables
will be illustrated as square boxes
with a bullet in the middle and the
name of the variable printed nearby.

1.4 Iterators
Traversals are very common operations, especially on containers. A traversal iter-
ates over the entire collection, providing access to each individual element. Traver-
sals can be used for a number of operations, including searching for a specific item
or printing an entire collection.

Python’s container types—strings, tuples, lists, and dictionaries—can be tra-
versed using the for loop construct. For our user-defined abstract data types, we
can add methods that perform specific traversal operations when necessary. For
example, if we wanted to save every item contained in a bag to a text file, we could
add a saveElements() method that traverses over the vector and writes each value
to a file. But this would limit the format of the resulting text file to that specified
in the new method. In addition to saving the items, perhaps we would like to
simply print the items to the screen in a specific way. To perform the latter, we
would have to add yet another operation to our ADT.

Not all abstract data types should provide a traversal operation, but it is appro-
priate for most container types. Thus, we need a way to allow generic traversals to
be performed. One way would be to provide the user with access to the underlying
data structure used to implement the ADT. But this would violate the abstraction
principle and defeat the purpose of defining new abstract data types.

Python, like many of today’s object-oriented languages, provides a built-in it-
erator construct that can be used to perform traversals on user-defined ADTs. An
iterator is an object that provides a mechanism for performing generic traversals
through a container without having to expose the underlying implementation. Iter-
ators are used with Python’s for loop construct to provide a traversal mechanism
for both built-in and user-defined containers. Consider the code segment from the
checkdates2.py program in Section 1.3 that uses the for loop to traverse the
collection of dates:

# Iterate over the bag and check the ages.
for date in bag :
if date <= bornBefore :
print( "Is at least 21 years of age: ", date )
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1.4.1 Designing an Iterator

To use Python’s traversal mechanism with our own abstract data types, we must
define an iterator class, which is a class in Python containing two special methods,
iter and next . Iterator classes are commonly defined in the same module

as the corresponding container class.
The implementation of the BagIterator class is shown in Listing 1.4. The

constructor defines two data fields. One is an alias to the list used to store the
items in the bag, and the other is a loop index variable that will be used to iterate
over that list. The loop variable is initialized to zero in order to start from the
beginning of the list. The iter method simply returns a reference to the object
itself and is always implemented to do so.

Listing 1.4 The BagIterator class, which is part of the linearbag.py module.

1 # An iterator for the Bag ADT implemented as a Python list.
2 class _BagIterator :
3 def __init__( self, theList ):
4 self._bagItems = theList
5 self._curItem = 0
6
7 def __iter__( self ):
8 return self
9

10 def __next__( self ):
11 if self._curItem < len( self._bagItems ) :
12 item = self._bagItems[ self._curItem ]
13 self._curItem += 1
14 return item
15 else :
16 raise StopIteration

The next method is called to return the next item in the container. The
method first saves a reference to the current item indicated by the loop variable.
The loop variable is then incremented by one to prepare it for the next invocation
of the next method. If there are no additional items, the method must raise a
StopIteration exception that flags the for loop to terminate. Finally, we must
add an iter method to our Bag class, as shown here:

def __iter__( self ):
return _BagIterator( self._theItems )

This method, which is responsible for creating and returning an instance of the
BagIterator class, is automatically called at the beginning of the for loop to

create an iterator object for use with the loop construct.
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1.4.2 Using Iterators
With the definition of the BagIterator class and the modifications to the Bag
class, we can now use Python’s for loop with a Bag instance. When the for loop

for item in bag :
print( item )

is executed, Python automatically calls the iter method on the bag object
to create an iterator object. Figure 1.4 illustrates the state of the BagIterator
object immediately after being created. Notice the bagItems field of the iterator
object references theItems field of the bag object. This reference was assigned
by the constructor when the BagIterator object was created.


0 1 2 3 4

1919 7474 2323 1919 1212


_BagIterator

00

curItem

theItems

Bag

1919 7474 2323 1919 1212


bagVector curItem

00

Figure 1.4: The Bag and BagIterator objects before the first loop iteration.

The for loop then automatically calls the next method on the iterator
object to access the next item in the container. The state of the iterator object
changes with the curItem field having been incremented by one. This process
continues until a StopIteration exception is raised by the next method when
the items have been exhausted as indicated by the curItem. After all of the items
have been processed, the iteration is terminated and execution continues with the
next statement following the loop. The following code segment illustrates how
Python actually performs the iteration when a for loop is used with an instance
of the Bag class:

# Create a BagIterator object for myBag.
iterator = myBag.__iter__()

# Repeat the while loop until break is called.
while True :
try:

# Get the next item from the bag. If there are no
# more items, the StopIteration exception is raised.
item = iterator.__next__()
# Perform the body of the for loop.
print( item )

# Catch the exception and break from the loop when we are done.
except StopIteration:
break
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1.5 Application: Student Records
Most computer applications are written to process and manipulate data that is
stored external to the program. Data is commonly extracted from files stored on
disk, from databases, and even from remote sites through web services. For exam-
ple, suppose we have a collection of records stored on disk that contain information
related to students at Smalltown College. We have been assigned the task to ex-
tract this information and produce a report similar to the following in which the
records are sorted by identification number.

LIST OF STUDENTS

ID NAME CLASS GPA
----- ------------------------- ---------- ----
10015 Smith, John Sophomore 3.01
10167 Jones, Wendy Junior 2.85
10175 Smith, Jane Senior 3.92
10188 Wales, Sam Senior 3.25
10200 Roberts, Sally Freshman 4.00
10208 Green, Patrick Freshman 3.95
10226 Nelson, Amy Sophomore 2.95
10334 Roberts, Jane Senior 3.81
10387 Taylor, Susan Sophomore 2.15
10400 Logan, Mark Junior 3.33
10485 Brown, Jessica Sophomore 2.91
--------------------------------------------------
Number of students: 11

Our contact in the Registrar’s office, who assigned the task, has provided some
information about the data. We know each record contains five pieces of infor-
mation for an individual student: (1) the student’s id number represented as an
integer; (2) their first and last names, which are strings; (3) an integer classification
code in the range [1 . . . 4] that indicates if the student is a freshman, sophomore,
junior, or senior; and (4) their current grade point average represented as a floating-
point value. What we have not been told, however, is how the data is stored on
disk. It could be stored in a plain text file, in a binary file, or even in a database.
In addition, if the data is stored in a text or binary file, we will need to know how
the data is formatted in the file, and if it’s in a relational database, we will need
to know the type and the structure of the database.

1.5.1 Designing a Solution
Even though we have not yet been told the type of file or the format used to store
the data, we can begin designing and implementing a solution by working with
an abstraction of the input source. No matter the source or format of the data,
the extraction of data records from external storage requires similar steps: open
a connection, extract the individual records, then close the connection. To aide
in our effort, we define a Student File Reader ADT to represent the extraction of
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data from an external file or database. In computer programming, an object used
to input data into a program is sometimes referred to as a reader while an object
used to output data is referred to as a writer .

Define Student File Reader ADT

A student file reader is used to extract student records from external storage. The
five data components of the individual records are extracted and stored in a storage
object specific for this collection of student records.

� StudentFileReader( filename ): Creates a student reader instance for ex-
tracting student records from the given file. The type and format of the file
is dependent on the specific implementation.

� open(): Opens a connection to the input source and prepares it for extracting
student records. If a connection cannot be opened, an exception is raised.

� close(): Closes the connection to the input source. If the connection is not
currently open, an exception is raised.

� fetchRecord(): Extracts the next student record from the input source and
returns a reference to a storage object containing the data. None is returned
when there are no additional records to be extracted. An exception is raised
if the connection to the input source was previously closed.

� fetchAll(): The same as fetchRecord(), but extracts all student records
(or those remaining) from the input source and returns them in a Python list.

Creating the Report

The program in Listing 1.5 uses the Student File Reader ADT to produce the
sample report illustrated earlier. The program extracts the student records from
the input source, sorts the records by student identification number, and produces
the report. This program illustrates some of the advantages of applying abstraction
to problem solving by focusing on the “what” instead of the “how.”

By using the Student File Reader ADT, we are able to design a solution and
construct a program for the problem at hand without knowing exactly how the
data is stored in the external source. We import the StudentFileReader class
from the studentfile.py module, which we assume will be an implementation of
the ADT that handles the actual data extraction. Further, if we want to use this
same program with a data file having a different format, the only modifications
required will be to indicate a different module in the import statement and possibly
a change to the filename specified by the constant variable FILE NAME.

The studentreport.py program consists of two functions: printReport() and
main(). The main routine uses an instance of the ADT to connect to the external
source in order to extract the student records into a list. The list of records is then
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Listing 1.5 The studentreport.py program.

1 # Produces a student report from data extracted from an external source.
2 from studentfile import StudentFileReader
3
4 # Name of the file to open.
5 FILE_NAME = "students.txt"
6
7 def main():
8 # Extract the student records from the given text file.
9 reader = StudentFileReader( FILE_NAME )

10 reader.open()
11 studentList = reader.fetchAll()
12 reader.close()
13
14 # Sort the list by id number. Each object is passed to the lambda
15 # expression which returns the idNum field of the object.
16 studentList.sort( key = lambda rec: rec.idNum )
17
18 # Print the student report.
19 printReport( studentList )
20
21 # Prints the student report.
22 def printReport( theList ):
23 # The class names associated with the class codes.
24 classNames = ( None, "Freshman", "Sophomore", "Junior", "Senior" )
25
26 # Print the header.
27 print( "LIST OF STUDENTS".center(50) )
28 print( "" )
29 print( "%-5s %-25s %-10s %-4s" % ('ID', 'NAME', 'CLASS', 'GPA' ) )
30 print( "%5s %25s %10s %4s" % ('-' * 5, '-' * 25, '-' * 10, '-' * 4))
31 # Print the body.
32 for record in theList :
33 print( "%5d %-25s %-10s %4.2f" % \
34 (record.idNum, \
35 record.lastName + ', ' + record.firstName,
36 classNames[record.classCode], record.gpa) )
37 # Add a footer.
38 print( "-" * 50 )
39 print( "Number of students:", len(theList) )
40
41 # Executes the main routine.
42 main()

sorted in ascending order based on the student identification number. The actual
report is produced by passing the sorted list to the printReport() function.

Storage Class

When the data for an individual student is extracted from the input file, it will
need to be saved in a storage object that can be added to a list in order to first
sort and then print the records. We could use tuples to store the records, but we
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avoid the use of tuples when storing structured data since it’s better practice to
use classes with named fields. Thus, we define the StudentRecord class

class StudentRecord :
def __init__( self ):
self.idNum = 0
self.firstName = None
self.lastName = None
self.classCode = 0
self.gpa = 0.0

to store the data related to an individual student. You may notice there is only a
constructor with no additional methods. This is a complete class as defined and
represents a storage class. The constructor is all that’s needed to define the two
data fields for storing the two component values.

Storage classes should be defined within the same module as the class with
which they will be used. For this application, the StudentRecord class is defined
at the end of the studentfile.py module. Some storage classes may be intended
for internal use by a specific class and not meant to be accessed from outside the
module. In those cases, the name of the storage class will begin with a single
underscore, which flags it as being private to the module in which it’s defined.
The StudentRecord class, however, has not been defined as being private to the
module since instances of the storage class are not confined to the ADT but in-
stead are returned to the client code by methods of the StudentFileReader class.
The storage class can be imported along with the StudentFileReader class when
needed.

You will note the data fields in the storage class are public (by our notation)
since their names do not begin with an underscore as they have been in other
classes presented earlier. The reason we do not include a restrictive interface for
accessing the data fields is that storage objects are meant to be used exclusively
for storing data and not as an instance of some abstract data type. Given their
limited use, we access the data fields directly as needed.

1.5.2 Implementation
The implementation of the Student File Reader ADT does not require a data
structure since it does not store data but instead extracts data from an external
source. The ADT has to be implemented to extract data based on the format in
which the data is stored. For this example, we are going to extract the data from
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Python Tuples. The tuple can be used to store structured data, with
each element corresponding to an individual data field. This is not

good practice, however, since the elements are not named and you would
have to remember what piece of data is stored in each element. A better
practice is to use objects with named data fields. In this book, we limit the
use of tuples for returning multiple values from methods and functions.



1.5 Application: Student Records 27

a text file in which the records are listed one after the other. The five fields of the
record are each stored on a separate line. The first line contains the id number,
the second and third contain the first and last names, the fourth line contains
the classification code, and the grade point average follows on the fifth line. The
following text block illustrates the format for a file containing two records:

10015
John
Smith
2
3.01
10334
Jane
Roberts
4
3.81

Listing 1.6 provides the implementation of the ADT for extracting the records
from the text file in the given format. The constructor simply initializes an instance
of the class by creating two attributes, one to store the name the text file and the
other to store a reference to the file object after it’s opened. The open() method
is responsible for opening the input file using the name saved in the constructor.
The resulting file object is saved in the inputFile attribute so it can be used in
the other methods. After the records are extracted, the file is closed by calling the
close() method.

Listing 1.6 The studentfile.py module.

1 # Implementation of the StudentFileReader ADT using a text file as the
2 # input source in which each field is stored on a separate line.
3
4 class StudentFileReader :
5 # Create a new student reader instance.
6 def __init__( self, inputSrc ):
7 self._inputSrc = inputSrc
8 self._inputFile = None
9

10 # Open a connection to the input file.
11 def open( self ):
12 self._inputFile = open( self._inputSrc, "r" )
13
14 # Close the connection to the input file.
15 def close( self ):
16 self._inputFile.close()
17 self._inputFile = None
18
19 # Extract all student records and store them in a list.
20 def fetchAll( self ):
21 theRecords = list()
22 student = self.fetchRecord()

(Listing Continued)
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Listing 1.6 Continued . . .

23 while student != None :
24 theRecords.append( student )
25 student = self.fetchRecord()
26 return theRecords
27
28 # Extract the next student record from the file.
29 def fetchRecord( self ):
30 # Read the first line of the record.
31 line = self._inputFile.readline()
32 if line == "" :
33 return None
34
35 # If there is another record, create a storage object and fill it.
36 student = StudentRecord()
37 student.idNum = int( line )
38 student.firstName = self._inputFile.readline().rstrip()
39 student.lastName = self._inputFile.readline().rstrip()
40 student.classCode = int( self._inputFile.readline() )
41 student.gpa = float( self._inputFile.readline() )
42 return student
43
44 # Storage class used for an individual student record.
45 class StudentRecord :
46 def __init__( self ):
47 self.idNum = 0
48 self.firstName = None
49 self.lastName = None
50 self.classCode = 0
51 self.gpa = 0.0

The fetchAll() method, at lines 20–26, is a simple event-controlled loop that
builds and returns a list of StudentRecord objects. This is done by repeatedly
calling the fetchRecord() method. Thus, the actual extraction of a record from
the text file is handled by the fetchRecord() method, as shown in lines 29–42.
To extract the student records from a file in which the data is stored in a different
format, we need only modify this method to accommodate the new format.

The Student File Reader ADT provides a framework that can be used to extract
any type of records from a text file. The only change required would be in the
fetchRecord() method to create the appropriate storage object and to extract
the data from the file in the given format.

Exercises
1.1 Complete the partial implementation of the Date class by implementing the

remaining methods: monthName(), isLeapYear(), numDays(), advanceBy(),
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and isValidGregorian(). The isValidGregorian() method should deter-
mine if the three components of the given Gregorian date are valid.

1.2 Add additional operations to the Date class:

(a) dayOfWeekName(): returns a string containing the name of the day.

(b) dayOfYear(): returns an integer indicating the day of the year. For ex-
ample, the first day of February is day 32 of the year.

(c) isWeekday(): determines if the date is a weekday.

(d) isEquinox(): determines if the date is the spring or autumn equinox.

(e) isSolstice(): determines if the date is the summer or winter solstice.

(f) asGregorian(divchar = '/'): similar to the str() method but uses
the optional argument divchar as the dividing character between the three
components of the Gregorian date.

1.3 Implement a function named printCalendar() that accepts a Date object
and prints a calendar for the month of the given date. For example, if the
Date object passed to the function contained the date 11/5/2007, the function
should print

November 2007
Su Mo Tu We Th Fr Sa

1 2 3
4 5 6 7 8 9 10

11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30

1.4 Modify the Date() constructor to make each of the three arguments optional,
with an initial value of zero. When no argument is supplied to the constructor,
the object should be initialized to the current date. Hint: You will need to
use Python’s date() function from the time.py module.

Programming Projects
1.1 A click counter is a small hand-held device that contains a push button and

a count display. To increment the counter, the button is pushed and the new
count shows in the display. Clicker counters also contain a button that can be
pressed to reset the counter to zero. Design and implement the Counter ADT
that functions as a hand-held clicker.

1.2 A Grab Bag ADT is similar to the Bag ADT with one difference. A grab
bag does not have a remove() operation, but in place of it has a grabItem()
operation, which allows for the random removal of an item from the bag.
Implement the Grab Bag ADT.
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1.3 A Counting Bag ADT is just like the Bag ADT but includes the numOf(item)
operation, which returns the number of occurrences of the given item in the
bag. Implement the Counting Bag ADT and defend your selection of data
structure.

1.4 The use of the Student File Reader ADT makes it easy to extract student
records from a text file no matter the format used to store the data. Implement
a new version of the ADT to extract the data from a text file in which each
record is stored on a separate line and the individual fields are separated by
commas. For example, the following illustrates the format of a sample file
containing three student records:

10015, John, Smith, 2, 3.01
10334, Jane, Roberts, 4, 3.81
10208, Patrick, Green, 1, 3.95

1.5 In the chapter, we defined and implemented the Student File Reader ADT for
extracting student records from an external source. We can define and use a
similar ADT for output.

(a) Design a Student File Writer ADT that can be used to display, or store to
an output device, student records contained in a StudentRecord object.

(b) Provide an implementation of your ADT to output the records by display-
ing them to the terminal in a neatly formatted fashion.

(c) Provide an implementation of your ADT to output the records to a text
file using the same format described in the text.

(d) Design and implement a complete program that extracts student records
from a text file, sorts them by either student id or student name, and
displays them to the terminal using your ADT. The choice of sort keys
should be extracted from the user.

1.6 We can use a Time ADT to represent the time of day, for any 24-hour period,
as the number of seconds that have elapsed since midnight. Given the following
list of operations, implement the Time ADT.

� Time( hours, minutes, seconds ): Creates a new Time instance and ini-
tializes it with the given time.

� hour(): Returns the hour part of the time.

� minutes(): Returns the minutes part of the time.

� seconds(): Returns the seconds part of the time.

� numSeconds( otherTime ): Returns the number of seconds as a positive
integer between this time and the otherTime.

� isAM(): Determines if this time is ante meridiem or before midday (at or
before 12 o’clock noon).
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� isPM(): Determines if this time is post meridiem or after midday (after
12 o’clock noon).

� comparable ( otherTime ): Compares this time to the otherTime to de-
termine their logical ordering. This comparison can be done using any of
the Python logical operators.

� toString (): Returns a string representing the time in the 12-hour format
hh:mm:ss. Invoked by calling Python’s str() constructor.

1.7 Design and implement a TimeDate ADT that can be used to represent both
a date and time as a single entity.

1.8 A line segment is a straight line bounded by two endpoints. The Line Segment
ADT, whose operations are described below, represents a line segment defined
by points in the two-dimensional Cartesian coordinate system. Use the Point
class from Appendix D and implement the Line Segment ADT.

� LineSegment( ptA, ptB ): Creates a new Line Segment instance defined
by the two Point objects.

� endPointA(): Returns the first endpoint of the line.

� endPointB(): Returns the second endpoint of the line.

� length (): Returns the length of the line segment given as the Euclidean
distance between the two endpoints.

� toString (): Returns a string representation of the line segment in the
format (Ax, Ay)#(Bx, By).

� isVertical(): Is the line segment parallel to the y-axis?

� isHorizontal(): Is the line segment parallel to the x-axis?

� isParallel( otherLine ): Is this line segment parallel to the otherLine?

� isPerpendicular( otherLine ): Is this line segment perpendicular to the
otherLine?

� intersects(otherLine ): Does this line segment intersect the otherLine?

� bisects( otherLine ): Does this line segment bisect the otherLine?

� slope(): Returns the slope of the line segment given as the rise over the
run. If the line segment is vertical, None is returned.

� shift( xInc, yInc ): Shifts the line segment by xInc amount along the
x-axis and yInc amount along the y-axis.

� midpoint(): Returns the midpoint of the line segment as a Point object.

1.9 A polygon is a closed geometric shape consisting of three or more line segments
that are connected end to end. The endpoints of the line segments are known
as vertices, which can be defined by points in the two-dimensional Cartesian
coordinate system.
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(a) Define a Polygon ADT to represent a geometric polygon and provide a set
of appropriate operations.

(b) Provide a Python implementation of your Polygon ADT.

1.10 Anyone who is involved in many activities typically uses a calendar to keep
track of the various activities. Colleges commonly maintain several calendars
such as an academic calendar, a school events calendar, and a sporting events
calendar. We have defined an Activities Calendar ADT below that can keep
track of one activity per day over a given range of dates. Select a data structure
and implement the ADT.

� ActivitiesCalendar( dateFrom, dateTo ): Creates a new empty activ-
ities calendar initialized to the given range of dates. The date range can
be specified for any non-overlapping period. The only requirements are
that dateFrom must precede dateTo and dateTo cannot overlap the day
and month of dateFrom for the next year.

� length (): Returns the number of activities on the calendar.

� getActivity( date ): Returns the string that describes the activity for
the given date if an activity exists for the given date; otherwise, None is
returned.

� addActivity( date, activity ): Adds the given activity description to
the calendar for the given date. The date must be within the valid date
range for the calendar.

� displayMonth( month ): Displays to standard output all activities for the
given month. The display includes the year and name of the month and
the list of activities for the month. The display of each activity includes
the day of the month on which the activity occurs and the description
of the activity.

1.11 Python provides a numeric class for working with floating-point values. But
not all real numbers can be represented precisely on a computer since they are
stored as binary values. In applications where the precision of real numbers
is important, we can use rational numbers or fractions to store exact values.
A fraction, such as 7

8 , consists of two parts, both of which are integers. The
top value, which can be any integer value, is known as the numerator. The
bottom value, which must be greater than zero, is known as the denominator.

(a) Define a Fraction ADT to represent and store rational numbers. The ADT
should include all of the common mathematical and logical operations. In
addition, your ADT should provide for the conversion between floating-
point values and fractions and the ability to produce a string version of
the fraction.

(b) Provide a Python implementation of your Fraction ADT.



CHAPTER 2
Arrays

The most basic structure for storing and accessing a collection of data is the array.
Arrays can be used to solve a wide range of problems in computer science. Most
programming languages provide this structured data type as a primitive and allow
for the creation of arrays with multiple dimensions. In this chapter, we implement
an array structure for a one-dimensional array and then use it to implement a
two-dimensional array and the related matrix structure.

2.1 The Array Structure

At the hardware level, most computer architectures provide a mechanism for creat-
ing and using one-dimensional arrays. A one-dimensional array , as illustrated
in Figure 2.1, is composed of multiple sequential elements stored in contiguous
bytes of memory and allows for random access to the individual elements.

The entire contents of an array are identified by a single name. Individual
elements within the array can be accessed directly by specifying an integer subscript
or index value, which indicates an offset from the start of the array. This is similar
to the mathematics notation (xi), which allows for multiple variables of the same
name. The difference is that programming languages typically use square brackets
following the array name to specify the subscript, x[i].

0 1 2 3 4 5 6 7 8 9 10

1010 5151 22 1818 44 3131 1313 55 2323 6464 2929

Figure 2.1: A sample 1-D array consisting of 11 elements.

33
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2.1.1 Why Study Arrays?
You will notice the array structure looks very similar to Python’s list structure.
That’s because the two structures are both sequences that are composed of multiple
sequential elements that can be accessed by position. But there are two major
differences between the array and the list. First, an array has a limited number of
operations, which commonly include those for array creation, reading a value from
a specific element, and writing a value to a specific element. The list, on the other
hand, provides a large number of operations for working with the contents of the
list. Second, the list can grow and shrink during execution as elements are added
or removed while the size of an array cannot be changed after it has been created.

You may be wondering, if Python provides the list structure as its mutable
sequence type, why are we bothering to discuss the array structure, much less plan
to implement an abstract data type for working with arrays in Python? The short
answer is that both structures have their uses. There are many problems that
only require the use of a basic array in which the number of elements is known
beforehand and the flexible set of operations available with the list is not needed.

The array is best suited for problems requiring a sequence in which the maxi-
mum number of elements are known up front, whereas the list is the better choice
when the size of the sequence needs to change after it has been created. As you
will learn later in the chapter, a list contains more storage space than is needed to
store the items currently in the list. This extra space, the size of which can be up
to twice the necessary capacity, allows for quick and easy expansion as new items
are added to the list. But the extra space is wasteful when using a list to store
a fixed number of elements. For example, suppose we need a sequence structure
with 100, 000 elements. We could create a list with the given number of elements
using the replication operator:

values = [ None ] * 100000

But underneath, this results in the allocation of space for up to 200,000 elements,
half of which will go to waste. In this case, an array would be a better choice.

The decision as to whether an array or list should be used is not limited to
the size of the sequence structure. It also depends on how it will be used. The
list provides a large set of operations for managing the items contained in the list.
Some of these include inserting an item at a specific location, searching for an
item, removing an item by value or location, easily extracting a subset of items,
and sorting the items. The array structure, on the other hand, only provides a
limited set of operations for accessing the individual elements comprising the array.
Thus, if the problem at hand requires these types of operations, the list is the better
choice.

2.1.2 The Array Abstract Data Type
The array structure is commonly found in most programming languages as a prim-
itive type, but Python only provides the list structure for creating mutable se-
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quences. We can define the Array ADT to represent a one-dimensional array for
use in Python that works similarly to arrays found in other languages. It will be
used throughout the text when an array structure is required.

Define Array ADT

A one-dimensional array is a collection of contiguous elements in which individual
elements are identified by a unique integer subscript starting with zero. Once an
array is created, its size cannot be changed.

� Array( size ): Creates a one-dimensional array consisting of size elements
with each element initially set to None. size must be greater than zero.

� length (): Returns the length or number of elements in the array.

� getitem ( index ): Returns the value stored in the array at element position
index. The index argument must be within the valid range. Accessed using
the subscript operator.

� setitem ( index, value ): Modifies the contents of the array element at po-
sition index to contain value. The index must be within the valid range.
Accessed using the subscript operator.

� clearing( value ): Clears the array by setting every element to value.

� iterator (): Creates and returns an iterator that can be used to traverse the
elements of the array.

Some computer scientists consider the array a physical structure and not an
abstraction since arrays are implemented at the hardware level. But remember,
there are only three basic operations available with the hardware-implemented
array. As part of our Array ADT, we have provided for these operations but have
also included an iterator and operations for obtaining the size of the array and for
setting every element to a given value. In this case, we have provided a higher level
of abstraction than that provided by the underlying hardware-implemented array.

The following simple program illustrates the creation and use of an array object
based on the Array ADT. Comments are provided to highlight the use of the
operator methods.

# Fill a 1-D array with random values, then print them, one per line.

from array import Array
import random

# The constructor is called to create the array.
valueList = Array( 100 )
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# Fill the array with random floating-point values.
for i in range( len( valueList ) ) :
valueList[ i ] = random.random()

# Print the values, one per line.
for value in valueList :
print( value )

As a second example, suppose you need to read the contents of a text file and
count the number of letters occurring in the file with the results printed to the
terminal. We know that characters are represented by the ASCII code, which
consists of integer values. The letters of the alphabet, both upper- and lowercase,
are part of what’s known as the printable range of the ASCII code. This includes
the ASCII values in the range [32 . . . 126] along with some of the codes with smaller
values. The latter are known control characters and can include the tab, newline,
and form-feed codes. Since all of the letters will have ASCII values less than 127,
we can create an array of this size and let each element represent a counter for
the corresponding ASCII value. After processing the file, we can traverse over the
elements used as counters for the letters of the alphabet and ignore the others.
The following program provides a solution to this problem using the Array ADT:

#Count the number of occurrences of each letter in a text file.

from array import Array

# Create an array for the counters and initialize each element to 0.
theCounters = Array( 127 )
theCounters.clear( 0 )

# Open the text file for reading and extract each line from the file
# and iterate over each character in the line.
theFile = open( 'atextfile.txt', 'r' )
for line in theFile :
for letter in line :
code = ord( letter )
theCounters[code] += 1

# Close the file
theFile.close()

# Print the results. The uppercase letters have ASCII values in the
# range 65..90 and the lowercase letters are in the range 97..122.
for i in range( 26 ) :
print( "%c - %4d %c - %4d" % \
(chr(65+i), theCounters[65+i], chr(97+i), theCounters[97+i]) )

2.1.3 Implementing the Array
Python is a scripting language built using the C language, a high-level language
that requires a program’s source code be compiled into executable code before it can
be used. The C language is a very powerful programming language that provides
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syntax for working with the complete functionality available by the underlying
hardware. That syntax, however, can be somewhat cryptic compared to Python,
especially for a Python programmer who may not be familiar with C.

The ctypes Module

Many of the data types and classes available in Python are actually implemented
using appropriate types from the C language. While Python does not provide the
array structure as part of the language itself, it now includes the ctypes module as
part of the Python Standard Library. This module provides access to the diverse set
of data types available in the C language and the complete functionality provided
by a wide range of C libraries.

The ctypes module provides the capability to create hardware-supported ar-
rays just like the ones used to implement Python’s string, list, tuple, and dictionary
collection types. But the ctypes module is not meant for everyday use in Python
programs as it was designed for use by module developers to aide in creating more
portable Python modules by bridging the gap between Python and the C language.
Much of the functionality provided by the ctypes module requires some knowledge
of the C language. Thus, the technique provided by the module for creating an
array should not typically be used directly within a Python program. But we can
use it within our Array class to provide the functionality defined by the Array
ADT since the details will be hidden within the class.

Creating a Hardware Array

The ctypes module provides a technique for creating arrays that can store refer-
ences to Python objects. The following code segment

import ctypes

ArrayType = ctypes.py_object * 5
slots = ArrayType()

creates an array named slots that contains five elements

0 1 2 3 4

slots

each of which can store a reference to an object. After the array has been created,
the elements can be accessed using the same integer subscript notation as used
with Python’s own sequence types. For the slots array, the legal range is [0 . . . 4].

The elements of the array have to be initialized before they can be used. If we
attempt to read the contents of an element in the slots array before it has been
initialized

print( slots[0] )
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an exception would be raised in the same way as if we tried to print the value of
a variable sum, that had not previously been assigned a value. Thus, the array
should be initialized immediately after it has been created by assigning a value to
each element using the subscript notation. Any value can be used, but a logical
choice is to assign None to each element:

for i in range( 5 ) :
slots[i] = None

The elements of the array can now be treated like any other variable in Python
that contains a null reference:

0 1 2 3 4

slots     

You may have noticed that we used the literal 5 with the range() function
to indicate the number of elements to be initialized. This was necessary because
a hardware-supported array does not keep track of the array size; it’s up to the
programmer to remember or maintain this value. Likewise, the programmer must
also ensure they do not access an element outside the legal range.

References to any type of Python object can be stored in any element of the
array. For example, the following code segment stores three integers in various
elements of the array:

slots[1] = 12
slots[3] = 54
slots[4] = 37

the result of which is illustrated here:

0 1 2 3 4

slots     1212 5454 3939

The operations provided by the array only allow for setting a given element
to a given reference or accessing a reference stored in a given element. To remove
an item from the array, we simply set the corresponding element to None. For
example, suppose we want to remove value 54 from the array

slots[3] = None

which results in the following change to the slots array:

0 1 2 3 4

slots     1212 3939
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The size of the array can never change, so removing an item from an array
has no effect on the size of the array or on the items stored in other elements.
The array does not provide any of the list type operations such as appending or
popping items, searching for a specific item, or sorting the items. To use such an
operation with an array, you would have to provide the necessary code yourself.

The Class Definition

The implementation of the Array ADT using a hardware-supported array created
with the use of the ctypes module is provided in Listing 2.1.

Listing 2.1 The array.py module with the Array class.

1 # Implements the Array ADT using array capabilities of the ctypes module.
2 import ctypes
3
4 class Array :
5 # Creates an array with size elements.
6 def __init__( self, size ):
7 assert size > 0, "Array size must be > 0"
8 self._size = size
9 # Create the array structure using the ctypes module.

10 PyArrayType = ctypes.py_object * size
11 self._elements = PyArrayType()
12 # Initialize each element.
13 self.clear( None )
14
15 # Returns the size of the array.
16 def __len__( self ):
17 return self._size
18
19 # Gets the contents of the index element.
20 def __getitem__( self, index ):
21 assert index >= 0 and index < len(self), "Array subscript out of range"
22 return self._elements[ index ]
23
24 # Puts the value in the array element at index position.
25 def __setitem__( self, index, value ):
26 assert index >= 0 and index < len(self), "Array subscript out of range"
27 self._elements[ index ] = value
28
29 # Clears the array by setting each element to the given value.
30 def clear( self, value ):
31 for i in range( len(self) ) :
32 self._elements[i] = value
33
34 # Returns the array's iterator for traversing the elements.
35 def __iter__( self ):
36 return _ArrayIterator( self._elements )
37
38 # An iterator for the Array ADT.
39 class _ArrayIterator :

(Listing Continued)
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Listing 2.1 Continued . . .

40 def __init__( self, theArray ):
41 self._arrayRef = theArray
42 self._curNdx = 0
43
44 def __iter__( self ):
45 return self
46
47 def __next__( self ):
48 if self._curNdx < len( self._arrayRef ) :
49 entry = self._arrayRef[ self._curNdx ]
50 self._curNdx += 1
51 return entry
52 else :
53 raise StopIteration

The constructor, as shown in lines 6–13, handles the creation and initialization
of the array using the technique described earlier. It also defines two data fields
needed for the implementation of the Array ADT: one to store a reference to the
array structure and another to store the number of elements allocated for the
array. The latter is needed since hardware-supported arrays do not keep track of
this value. The initialization of the array is done by calling the clear() method.

The clear() method is used to set each element of the array to a given value,
which it does by iterating over the elements using an index variable. The len
method, which returns the number of elements in the array, simply returns the
value of size that was saved in the constructor. The iter method creates
and returns an instance of the ArrayIterator private iterator class, which is
provided in lines 39–53 of Listing 2.1.

The definition of the Array ADT calls for the implementation of the subscript
operator, which allows for the use of array objects in a manner similar to other
Python collection types. In Python, as in most languages, the subscript notation
can be used to read the contents of an array element or to modify an element. Thus,
there are two different methods that must be defined, as shown in lines 20–27. First,
the getitem operator method takes the array index as an argument and returns
the value of the corresponding element. The precondition must first be verified to
ensure the subscript is within the valid range.

When the subscript notation is used in a program, y = x[i], Python will call
the getitem method, passing the value of i to the index parameter. Since
Python expects the getitem method to return a value, it is your responsibility
to make sure this occurs.

The setitem operator method is used to set or change the contents of a
specific element of the array. It takes two arguments: the array index of the element
being modified and the new value that will be stored in that element. Before the
element is modified, the precondition must be tested to verify the subscript is
within the valid range. Python automatically calls the setitem method when
the subscript notation is used to assign a value to a specific element, x[i] = y.
The index, i, specified in the subscript is passed as the first argument and the
value to be assigned is passed as the second argument, __setitem__(i,y).
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2.2 The Python List
Python, as indicated earlier, is built using the C language with many of the data
types and classes available in Python actually implemented using appropriate types
available in C. Python’s list structure is a mutable sequence container that can
change size as items are added or removed. It is an abstract data type that is
implemented using an array structure to store the items contained in the list.

In this section, we examine the implementation of Python’s list, which can
be very beneficial not only for learning more about abstract data types and their
implementations but also to illustrate the major differences between an array and
Python’s list structure. We explore some of the more common list operations and
describe how they are implemented using an array structure.

2.2.1 Creating a Python List
Suppose we create a list containing several values:

pyList = [ 4, 12, 2, 34, 17 ]

which results in the list() constructor being called to create a list object and fill
it with the given values. When the list() constructor is called, an array structure
is created to store the items contained in the list. The array is initially created
bigger than needed, leaving capacity for future expansion. The values stored in the
list comprise a subarray in which only a contiguous subset of the array elements
are actually used.

Figure 2.2 illustrates the abstract and physical views of our sample list. In
the physical view, the elements of the array structure used to store the actual
contents of the list are enclosed inside the dashed gray box. The elements with
null references shown outside the dashed gray box are the remaining elements of
the underlying array structure that are still available for use. This notation will be
used throughout the section to illustrate the contents of the list and the underlying
array used to implement it.

abstract view

44 1212 22 3434 1717

0 1 2 3 4

0 1 2 3 4 5 6 7

44 1212 22 3434 1717array 

length 55

capacity 88

physical view

  

Figure 2.2: The abstract and physical views of a list implemented using an array.
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The length of the list, obtained using len(), is the number of items currently
in the subarray and not the size of the underlying array. The size or capacity of
the array used to implement the list must be maintained in order to know when
the array is full. Python does not provide a method to access the capacity value
since that information is not part of the list definition.

2.2.2 Appending Items
What happens when a new item is appended to the end of a list as in the following
statement?

pyList.append( 50 )

If there is room in the array, the item is stored in the next available slot of the
array and the length field is incremented by one. The result of appending 50 to
pyList is illustrated in Figure 2.3.

pyList

0 1 2 3 4 5 6 7

505044 1212 22 3434 1717  

Figure 2.3: Result of appending value 50 to the list.

What happens when the array becomes full and there are no free elements in
which to add a new list item? For example, consider the following list operations:

pyList.append( 18 )
pyList.append( 64 )
pyList.append( 6 )

After the second statement is executed, the array becomes full and there is no
available space to add more values as illustrated in Figure 2.4.

By definition, a list can contain any number of items and never becomes full.
Thus, when the third statement is executed, the array will have to be expanded to
make room for value 6. From the discussion in the previous section, we know an
array cannot change size once it has been created. To allow for the expansion of

pyList

0 1 2 3 4 5 6 7

1818 6464505044 1212 22 3434 1717

Figure 2.4: A full array resulting after appending three values.
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the list, the following steps have to be performed: (1) a new array is created with
additional capacity, (2) the items from the original array are copied to the new
array, (3) the new larger array is set as the data structure for the list, and (4) the
original smaller array is destroyed. After the array has been expanded, the value
can be appended to the end of the list. In Python, the amount by which the size
of the array is increased is proportional to the current array size. For illustration
purposes, we assume an expansion creates a new array that is double the size of
the original. The result of expanding the array and appending value 6 to the list
is shown in Figure 2.5.

(1) A new array, double the size of the original, is created.

element-by-element copy

(2) The values from the original array are copied to the new larger array.

(3) The new array replaces the original in the list.

(4) Value 6 is appended to the end of the list.

tempArray

         
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1818 6464505044 1212 22 3434 1717

     1818 6464505044 1212 22 3434 1717

pyList

     1818 6464505044 1212 22 3434 1717

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

pyList

     1818 6464505044 1212 22 3434 1717

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

66

       

       

      

Figure 2.5: The steps required to expand the array to provide space for value 6.
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2.2.3 Extending A List
A list can be appended to a second list using the extend() method as shown in
the following example:

pyListA = [ 34, 12 ]
pyListB = [ 4, 6, 31, 9 ]
pyListA.extend( pyListB )

If the list being extended has the capacity to store all of the elements from
the second list, the elements are simply copied, element by element. If there is not
enough capacity for all of the elements, the underlying array has to be expanded as
was done with the append() method. Since Python knows how big the array needs
to be in order to store all of the elements from both lists, it only requires a single
expansion of the destination list, pyListA. The new array will be created larger
than needed to allow more items to be added to the list without first requiring an
immediate expansion of the array. After the new array is created, elements from
the destination list are copied to the new array followed by the elements from the
source list, pyListB, as illustrated in Figure 2.6.

pyListA

pyListA pyListB

0 1 2 3 4 5 6 7

3434 1212 44 66 3131 99

0 1 2 3

3434 1212

0 1 2 3 4 5 6 7

44 66 3131 99    

 

 

Figure 2.6: The result of extending pyListA with pyListB.

2.2.4 Inserting Items
An item can be inserted anywhere within the list using the insert() method. In
the following example

pyList.insert( 3, 79 )

we insert the value 79 at index position 3. Since there is already an item at that
position, we must make room for the new item by shifting all of the items down
one position starting with the item at index position 3. After shifting the items,
the value 79 is then inserted at position 3 as illustrated in Figure 2.7. If there are
no free slots for the new item, the list will be expanded in the same fashion as
described earlier.
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pyList

     1818 6464505044 1212 22 3434 1717

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

66

12345

pyList

     1818 6464505044 1212 22 3434 1717

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

66

7979

pyList

     1818 6464505044 1212 22 3434 1717

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

667979

6

     

     

     

(b)

(a)

(c)

Figure 2.7: Inserting an item into a list: (a) the array elements are shifted to the right one
at a time, traversing from right to left; (b) the new value is then inserted into the array at
the given position; (c) the result after inserting the item.

Removing Items

An item can be removed from any position within the list using the pop() method.
Consider the following code segment, which removes both the first and last items
from the sample list:

pyList.pop( 0 ) # remove the first item
pyList.pop() # remove the last item

The first statement removes the first item from the list. After the item is
removed, typically by setting the reference variable to None, the items following it
within the array are shifted down, from left to right, to close the gap. Finally, the
length of the list is decremented to reflect the smaller size. Figure 2.8 on the next
page illustrates the process of removing the first item from the sample list. The
second pop() operation in the example code removes the last item from the list.
Since there are no items following the last one, the only operations required are to
remove the item and decrement the size of the list.

After removing an item from the list, the size of the array may be reduced using
a technique similar to that for expansion. This reduction occurs when the number
of available slots in the internal array falls below a certain threshold. For example,
when more than half of the array elements are empty, the size of the array may be
cut in half.

2.2.5 List Slice
Slicing is an operation that creates a new list consisting of a contiguous subset of
elements from the original list. The original list is not modified by this operation.
Instead, references to the corresponding elements are copied and stored in the
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pyList

    1212

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

    1818 646450501212 22 3434 1717

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

66

pyList

    1818 646450501212 22 3434 1717

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

667979

44

987654321

7979

1818 6464505022 3434 1717 667979

(b)

(a)

(c)      

     

     

Figure 2.8: Removing an item from a list: (a) a copy of the item is saved; (b) the array
elements are shifted to the left one at a time, traversing left to right; and (c) the size of the
list is decremented by one.

new list. In Python, slicing is performed on a list using the colon operator and
specifying the beginning element index and the number of elements included in the
subset. Consider the following example code segment, which creates a slice from
our sample list:

aSlice = theVector[2:3]

To slice a list, a new list is created with a capacity large enough to store the
entire subset of elements plus additional space for future insertions. The elements
within the specified range are then copied, element by element, to the new list.
The result of creating the sample slice is illustrated in Figure 2.9.

pyList

    1818 646450501212 22 3434 1717

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7979

aSlice

0 1 2 3

7979 3434 3434

     



Figure 2.9: The result of creating a list slice.
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2.3 Two-Dimensional Arrays
Arrays are not limited to a single dimension. Some problems require the use of
a two-dimensional array , which organizes data into rows and columns similar
to a table or grid. The individual elements are accessed by specifying two indices,
one for the row and one for the column, [i,j]. Figure 2.10 shows an abstract view
of both a one- and a two-dimensional array.

While computer architectures provide a mechanism at the hardware level for
creating and using one-dimensional arrays, they do not typically support arrays of
higher dimensions. Instead, programming languages typically provide their own
mechanism for creating and managing arrays that consist of multiple dimensions.
In this section, we explore two-dimensional arrays while arrays of higher dimensions
are discussed later in the chapter.

0

1

2

3

0 1 2 3 4
columns

ro
w
s

elements
0 1 2 3 4 5

Figure 2.10: Sample arrays: (left) a 1-D array viewed as a sequential list and (right) a
2-D array viewed as a rectangular table or grid.

2.3.1 The Array2D Abstract Data Type
As we saw earlier, Python does not directly support built-in arrays of any dimen-
sion. But, in the previous section, we were able to use the ctypes module to create
a one-dimensional hardware-supported array that we used to implement the Array
ADT. Two-dimensional arrays are also very common in computer programming,
where they are used to solve problems that require data to be organized into rows
and columns. Since 2-D arrays are not provided by Python, we define the Array2D
abstract data type for creating 2-D arrays. It consists of a limited set of operations
similar to those provided by the one-dimensional Array ADT.

Define Array2D ADT

A two-dimensional array consists of a collection of elements organized into rows
and columns. Individual elements are referenced by specifying the specific row and
column indices (r, c), both of which start at 0.

� Array2D( nrows, ncols ): Creates a two-dimensional array organized into
rows and columns. The nrows and ncols arguments indicate the size of the
table. The individual elements of the table are initialized to None.

� numRows(): Returns the number of rows in the 2-D array.
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� numCols(): Returns the number of columns in the 2-D array.

� clear( value ): Clears the array by setting each element to the given value.

� getitem( i1, i2 ): Returns the value stored in the 2-D array element at the
position indicated by the 2-tuple (i1, i2), both of which must be within the
valid range. Accessed using the subscript operator: y = x[1,2].

� setitem( i1, i2, value ): Modifies the contents of the 2-D array element
indicated by the 2-tuple (i1, i2) with the new value. Both indices must be
within the valid range. Accessed using the subscript operator: x[0,3] = y.

To illustrate the use of a 2-D array, suppose we have a collection of exam
grades stored in a text file for a group of students that we need to process. For
example, we may want to compute the average exam grade for each student or the
average grade for each exam, or both. A sample text file is illustrated on the left in
Figure 2.11. The file contains the grades for multiple students, each of whom have
grades for multiple exams. The first line indicates the number of students for whom
we have grades, and the second line indicates the number of exams for which each
student has a grade. The remaining lines contain the actual exam grades. Each
line contains the grade for an individual student, with the grades listed in exam
order.

Since we have multiple grades for multiple students, we can store the grades in
a 2-D array in which each row contains the grades for an individual student and
each column contains the grades for a given exam. A 2-D array used to store the
exam grades from the sample file is illustrated on the right in Figure 2.11.

7
3
90 96 92
85 91 89
82 73 84
69 82 86
95 88 91
78 64 84
92 85 89

9090 9696 9292

8585 9191 8989

8282 7373 8484

0 1 2

0

1

2

6969 8282 8686

9595 8888 9191

7878 6464 8484

9292 8585 8989

3

4

5

6

Figure 2.11: Exam grades: (left) stored in a text file; and (right) stored in a 2-D array.

The following code segment shows the implementation needed to extract the
exam grades from the text file and store them into a 2-D array. Notice that we
create the array after extracting the first two values from the file. These values
indicate the number of students and the number of exams that correspond to the
number of rows and columns needed in the array.
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from array import Array2D

# Open the text file for reading.
gradeFile = open( filename, "r" )

# Extract the first two values which indicate the size of the array.
numExams = int( gradeFile.readline() )
numStudents = int( gradeFile.readline() )

# Create the 2-D array to store the grades.
examGrades = Array2D( numStudents, numExams )

# Extract the grades from the remaining lines.
i = 0
for student in gradeFile :
grades = student.split()
for j in range( numExams ):
examGrades[i,j] = int( grades[j] )

i += 1
# Close the text file.
gradeFile.close()

With the grades extracted from the file and stored in the 2-D array, we can
now process the grades as needed. Suppose we want to compute and display each
student’s exam grade, which we can do with the following code:

# Compute each student's average exam grade.
for i in range( numStudents ) :

# Tally the exam grades for the ith student.
total = 0
for j in range( numExams ) :
total += examGrades[i,j]

# Compute average for the ith student.
examAvg = total / numExams
print( "%2d: %6.2f" % (i+1, examAvg) )

2.3.2 Implementing the 2-D Array
We now turn our attention to the implementation of the 2-D array. There are
several approaches that we can use to store and organize the data for a 2-D array.
Two of the more common approaches include the use of a single 1-D array to
physically store the elements of the 2-D array by arranging them in order based on
either row or column, whereas the other uses an array of arrays. We are going to
use the latter approach to implement the Array2D abstract data type and delay
discussion of the former approach until later in the chapter.

When using an array of arrays to store the elements of a 2-D array, we store
each row of the 2-D array within its own 1-D array. Then, another 1-D array
is used to store references to each of the arrays used to store the row elements.
Figure 2.12 shows the abstract view of a 2-D array and the physical storage of that
2-D array using an array of arrays.
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Figure 2.12: A sample 2-D array: (a) the abstract view organized into rows and columns
and (b) the physical storage of the 2-D array using an array of arrays.

Some languages that use the array of arrays approach for implementing a 2-D
array provide access to the individual arrays used to store the row elements. Having
access to the given 1-D array, these languages use the subscript notation x[r][c]

for referencing an individual element. To be consistent in our approach of hiding
the implementation details, we do not provide access to any of the 1-D arrays used
to store the elements of the 2-D array. Thus, our implementation requires the use
of the subscript notation x[r,c].

The implementation of the Array2D abstract data type using an array of arrays
is provided in Listing 2.2. The constructor creates a data field named theRows
to which an Array object is assigned. This is the main array used to store the
references to the other arrays that are created for each row in the 2-D array.

Listing 2.2 The array.py module with the Array2D class.

1 # Implementation of the Array2D ADT using an array of arrays.
2
3 class Array2D :
4 # Creates a 2-D array of size numRows x numCols.
5 def __init__( self, numRows, numCols ):
6 # Create a 1-D array to store an array reference for each row.
7 self._theRows = Array( numRows )
8
9 # Create the 1-D arrays for each row of the 2-D array.

10 for i in range( numRows ) :
11 self._theRows[i] = Array( numCols )
12
13 # Returns the number of rows in the 2-D array.
14 def numRows( self ):
15 return len( self._theRows )
16
17 # Returns the number of columns in the 2-D array.
18 def numCols( self ):
19 return len( self._theRows[0] )
20
21 # Clears the array by setting every element to the given value.
22 def clear( self, value ):
23 for row in range( self.numRows() ):
24 row.clear( value )
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25
26 # Gets the contents of the element at position [i, j]
27 def __getitem__( self, ndxTuple ):
28 assert len(ndxTuple) == 2, "Invalid number of array subscripts."
29 row = ndxTuple[0]
30 col = ndxTuple[1]
31 assert row >= 0 and row < self.numRows() \
32 and col >= 0 and col < self.numCols(), \
33 "Array subscript out of range."
34 the1dArray = self._theRows[row]
35 return the1dArray[col]
36
37 # Sets the contents of the element at position [i,j] to value.
38 def __setitem__( self, ndxTuple, value ):
39 assert len(ndxTuple) == 2, "Invalid number of array subscripts."
40 row = ndxTuple[0]
41 col = ndxTuple[1]
42 assert row >= 0 and row < self.numRows() \
43 and col >= 0 and col < self.numCols(), \
44 "Array subscript out of range."
45 the1dArray = self._theRows[row]
46 the1dArray[col] = value

Basic Operations

Note that the size of the array that is passed as arguments to the constructor is
not saved in data fields. The numRows() method can obtain the number of rows by
checking the length of the main array, which contains an element for each row in the
2-D array. To determine the number of columns in the 2-D array, the numCols()
method can simply check the length of any of the 1-D arrays used to store the
individual rows.

The clear() method can set every element to the given value by calling the
clear() method on each of the 1-D arrays used to store the individual rows. This
is easily done by iterating over the array stored in theRows.

Element Access

Access to individual elements within an 2-D array requires a 2-tuple or two-
component subscript, one for each dimension. In mathematics, the 2-tuple sub-
script is generally notated as xr,c. In modern programming languages, a 2-tuple
subscript is given either as x[r][c] or x[r,c]. In Python, we can use the latter
notation in conjunction with the getitem and setitem subscript operators.
This will allow for a more natural use of the two-dimensional array instead of
having to invoke a named method.

The Python subscript operator method getitem , which is shown in lines
27–35, takes a single index argument as specified in the method definition. This
does not restrict the subscript to a single index value, however. When a multi-
component subscript is specified (i.e., y = x[i,j]), Python automatically stores
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the components in a tuple in the order listed within the brackets and passes the
tuple to the ndxTuple argument of the getitem method.

The contents of the ndxTuple are used to extract the contents of the given
element. After verifying both subscripts are within the valid range, we extract,
from the data field theRows, the reference to the array used to store the given
row. With this reference stored in the local variable the1dArray, we can then
apply the subscript operator to the 1-D array using the column value.

You may notice a second assert statement within the getitem method at
line 28. This is needed because Python does not examine the number of compo-
nents specified in the subscript before passing the tuple to the subscript operator
method. For example, there is nothing to prevent us from incorrectly supplying
three components such as box[i,j,k] instead of two. In fact, Python would have
no way of knowing that we only need two components for the 2-D array subscript.
Thus, we must first check to make sure the subscript tuple passed to the method
contains only two elements.

When making the assertion about the size of the ndxTuple, we assume a tu-
ple is passed to the subscript operator and use the len() function to verify its
length. When a single-component subscript x[0] is supplied to a subscript op-
erator method, as is done with the Array class, the argument is a single integer
value. The len() method can only be used with the collection types and not in-
dividual values. It does generate its own error, however, when used improperly.
Thus, Python’s len() function is used to ensure two components are supplied for
all Array2D objects.

The setitem operator method can be implemented in a similar fashion to
getitem . The major differences are that this method requires a second argu-

ment to receive the value to which an element is set and it modifies the indicated
element with the new value instead of returning a value.

2.4 The Matrix Abstract Data Type
In mathematics, a matrix is an m×n rectangular grid or table of numerical values
divided into m rows and n columns. Matrices, which are an important tool in areas
such as linear algebra and computer graphics, are used in a number of applications,
including representing and solving systems of linear equations. The Matrix ADT
is defined next.

Define Matrix ADT

A matrix is a collection of scalar values arranged in rows and columns as a rectan-
gular grid of a fixed size. The elements of the matrix can be accessed by specifying
a given row and column index with indices starting at 0.

� Matrix( rows, ncols ): Creates a new matrix containing nrows and ncols
with each element initialized to 0.

� numRows(): Returns the number of rows in the matrix.
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� numCols(): Returns the number of columns in the matrix.

� getitem ( row, col ): Returns the value stored in the given matrix element.
Both row and col must be within the valid range.

� setitem ( row, col, scalar ): Sets the matrix element at the given row and
col to scalar. The element indices must be within the valid range.

� scaleBy( scalar ): Multiplies each element of the matrix by the given scalar
value. The matrix is modified by this operation.

� transpose(): Returns a new matrix that is the transpose of this matrix.

� add ( rhsMatrix ): Creates and returns a new matrix that is the result of
adding this matrix to the given rhsMatrix. The size of the two matrices must
be the same.

� subtract ( rhsMatrix ): The same as the add() operation but subtracts the
two matrices.

� multiply ( rhsMatrix ): Creates and returns a new matrix that is the result
of multiplying this matrix to the given rhsMatrix. The two matrices must be
of appropriate sizes as defined for matrix multiplication.

2.4.1 Matrix Operations
A number of operations can be performed on matrices. We first describe some of
the more common ones and provide examples as a review of matrix arithmetic.

Addition and Subtraction. Two m× n matrices can be added or subtracted to
create a third m × n matrix. When adding two m × n matrices, corresponding
elements are summed as illustrated here. Subtraction is performed in a similar
fashion but the corresponding elements are subtracted instead of summed. 0 1

2 3
4 5

 +

 6 7
8 9
1 0

 =

 0 + 6 1 + 7
2 + 8 3 + 9
4 + 1 5 + 0

 =

 6 8
10 12
5 5



Scaling. A matrix can be uniformly scaled, which modifies each element of the
matrix by the same scale factor. A scale factor of less than 1 has the effect of
reducing the value of each element whereas a scale factor greater than 1 increases
the value of each element. Scaling a matrix by a scale factor of 3 is illustrated here:

3

 6 7
8 9
1 0

 =

 3 ∗ 6 3 ∗ 7
3 ∗ 8 3 ∗ 9
3 ∗ 1 3 ∗ 0

 =

 18 21
24 27
3 0


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Multiplication. Matrix multiplication is only defined for matrices where the num-
ber of columns in the matrix on the lefthand side is equal to the number of rows
in the matrix on the righthand side. The result is a new matrix that contains the
same number of rows as the matrix on the lefthand side and the same number of
columns as the matrix on the righthand side. In other words, given a matrix of size
m×n multiplied by a matrix of size n× p, the resulting matrix is of size m× p. In
multiplying two matrices, each element of the new matrix is the result of summing
the product of a row in the lefthand side matrix by a column in the righthand side
matrix. In the example matrix multiplication illustrated here, the row and column
used to compute entry (0, 0) of the new matrix is shaded in gray.

 0 1
2 3
4 5

 ∗

[
6 7 8
9 1 0

]

=

 (0 ∗ 6 + 1 ∗ 9) (0 ∗ 7 + 1 ∗ 1) (0 ∗ 8 + 1 ∗ 0)
(2 ∗ 6 + 3 ∗ 9) (2 ∗ 7 + 3 ∗ 1) (2 ∗ 8 + 3 ∗ 0)
(4 ∗ 6 + 5 ∗ 9) (4 ∗ 7 + 5 ∗ 1) (4 ∗ 8 + 5 ∗ 0)


=

 9 1 0
39 17 16
69 33 32



Viewing matrix multiplication based on the element subscripts can help you
to better understand the operation. Consider the two matrices from above and
assume they are labeled A and B, respectively.

A =

 A0,0 A0,1

A1,0 A1,1

A2,0 A2,1

 B =

[
B0,0 B0,1 B0,2

B1,0 B1,1 B1,2

]

The computation of the individual elements resulting from multiplying A and B
(C = A * B) is performed as follows:

C0,0 = A0,0 ∗B0,0 + A0,1 ∗B1,0

C0,1 = A0,0 ∗B0,1 + A0,1 ∗B1,1

C0,2 = A0,0 ∗B0,2 + A0,1 ∗B1,2

C1,0 = A1,0 ∗B0,0 + A1,1 ∗B1,0

C1,1 = A1,0 ∗B0,1 + A1,1 ∗B1,1

C1,2 = A1,0 ∗B0,2 + A1,1 ∗B1,2

C2,0 = A2,0 ∗B0,0 + A2,1 ∗B1,0

C2,1 = A2,0 ∗B0,1 + A2,1 ∗B1,1

C2,2 = A2,0 ∗B0,2 + A2,1 ∗B1,2
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resulting in

C =

 (A0,0 ∗B0,0 + A0,1 ∗B1,0) (A0,0 ∗B0,1 + A0,1 ∗B1,1) (A0,0 ∗B0,2 + A0,1 ∗B1,2)
(A1,0 ∗B0,0 + A1,1 ∗B1,0) (A1,0 ∗B0,1 + A1,1 ∗B1,1) (A1,0 ∗B0,2 + A1,1 ∗B1,2)
(A2,0 ∗B0,0 + A2,1 ∗B1,0) (A2,0 ∗B0,1 + A2,1 ∗B1,1) (A2,0 ∗B0,2 + A2,1 ∗B1,2)



Transpose. Another useful operation that can be applied to a matrix is the
matrix transpose. Given a m×n matrix, a transpose swaps the rows and columns
to create a new matrix of size n×m as illustrated here: 0 1

2 3
4 5


T

=

[
0 2 4
1 3 5

]

2.4.2 Implementing the Matrix
There are a number of ways to organize the data for the Matrix ADT, but the most
obvious is with the use of a two-dimensional array or rectangular grid. Having
defined and implemented the Array2D ADT, we can utilize it to implement the
Matrix ADT as shown in Listing 2.3.

Listing 2.3 The matrix.py module.

1 # Implementation of the Matrix ADT using a 2-D array.
2 from array import Array2D
3
4 class Matrix :
5 # Creates a matrix of size numRows x numCols initialized to 0.
6 def __init__( self, numRows, numCols ):
7 self._theGrid = Array2D( numRows, numCols )
8 self._theGrid.clear( 0 )
9

10 # Returns the number of rows in the matrix.
11 def numRows( self ):
12 return self._theGrid.numRows()
13
14 # Returns the number of columns in the matrix.
15 def numCols( self ):
16 return self._theGrid.numCols()
17
18 # Returns the value of element (i, j): x[i,j]
19 def __getitem__( self, ndxTuple ):
20 return self._theGrid[ ndxTuple[0], ndxTuple[1] )
21
22 # Sets the value of element (i,j) to the value s: x[i,j] = s
23 def __setitem__( self, ndxTuple, scalar ):
24 self._theGrid[ ndxTuple[0], ndxTuple[1] ] = scalar

(Listing Continued)
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Listing 2.3 Continued . . .

25
26 # Scales the matrix by the given scalar.
27 def scaleBy( self, scalar ):
28 for r in range( self.numRows() ) :
29 for c in range( self.numCols() ) :
30 self[ r, c ] *= scalar
31
32 # Creates and returns a new matrix that is the transpose of this matrix.
33 def tranpose( self ):
34 ......
35
36 # Creates and returns a new matrix that results from matrix addition.
37 def __add__( self, rhsMatrix ):
38 assert rhsMatrix.numRows() == self.numRows() and \
39 rhsMatrix.numCols() == self.numCols(), \
40 "Matrix sizes not compatible for the add operation."
41 # Create the new matrix.
42 newMatrix = Matrix( self.numRows(), self.numCols() )
43 # Add the corresponding elements in the two matrices.
44 for r in range( self.numRows() ) :
45 for c in range( self.numCols() ) :
46 newMatrix[ r, c ] = self[ r, c ] + rhsMatrix[ r, c ]
47 return newMatrix
48
49 # Creates and returns a new matrix that results from matrix subtraction.
50 def __sub__( self, rhsMatrix ):
51 ......
52
53 # Creates and returns a new matrix resulting from matrix multiplication.
54 def __mul__( self, rhsMatrix ):
55 ......

A Matrix object only requires one data field for storing the 2-D array. After
creating the array, its elements must be set to zero as specified by the definition of
the Matrix ADT. The constructor is provided in lines 6–8.

The numRows() and numCols() methods are straightforward. They need only
return the length of the corresponding dimension of the 2-D array. The element
access methods are also rather simple as they need only call the corresponding
method from the Array2D class. Note that we do not check for valid indices in
these methods even though it is a precondition as defined by the Matrix ADT.
The validation of the precondition is omitted here since we know the corresponding
methods of the Array2D class have the same preconditions and they are verified
by that class. If this were not the case, we would have to validate the indices and
raise an exception directly within the methods of the Matrix class.

The scaling matrix operation, shown in lines 27–30, involves multiplying each
element in the matrix by the given scalar value. The Matrix ADT calls for this
operation to modify the matrix on which it is applied instead of creating a new
matrix resulting from the multiplication. The matrix add operation, on the other
hand, creates and returns a new Matrix object that is the result of adding the
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two given matrices. The first step is to ensure the two matrices are the same
size as required by the rules of matrix addition. After verifying the sizes, a new
Matrix object is created and its elements set by iterating over and summing the
corresponding elements from the two sources. The new matrix resulting from this
operation is then returned. The implementation of the remaining methods, which
is left as an exercise, can be done in a similar fashion.

2.5 Application: The Game of Life
The game of Life, devised by British mathematician John H. Conway, is a Solitaire-
type game that is analogous with “the rise, fall and alternations of a society of living
organisms.” The game, which is actually a zero-player game, was first introduced
by Martin Gardner in his Mathematical Games column in the October 1970 issue
of Scientific American. Since its introduction, Life has attracted much attention
and has been widely studied as it can be used to observe how complex systems
or patterns can evolve from a simple set of rules. The game of Life was an early
example of a problem in the modern field of mathematics called cellular automata.

2.5.1 Rules of the Game
The game uses an infinite-sized rectangular grid of cells in which each cell is either
empty or occupied by an organism. The occupied cells are said to be alive, whereas
the empty ones are dead. The game is played over a specific period of time with each
turn creating a new “generation” based on the arrangement of live organisms in
the current configuration. The status of a cell in the next generation is determined
by applying the following four basic rules to each cell in the current configuration:

1. If a cell is alive and has either two or three live neighbors, the cell remains
alive in the next generation. The neighbors are the eight cells immediately
surrounding a cell: vertically, horizontally, and diagonally.

2. A living cell that has no live neighbors or a single live neighbor dies from
isolation in the next generation.

3. A living cell that has four or more live neighbors dies from overpopulation in
the next generation.

4. A dead cell with exactly three live neighbors results in a birth and becomes
alive in the next generation. All other dead cells remain dead in the next
generation.
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The game starts with an initial configuration supplied by the user. Successive
generations are created by applying the set of rules simultaneously to each cell in
the grid. Interesting patterns can develop as the population of organisms undergoes
changes by expanding or eventually dying out. To illustrate the game of Life,
consider the following simple configuration of live organisms:

Applying the rules to this configuration creates the next generation. This results
in two organisms dying (shown below as the light gray boxes) based on rule 2, one
remaining alive based on rule 1, and the generation of a new organism based on
rule 4 (the black box marked with an x).

x

If we evolve the next generation, the system dies out since both live cells in the
first generation have a single live neighbor.

While some systems may eventually die out, others can evolve into a “stable”
state. Consider the following initial configuration and its first generation. The
result is a stable state since the four live cells each have three neighbors and no
dead cell has exactly three neighbors in order to produce a new live cell.

Another interesting patterns is the “two-phase oscillator,” which alternates
between successive generations:

1st generation 2nd generationinitial configuration
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2.5.2 Designing a Solution
The game of Life requires the use of a grid for storing the organisms. A Life Grid
ADT can be defined to add a layer of abstraction between the algorithm for “play-
ing” the game and the underlying structure used to store and manipulate the data.

Define Life Grid ADT

A life grid is used to represent and store the area in the game of Life that contains
organisms. The grid contains a rectangular grouping of cells of a finite size divided
into rows and columns. The individual cells, which can be alive or dead, are
referenced by row and column indices, both of which start at zero.

� LifeGrid( nrows, ncols ): Creates a new game grid consisting of nrows and
ncols. All cells in the grid are set to dead.

� numRows(): Returns the number rows in the grid.

� numCols(): Returns the number of columns in the grid.

� configure( coordList ): Configures the grid for evolving the next genera-
tion. The coordList argument is a sequence of 2-tuples with each tuple
representing the coordinates (r, c) of the cells to be set as alive. All remaining
cells are cleared or set to dead.

� clearCell( row, col ): Clears the individual cell (row, col) and sets it to
dead. The cell indices must be within the valid range of the grid.

� setCell( row, col ): Sets the indicated cell (row, col) to be alive. The cell
indices must be within the valid range of the grid.

� isLiveCell( row,col ): Returns a boolean value indicating if the given cell
(row, col) contains a live organism. The cell indices must be within the valid
range of the grid.

� numLiveNeighbors( row, col ): Returns the number of live neighbors for the
given cell (row, col). The neighbors of a cell include all of the cells immediately
surrounding it in all directions. For the cells along the border of the grid, the
neighbors that fall outside the grid are assumed to be dead. The cell indices
must be within the valid range of the grid.

We now develop a program for the game of Life using the Life Grid ADT. The
implementation of the program provided in Listing 2.4 on the next page was de-
veloped using a top-down design consisting of several functions. The main routine
creates the game grid and evolves new generations of organisms. It relies on two
additional functions: draw() and evolve().

The draw() routine, the implementation of which is left as an exercise, prints
a text-based representation of the game grid. The evolve() function generates
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Listing 2.4 The gameoflife.py program.

1 # Program for playing the game of Life.
2 from life import LifeGrid
3
4 # Define the initial configuration of live cells.
5 INIT_CONFIG = [ (1,1), (1,2), (2,2), (3,2) ]
6
7 # Set the size of the grid.
8 GRID_WIDTH = 5
9 GRID_HEIGHT = 5

10
11 # Indicate the number of generations.
12 NUM_GENS = 8
13
14 def main():
15 # Construct the game grid and configure it.
16 grid = LifeGrid( GRID_WIDTH, GRID_HEIGHT )
17 grid.configure( INIT_CONFIG )
18
19 # Play the game.
20 draw( grid )
21 for i in range( NUM_GENS ):
22 evolve( grid )
23 draw( grid )
24
25 # Generates the next generation of organisms.
26 def evolve( grid ):
27 # List for storing the live cells of the next generation.
28 liveCells = list()
29
30 # Iterate over the elements of the grid.
31 for i in range( grid.numRows() ) :
32 for j in range( grid.numCols() ) :
33
34 # Determine the number of live neighbors for this cell.
35 neighbors = grid.numLiveNeighbors( i, j )
36
37 # Add the (i,j) tuple to liveCells if this cell contains
38 # a live organism in the next generation.
39 if (neighbors == 2 and grid.isLiveCell( i, j )) or \
40 (neighbors == 3 ) :
41 liveCells.append( (i, j) )
42
43 # Reconfigure the grid using the liveCells coord list.
44 grid.configure( liveCells )
45
46 # Prints a text-based representation of the game grid.
47 def draw( grid ):
48 ......
49
50 # Executes the main routine.
51 main()
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a new configuration of organisms based on the rules of the game. A list is used
within evolve() to store the coordinates of live cells in the next generation. After
iterating over all the cells, the grid is reconfigured using this list of coordinates.
This is necessary since the current configuration stored in the game grid cannot be
modified with the next generation until the neighbor count has been computed for
each cell in the current generation.

The program also defines several constant variables. These are used to specify
the grid size, the number of generations to be created, and the set of initial live cells.
Using constant variables allows for easy modifications to any of these parameters
as needed without having to modify other parts of the program. Of course, this
information could be extracted from the user or a text file instead. The results of
executing the gameoflife.py program are illustrated graphically in Figure 2.13.

initial configuration 1st generation 2nd generation

3rd generation 4th generation 5th generation

6th generation 7th generation 8th generation

Figure 2.13: The results of using the gameoflife.py program on a sample grid config-
uration. Configurations after the eighth generation produce a two-phase oscillator, alter-
nating between the configuration of the seventh and eighth generations.

2.5.3 Implementation
The actual game of Life specifies a rectangular grid of infinite size. When develop-
ing a computer solution for such a problem, we are limited to grids of a fixed size.
The game of Life can still be implemented, however, by using a finite size for the
grid. If the system grows too large where it does not fit into the space, it can be
“played” again, with a larger grid.

Before implementing the LifeGrid class, we must decide how the data should
be organized and select an appropriate structure. The most obvious is the use of a
two-dimensional array to represent the grid. Next, we must decide what values to
store in the grid to represent the organisms, both dead and alive. Any pair of values
can be used. We are going to use the value 0 to represent the dead cells and the
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Figure 2.14: The game grid representation with live and dead cells: (left) the abstract
view and (right) the physical view using a 2-D array of 0’s and 1’s.

value 1 for the live cells. This choice is based on the ease it creates when counting
the number of neighbors for a given cell. Figure 2.14 illustrates the abstract and
physical views of the game grid.

The LifeGrid class is implemented in Listing 2.5. At the top of the class
definition, before specifying the constructor, two constant variables are initialized
to store the values used to mark the cells within the game grid. These constants are
defined within the class itself and outside of the methods since they are not actual
data fields of a LifeGrid object. By using the named constants, the code is easier to
read and the values used to represent the cell status could easily be changed if we
were so inclined.

The constructor, shown in lines 10–14, creates a 2-D array for the grid using
the Array2D class defined earlier in the chapter. The cells are cleared as the ADT
definition requires by calling the configure() method with an empty coordinate
list. The grid dimension accessor methods are easily implemented using the cor-
responding methods of the Array2D class. The three cell modification routines
are also straightforward. Note that the ADT definition requires the cell indices
specified for the clearCell() and setCell() methods must be valid. Since this
is also the precondition required of the Array2D element access methods, we omit
the direct specification of assertions in these methods. The configure() method,
shown in lines 25–29, clears the grid cells by setting each to a dead organism. It
then iterates through the coordinate list and uses the setCell() method to set
the live cells.

The numLiveNeighbors() method is left as an exercise. Note, however, since
we used the integer values 0 and 1 to represent the state of a cell, counting the
number of live neighbors is as simple as summing the contents of the neighboring
cells. Working with a fixed-size grid introduces the problem of how to deal with the
cells around the border. A border cell will not have all eight neighbors since some
of them lie outside the grid. Different approaches can be taken when a border cell

N
O

TE i Constant Variables. Constant variables defined within a class are ac-
tually class variables that are unique to the class and not to individual

objects. To reference a class constant variable, use the name of the class in
place of the self keyword (i.e., print( GameGrid.DEAD CELL) ).
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is examined. The most common is to assume any neighboring cell lying outside
the grid contains a dead organism.

Listing 2.5 The life.py module.

1 # Implements the LifeGrid ADT for use with the game of Life.
2 from array import Array2D
3
4 class LifeGrid :
5 # Defines constants to represent the cell states.
6 DEAD_CELL = 0
7 LIVE_CELL = 1
8
9 # Creates the game grid and initializes the cells to dead.

10 def __init__( self, numRows, numCols ):
11 # Allocate the 2-D array for the grid.
12 self._grid = Array2D( numRows, numCols )
13 # Clear the grid and set all cells to dead.
14 self.configure( list() )
15
16 # Returns the number of rows in the grid.
17 def numRows( self ):
18 return self._grid.numRows()
19
20 # Returns the number of columns in the grid.
21 def numCols( self ):
22 return self._grid.numCols()
23
24 # Configures the grid to contain the given live cells.
25 def configure( self, coordList ):
26 # Clear the game grid.
27 for i in range( numRows ):
28 for j in range( numCols ):
29 self.clearCell( i, j )
30
31 # Set the indicated cells to be alive.
32 for coord in coordList :
33 self.setCell( coord[0], coord[1] )
34
35 # Does the indicated cell contain a live organism?
36 def isLiveCell( self, row, col ):
37 return self._grid[row, col] == GameGrid.LIVE_CELL
38
39 # Clears the indicated cell by setting it to dead.
40 def clearCell( self, row, col ):
41 self._grid[row, col] = GameGrid.DEAD_CELL
42
43 # Sets the indicated cell to be alive.
44 def setCell( self, row, col ):
45 self._grid[row, col] = GameGrid.LIVE_CELL
46
47 # Returns the number of live neighbors for the given cell.
48 def numLiveNeighbors( self, row, col ):
49 ......
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Exercises
2.1 Complete the Matrix class by implementing the remaining methods: sub ,

mult , and transpose().

2.2 Implement the numLiveNeighbors() method of the LifeGrid class.

2.3 Complete the implementation of the gameoflife.py program by implement-
ing the draw() function. The output should look similar to the following,
where dead cells are indicated using a period and live cells are indicated using
the @ symbol.

. . @ . .

. @ . @ .
@ . . . @
. @ . @ .
. . @ . .

2.4 Modify the gameoflife.py program to prompt the user for the grid size and
the number of generations to evolve.

2.5 Use your program from Exercise 2.4 to experiment with the initial configura-
tions shown in Figure 2.15. Answer the following questions for each configu-
ration using a variety of grid sizes and assuming no more than 10 generations.

(a) Does the configuration die out?

(b) Does the configuration become stable?

(c) Does the configuration become an oscillator?

(d) How many generations were required before each configuration resulted in
one of the states indicated in parts (a) – (c)?

Figure 2.15: Sample game of Life configurations.
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2.6 As indicated in the chapter, when a list is created using the replication op-
erator values = [ None ] * 10000 the size of the underlying array used to
implement the list can be up to twice the size actually needed. This extra
space is beneficial to the list itself, but it can be quite wasteful when a list is
used to implement some abstract data types. Consider the implementation of
the Array2D abstract data type as described in the chapter. If we had used
a list of lists to implement the ADT, instead of the array of arrays, a large
amount of extra storage space would be allocated that would never be used.
Calculate the number of elements that will be allocated when using an array
of arrays implementation and a list of lists implementation of the Array2D
abstract data type for each of the following 2-D array sizes:

(a) 75× 100 (b) 10, 000× 25 (c) 10, 000× 10, 000

Programming Projects
2.1 While Python provides the built-in list type for constructing and managing

mutable sequences, many languages do not provide such a structure, at least
not as part of the language itself. To help in further understanding how
Python’s built-in list works, implement the Vector ADT using the Array class
implemented in the chapter. Your implementation should produce a mutable
sequence type that works like Python’s list structure. When the underlying
array needs to be expanded, the new array should double the size of the
original. The operations that can be performed on the ADT are described
below. Assume the size of the underlying array never decreases.

� Vector(): Creates a new empty vector with an initial capacity of two
elements.

� length (): Returns the number of items contained in the vector.

� contains ( item ): Determines if the given item is contained in the vector.

� getitem ( ndx ): Returns the item stored in the ndx element of the list.
The value of ndx must be within the valid range.

� setitem ( ndx, item ): Sets the element at position ndx to contain the
given item. The value of ndx must be within the valid range, which
includes the first position past the last item.

� append( item ): Adds the given item to the end of the list.

� insert( ndx, item ): Inserts the given item in the element at position
ndx. The items in the elements at and following the given position are
shifted down to make room for the new item. ndx must be within the
valid range.

� remove( ndx ): Removes and returns the item from the element from the
given ndx position. The items in the elements at and following the given
position are shifted up to close the gap created by the removed item. ndx
must be within the valid range.
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� indexOf( item ): Returns the index of the vector element containing the
given item. The item must be in the list.

� extend( otherVector ): Extends this vector by appending the entire con-
tents of the otherVector to this vector.

� subVector( from, to ): Creates and returns a new vector that contains
a subsequence of the items in the vector between and including those
indicated by the given from and to positions. Both the from and to
positions must be within the valid range.

� iterator (): Creates and returns an iterator that can be used to traverse
the elements of the vector.

2.2 In a typical Vector ADT, the size of the underlying array decreases after a
sufficient number of items have been removed. Devise a strategy for decreasing
the size of the array as items are removed. Modify your implementation of the
Vector ADT from the previous question to include your reduction strategy.

2.3 A grayscale digital image is a two-dimensional raster image in which the pic-
ture elements, or pixels, store a single value representing a shade of gray that
varies from black to white. In a discrete grayscale image, the shades of gray are
represented by integer values in the range [0 . . . 255], where 0 is black and 255
is white. We can define the Grayscale Image ADT for storing and manipulat-
ing discrete grayscale digital images. Given the description of the operations,
provide a complete implementation of the ADT using a 2-D array.

� GrayscaleImage( nrows, ncols ): Creates a new instance that consists
of nrows and ncols of pixels each set to an initial value of 0.

� width(): Returns the width of the image.

� height(): Returns the height of the image.

� clear( value ): Clears the entire image by setting each pixel to the given
intensity value. The intensity value will be clamped to 0 or 255 if it is less
than 0 or greater than 255, respectively.

� getitem ( row, col ): Returns the intensity level of the given pixel. The
pixel coordinates must be within the valid range.

� setitem ( row, col, value ): Sets the intensity level of the given pixel
to the given value. The pixel coordinates must be within the valid range.
The intensity value is clamped to 0 or 255 if it is outside the valid range.

2.4 Playing board games on a computer is very common. We can use abstraction
to aide in the design of a board game by separating the game logic from the
actual user interaction required to play the game. No matter the type of user
interface provided to play the game (i.e., text based, desktop windowing en-
vironment, or web browser), the underlying logic remains the same. Consider
the game of Reversi, which was invented in 1893 but has a more modern set
of rules dating back to the 1970s. Reversi is played by two players on a game
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board divided into 64 squares arranged in 8 rows and 8 columns and a set of
64 chips. Each chip is painted a dark color on one side and a light color on the
other, with each color belonging to one of the two players. The players place
their chips on the board and flip the chips of their opponent with the goal of
having the most chips of their color on the board at the end of the game. The
game starts with a configuration as shown in part (a) of Figure 2.16.

x x

(a) (b) (c) (d) (e)

x

Figure 2.16: Moves in the game of Reversi.

The players take turns placing chips on the board with their color facing up. A
chip can only be played in a square that is adjacent to a chip of the other player
and that forms a straight line of attack (vertical, horizontal, or diagonal). A
line of attack is formed between two squares containing the player’s own chips
in which there is one or more of the opponent’s chips in between the two. For
example, if player 1 (black) goes first, he has four options as shown in part
(b). Suppose player 1 places a chip in the square marked with an x. After
placing his chip, player 1 flips all of the chips of player 2 (white) that are in
the line of attack. In this case, he flips the chip immediately below the new
chip as shown in part (c). Player 2 then places one of her chips. She has
three options from which to choose as shown by the dark squares in part (c).
If player 2 places her chip in the square marked x, she flips the black chip
below the new chip as shown in part (d). If there are multiple lines of attack
that result from the placement of a chip, then all of the opponent’s chips that
are in all of the lines of attack are flipped. For example, suppose player 1
places a chip in the square marked with an x as shown in part (d). Then he
flips both white chips, the one to the left and the one diagonally down to the
left as shown in part (e). Play alternates between the players until all of the
squares are filled or neither player can move. If one player cannot move but
the other can, play proceeds with the other player. The winner is the player
with the most chips at the end of the game. Given the following description
of the operations, provide a complete implementation for the Reversi Game
Logic ADT.

� ReversiGameLogic(): Creates a new instance of the Reversi game logic
with the initial configuration.

� whoseTurn(): Returns the player number (1 or 2) for the current player
or 0 if no player can move.
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� numChips( player ): Returns the number of chips on the board belonging
to the indicated player. The value of player must be 1 or 2.

� numOpenSquares(): Returns the number of squares still open and avail-
able for play.

� getWinner(): Returns the player number (1 or 2) for the player who has
won the game or 0 if the game is not finished.

� isLegalMove( row, col ): Returns True or False to indicate if the cur-
rent player can place their chip in the square at position (row, col).

� occupiedBy( row, col ): Which player has a chip in the given square?
Returns the player number (1 or 2) or 0 if the square is empty.

� makeMove( row, col ): The current player places one of his chips in the
square at position (row, col). All chips on the board that should be
flipped based on the rules of Reversi are flipped.

2.5 Implement a text-based version of the Reversi game using your game logic
ADT from the previous question.

2.6 Define a game logic ADT, similar to that of the Reversi Game Logic ADT, for
the game of checkers.



CHAPTER 3
Sets and Maps

In the previous chapters, we studied several complex abstract data types that
required the use of a data structure for their implementation. In this chapter, we
continue exploring abstract data types with a focus on several common containers.
Two of these are provided by Python as part of the language itself: sets and
dictionaries. Nevertheless, it’s still important to understand how they work and
some of the common ways in which they are implemented.

Your experience in programming will likely not be limited to the Python lan-
guage. At some point in the future, you may use one if not several other common
programming languages. While some of these do provide a wide range of abstract
data types as part of the language itself or included in their standard library, oth-
ers, like C, do not. Thus, it’s important that you know how to implement a set or
dictionary ADT if necessary, when one is not available as part of the language.

Further, both the set and dictionary types provide excellent examples of ab-
stract data types that can be implemented using different data structures. As you
learned in Chapter 1, there may be multiple data structures and ways to organize
the data in those structures that are suitable for implementing an abstract data
type. Thus, it’s not uncommon for language libraries to provide multiple imple-
mentations of an abstract data type, which allows the programmer to choose the
best option for a given problem. Your ability to choose from among these various
implementations will depend not only on your knowledge of the abstract data type
itself, but also on understanding the pros and cons of the various implementations.

3.1 Sets
The Set ADT is a common container used in computer science. But unlike the
Bag ADT introduced in Chapter 1, a set stores unique values and represents the
same structure found in mathematics. It is commonly used when you need to store
a collection of unique values without regard to how they are stored or when you
need to perform various mathematical set operations on collections.

69
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3.1.1 The Set Abstract Data Type
The definition of the set abstract data type is provided here, followed by an im-
plementation using a list. In later chapters, we will provide and evaluate alternate
implementations for the Set ADT.

Define Set ADT

A set is a container that stores a collection of unique values over a given comparable
domain in which the stored values have no particular ordering.

� Set(): Creates a new set initialized to the empty set.

� length (): Returns the number of elements in the set, also known as the
cardinality. Accessed using the len() function.

� contains ( element ): Determines if the given value is an element of the set
and returns the appropriate boolean value. Accessed using the in operator.

� add( element ): Modifies the set by adding the given value or element to the
set if the element is not already a member. If the element is not unique, no
action is taken and the operation is skipped.

� remove( element ): Removes the given value from the set if the value is con-
tained in the set and raises an exception otherwise.

� equals ( setB ): Determines if the set is equal to another set and returns a
boolean value. For two sets, A and B, to be equal, both A and B must contain
the same number of elements and all elements in A must also be elements in
B. If both sets are empty, the sets are equal. Access with == or !=.

� isSubsetOf( setB ): Determines if the set is a subset of another set and re-
turns a boolean value. For set A to be a subset of B, all elements in A must
also be elements in B.

� union( setB ): Creates and returns a new set that is the union of this set and
setB. The new set created from the union of two sets, A and B, contains all
elements in A plus those elements in B that are not in A. Neither set A nor
set B is modified by this operation.

� intersect( setB ): Creates and returns a new set that is the intersection
of this set and setB. The intersection of sets A and B contains only those
elements that are in both A and B. Neither set A nor set B is modified by
this operation.

� difference( setB ): Creates and returns a new set that is the difference of
this set and setB. The set difference, A−B, contains only those elements that
are in A but not in B. Neither set A nor set B is modified by this operation.
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� iterator (): Creates and returns an iterator that can be used to iterate over
the collection of items.

Example Use

To illustrate the use of the Set ADT, we create and use sets containing the courses
currently being taken by two students. In the following code segment, we create
two sets and add elements to each. The results are illustrated in Figure 3.1.

smith = Set()
smith.add( "CSCI-112" )
smith.add( "MATH-121" )
smith.add( "HIST-340" )
smith.add( "ECON-101" )

roberts = Set()
roberts.add( "POL-101" )
roberts.add( "ANTH-230" )
roberts.add( "CSCI-112" )
roberts.add( "ECON-101" )

“CSCI-112”

“MATH-121”

“HIST-340”

“ECON-101”

smith set

“CSCI-112”

“POL-101”

“ANTH-230”

“ECON-101”

roberts set

Figure 3.1: Abstract view of the two sample sets.

Next, we determine if the two students are taking the exact same courses. If
not, then we want to know if they are taking any of the same courses. We can do
this by computing the intersection between the two sets.

if smith == roberts :
print( "Smith and Roberts are taking the same courses." )

else :
sameCourses = smith.intersection( roberts )
if sameCourses.isEmpty() :

print( "Smith and Roberts are not taking any of "\
+ "the same courses." )

else :
print( "Smith and Roberts are taking some of the "\

+ "same courses:" )
for course in sameCourses :
print( course )
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In this case, the two students are both taking CSCI-112 and ECON-101. Thus,
the results of executing the previous code segment will be

Smith and Roberts are taking some of the same courses:
CSCI-112 ECON-101

Suppose we want to know which courses Smith is taking that Roberts is not
taking. We can determine this using the set difference operation:

uniqueCourses = smith.difference( roberts )
for course in sameCourses :
print( course )

This example reinforces one of the advantages of working with an abstraction
by focusing on what functionality the ADT provides instead of how that function-
ality is implemented. By hiding the implementation details, we can use an ADT
independent of its implementation. In fact, the choice of implementation for the
Set ADT will have no effect on the instructions in our example program.

3.1.2 Selecting a Data Structure
To implement the Set ADT, we must select a data structure based on the same
criteria we used for the Bag ADT from Chapter 1. Since we are trying to replicate
the functionality of the set structure provided by Python, we don’t want to use that
structure. That leaves the array, list, and dictionary containers for consideration
in implementing the Set ADT. The storage requirements for the bag and set are
very similar with the difference being that a set cannot contain duplicates. The
dictionary would seem to be the ideal choice since it can store unique items, but it
would waste space in this case. Remember, the dictionary stores key/value pairs,
which requires two data fields per entry. We could store the individual items of the
set in the key fields and leave the value fields empty, but that would use twice the
amount of storage than necessary. This waste does not occur with an array or list.
An array could be used to implement the set, but a set can contain any number
of elements and by definition an array has a fixed size. To use the array structure,
we would have to manage the expansion of the array when necessary in the same
fashion as it’s done for the list. Since the list can grow as needed, it seems ideal
for storing the elements of a set just as it was for the bag and it does provide for
the complete functionality of the ADT. Since the list allows for duplicate values,
however, we must make sure as part of the implementation that no duplicates are
added to our set.

3.1.3 List-Based Implementation
Having selected the list structure, we can now implement the Set ADT as shown
in Listing 3.1. Some of the operations of the set are very similar to those of the
Bag ADT and are implemented in a similar fashion. Sample instances for the two
sets from Figure 3.1 are illustrated in Figure 3.2.
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Figure 3.2: Two instances of the Set class implemented as a list.

Listing 3.1 The linearset.py module.

1 # Implementation of the Set ADT container using a Python list.
2 class Set :
3 # Creates an empty set instance.
4 def __init__( self ):
5 self._theElements = list()
6
7 # Returns the number of items in the set.
8 def __len__( self ):
9 return len( self._theElements )

10
11 # Determines if an element is in the set.
12 def __contains__( self, element ):
13 return element in self._theElements
14
15 # Adds a new unique element to the set.
16 def add( self, element ):
17 if element not in self :
18 self._theElements.append( element )
19
20 # Removes an element from the set.
21 def remove( self, element ):
22 assert element in self, "The element must be in the set."
23 self._theElements.remove( item )
24
25 # Determines if two sets are equal.
26 def __eq__( self, setB ):
27 if len( self ) != len( setB ) :
28 return False
29 else :
30 return self.isSubsetOf( setB )
31

(Listing Continued)
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Listing 3.1 Continued . . .

32 # Determines if this set is a subset of setB.
33 def isSubsetOf( self, setB ):
34 for element in self :
35 if element not in setB :
36 return False
37 return True
38
39 # Creates a new set from the union of this set and setB.
40 def union( self, setB ):
41 newSet = Set()
42 newSet._theElements.extend( self._theElements )
43 for element in setB :
44 if element not in self :
45 newSet._theElements.append( element )
46 return newSet
47
48 # Creates a new set from the intersection: self set and setB.
49 def interset( self, setB ):
50 ......
51
52 # Creates a new set from the difference: self set and setB.
53 def difference( self, setB ):
54 ......
55
56 # Returns an iterator for traversing the list of items.
57 def __iter__( self ):
58 return _SetIterator( self._theElements )

Adding Elements

As indicated earlier, we must ensure that duplicate values are not added to the set
since the list structure does not handle this for us. When implementing the add
method, shown in lines 16–18, we must first determine if the supplied element is
already in the list or not. If the element is not a duplicate, we can simply append
the value to the end of the list; if the element is a duplicate, we do nothing. The
reason for this is that the definition of the add() operation indicates no action
is taken when an attempt is made to add a duplicate value. This is known as a
noop, which is short for no operation and indicates no action is taken. Noops are
appropriate in some cases, which will be stated implicitly in the definition of an
abstract data type by indicating no action is to be taken when the precondition
fails as we did with the add() operation.

Comparing Two Sets

For the operations that require a second set as an argument, we can use the oper-
ations of the Set ADT itself to access and manipulate the data of the second set.
Consider the “equals” operation, implemented in lines 26–30 of Listing 3.1, which
determines if both sets contain the exact same elements. We first check to make
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Avoid Reinventing the Wheel. Using operations provided by an ADT
to implement other methods of that same ADT allows you to take ad-

vantage of the abstraction and avoid “reinventing the wheel” by duplicating
code in several places.

sure the two sets contain the same number of elements; otherwise, they cannot be
equal. It would be inefficient to compare the individual elements since we already
know the two sets cannot be equal. After verifying the size of the lists, we can test
to see if the self set is a subset of setB by calling self.isSubsetOf(setB). This
is a valid test since two equal sets are subsets of each other and we already know
they are of the same size.

To determine if one set is the subset of another, we can iterate over the list
of elements in the self set and make sure each is contained in setB. If just one
element in the self set is not in setB, then it is not a subset. The implementation
of the isSubsetOf() method is shown in lines 33–37.

The Set Union

Some of the operations create and return a new set based on the original, but the
original is not modified. This is accomplished by creating a new set and populating
it with the appropriate data from the other sets. Consider the union() method,
shown in lines 40–46, which creates a new set from the self set and setB passed
as an argument to the method.

Creating a new set, populated with the unique elements of the other two sets,
requires three steps: (1) create a new set; (2) fill the newSet with the elements
from setB; and (3) iterate through the elements of the self set, during which each
element is added to the newSet if that element is not in setB. For the first step,
we simply create a new instance of the Set class. The second step is accomplished
with the use of the list extend() method. It directly copies the entire contents
of the list used to store the elements of the self set to the list used to store the
elements of the newSet. For the final step, we iterate through the elements of
setB and add those elements to the the newSet that are not in the self set. The
unique elements are added to the newSet by appending them to the list used to
store the elements of the newSet. The remaining operations of the Set ADT can
be implemented in a similar fashion and are left as exercises.

3.2 Maps
Searching for data items based on unique key values is a very common application
in computer science. An abstract data type that provides this type of search
capability is often referred to as a map or dictionary since it maps a key to
a corresponding value. Consider the problem of a university registrar having to
manage and process large volumes of data related to students. To keep track of the
information or records of data, the registrar assigns a unique student identification
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number to each individual student as illustrated in Figure 3.3. Later, when the
registrar needs to search for a student’s information, the identification number is
used. Using this keyed approach allows access to a specific student record. If
the names were used to identify the records instead, then what happens when
multiple students have the same name? Or, what happens if the name was entered
incorrectly when the record was initially created?
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Figure 3.3: Unique key/data pairs.

In this section, we define our own Map ADT and then provide an implementa-
tion using a list. In later chapters, we will implement and evaluate the map using
a variety of data structures. We use the term map to distinguish our ADT from
the dictionary provided by Python. The Python dictionary is implemented using a
hash table, which requires the key objects to contain the hash method for gen-
erating a hash code. This can limit the type of problems with which a dictionary
can be used. We define our Map ADT with the minimum requirement that the
keys are comparable, which will allow it to be used in a wider range of problems.
It’s not uncommon to provide multiple implementations of an ADT as is done with
many language libraries. We will explore the implementation details of Python’s
dictionary later in Chapter 11 when we discuss hash tables and the design of hash
functions.

3.2.1 The Map Abstract Data Type
The Map ADT provides a great example of an ADT that can be implemented using
one of many different data structures. Our definition of the Map ADT, which is
provided next, includes the minimum set of operations necessary for using and
managing a map.
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Define Map ADT

A map is a container for storing a collection of data records in which each record
is associated with a unique key. The key components must be comparable.

� Map(): Creates a new empty map.

� length (): Returns the number of key/value pairs in the map.

� contains ( key ): Determines if the given key is in the map and returns True
if the key is found and False otherwise.

� add( key, value ): Adds a new key/value pair to the map if the key is not
already in the map or replaces the data associated with the key if the key is in
the map. Returns True if this is a new key and False if the data associated
with the existing key is replaced.

� remove( key ): Removes the key/value pair for the given key if it is in the
map and raises an exception otherwise.

� valueOf( key ): Returns the data record associated with the given key. The
key must exist in the map or an exception is raised.

� iterator (): Creates and returns an iterator that can be used to iterate over
the keys in the map.

3.2.2 List-Based Implementation
We indicated earlier that many different data structures can be used to implement
a map. Since we are trying to replicate the functionality of the dictionary provided
by Python, we don’t want to use that structure. That leaves the use of an array
or list. As with the Set ADT, both the array and list structures can be used, but
the list is a better choice since it does not have a fixed size like an array and it can
expand automatically as needed.

In the implementation of the Bag and Set ADTs, we used a single list to store
the individual elements. For the Map ADT, however, we must store both a key
component and the corresponding value component for each entry in the map.
We cannot simply add the component pairs to the list without some means of
maintaining their association.

One approach is to use two lists, one for the keys and one for the correspond-
ing values. Accessing and manipulating the components is very similar to that
used with the Bag and Set ADTs. The difference, however, is that the associa-
tion between the component pairs must always be maintained as new entries are
added and existing ones removed. To accomplish this, each key/value must be
stored in corresponding elements of the parallel lists and that association must be
maintained.
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Instead of using two lists to store the key/value entries in the map, we can use
a single list. The individual keys and corresponding values can both be saved in a
single object, with that object then stored in the list. A sample instance illustrating
the data organization required for this approach is shown in Figure 3.4.

1001510015 

1014210142 

1021010210 

1017510175 

0

1

2

3









Smith
John
14 East Main St
Somewhere
VA
99155

Smith
John
14 East Main St
Somewhere
VA
99155

Roberts
Susan
231 Quarry Rd
Nowhere
TX
11333

Roberts
Susan
231 Quarry Rd
Nowhere
TX
11333

Smith
Jane
81 Jefferson St
East End
PA
28541

Smith
Jane
81 Jefferson St
East End
PA
28541

Brown
Jessica
231 Quarry Rd
Plains
TN
30101

Brown
Jessica
231 Quarry Rd
Plains
TN
30101

entryList

Map

MapEntry

Figure 3.4: The Map ADT implemented using a single list.

The implementation of the Map ADT using a single list is provided in List-
ing 3.2. As we indicated earlier in Chapter 1, we want to avoid the use of tuples
when storing structured data since it’s better practice to use classes with named
fields. The MapEntry storage class, defined in lines 56–59, will be used to store the
individual key/value pairs. Note this storage class is defined to be private since it’s
only intended for use by the Map class that provides the single list implementation
of the Map ADT.

Listing 3.2 The linearmap.py module.

1 # Implementation of Map ADT using a single list.
2 class Map :
3 # Creates an empty map instance.
4 def __init__( self ):
5 self._entryList = list()
6
7 # Returns the number of entries in the map.
8 def __len__( self ):
9 return len( self._entryList )

10
11 # Determines if the map contains the given key.
12 def __contains__( self, key ):
13 ndx = self._findPosition( key )
14 return ndx is not None
15
16 # Adds a new entry to the map if the key does exist. Otherwise, the



3.2 Maps 79

17 # new value replaces the current value associated with the key.
18 def add( self, key, value ):
19 ndx = self._findPosition( key )
20 if ndx is not None : # if the key was found
21 self._entryList[ndx].value = value
22 return False
23 else : # otherwise add a new entry
24 entry = _MapEntry( key, value )
25 self._entryList.append( entry )
26 return True
27
28 # Returns the value associated with the key.
29 def valueOf( self, key ):
30 ndx = self._findPosition( key )
31 assert ndx is not None, "Invalid map key."
32 return self._entryList[ndx].value
33
34 # Removes the entry associated with the key.
35 def remove( self, key ):
36 ndx = self._findPosition( key )
37 assert ndx is not None, "Invalid map key."
38 self._entryList.pop( ndx )
39
40 # Returns an iterator for traversing the keys in the map.
41 def __iter__( self ):
42 return _MapIterator( self._entryList )
43
44 # Helper method used to find the index position of a category. If the
45 # key is not found, None is returned.
46 def _findPosition( self, key ):
47 # Iterate through each entry in the list.
48 for i in range( len(self) ) :
49 # Is the key stored in the ith entry?
50 if self._entryList[i].key == key :
51 return i
52 # When not found, return None.
53 return None
54
55 # Storage class for holding the key/value pairs.
56 class _MapEntry :
57 def __init__( self, key, value ):
58 self.key = key
59 self.value = value

Many of the methods require a search to determine if the map contains a given
key. In this implementation, the standard in operator cannot be used since the list
contains MapEntry objects and not simply key entries. Instead, we have to search
the list ourselves and examine the key field of each MapEntry object. Likewise, we
routinely have to locate within the list the position containing a specific key/value
entry. Since these operations will be needed in several methods, we can create a
helper method that combines the two searches and use it where needed.

The findPosition() helper method searches the list for the given key. If
the key is found, the index of its location is returned; otherwise, the function
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returns None to indicate the key is not contained in the map. When used by
the other methods, the value returned can be evaluated to determine both the
existence of the key and the location of the corresponding entry if the key is in
the map. By combining the two searches into a single operation, we eliminate the
need to first determine if the map contains the key and then searching again for
its location. Given the helper method, the implementation of the various methods
is straightforward. Implementation of the iterator method is left as an exercise.

3.3 Multi-Dimensional Arrays
In Chapter 2, we worked with one- and two-dimensional arrays, but arrays can be
larger than two dimensions. In fact, arrays can contain any number of dimensions
that may be needed for a given problem. A multi-dimensional array stores
a collection of data in which the individual elements are accessed with multi-
component subscripts: xi,j or yi,j,k. Figure 3.5 illustrates the abstract view of a
two- and three-dimensional array. As we saw earlier, a two-dimensional array is
typically viewed as a table or grid consisting of rows and columns. An individual
element is accessed by specifying two indices, one for the row and one for the
column. The three-dimensional array can be visualized as a box of tables where
each table is divided into rows and columns. Individual elements are accessed by
specifying the index of the table followed by the row and column indices. Larger
dimensions are used in the solutions for some problems, but they are more difficult
to visualize.
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Figure 3.5: Sample multi-dimensional arrays: (left) a 2-D array viewed as a rectangular
table and (right) a 3-D array viewed as a box of tables.

Most high-level programming languages provide a convenient way to create and
manage multi-dimensional arrays while others require a more hands-on approach.
C++ and Java are two examples of languages that provide multi-dimensional arrays
as part of the language. Python, of course, does not directly support arrays of any
dimension. But that did not prevent us from defining and implementing abstract
data types in the previous chapter for one- and two-dimensional arrays. Likewise,
we can define an abstract data type for creating and using arrays of any dimension.
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3.3.1 The MultiArray Abstract Data Type
To accommodate multi-dimensional arrays of two or more dimensions, we define
the MultiArray ADT and as with the earlier array abstract data types, we limit the
operations to those commonly provided by arrays in most programming languages
that provide the array structure.

Define MultiArray ADT

A multi-dimensional array consists of a collection of elements organized into mul-
tiple dimensions. Individual elements are referenced by specifying an n-tuple or
a subscript of multiple components, (i1, i2, . . . in), one for each dimension of the
array. All indices of the n-tuple start at zero.

� MultiArray( d1, d2, . . . dn ): Creates a multi-dimensional array of elements or-
ganized into n-dimensions with each element initially set to None. The number
of dimensions, which is specified by the number of arguments, must be greater
than 1. The individual arguments, all of which must be greater than zero,
indicate the lengths of the corresponding array dimensions. The dimensions
are specified from highest to lowest, where d1 is the highest possible dimension
and dn is the lowest.

� dims(): Returns the number of dimensions in the multi-dimensional array.

� length( dim ): Returns the length of the given array dimension. The individ-
ual dimensions are numbered starting from 1, where 1 represents the first, or
highest, dimension possible in the array. Thus, in an array with three dimen-
sions, 1 indicates the number of tables in the box, 2 is the number of rows,
and 3 is the number of columns.

� clear( value ): Clears the array by setting each element to the given value.

� getitem ( i1, i2, . . . in ): Returns the value stored in the array at the element
position indicated by the n-tuple (i1, i2, . . . in). All of the specified indices
must be given and they must be within the valid range of the corresponding
array dimensions. Accessed using the element operator: y = x[ 1, 2 ].

� setitem ( i1, i2, . . . in, value ): Modifies the contents of the specified array
element to contain the given value. The element is specified by the n-tuple
(i1, i2, . . . in). All of the subscript components must be given and they must
be within the valid range of the corresponding array dimensions. Accessed
using the element operator: x[ 1, 2 ] = y.

3.3.2 Data Organization
Most computer architectures provide a mechanism at the hardware level for creat-
ing and using one-dimensional arrays. Programming languages need only provide
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appropriate syntax to make use of a 1-D array. Multi-dimensional arrays are not
handled at the hardware level. Instead, the programming language typically pro-
vides its own mechanism for creating and managing multi-dimensional arrays.

As we saw earlier, a one-dimensional array is composed of a group of sequential
elements stored in successive memory locations. The index used to reference a
particular element is simply the offset from the first element in the array. In most
programming languages, a multi-dimensional array is actually created and stored
in memory as a one-dimensional array. With this organization, a multi-dimensional
array is simply an abstract view of a physical one-dimensional data structure.

Array Storage

A one-dimensional array is commonly used to physically store arrays of higher
dimensions. Consider a two-dimensional array divided into a table of rows and
columns as illustrated in Figure 3.6. How can the individual elements of the table
be stored in the one-dimensional structure while maintaining direct access to the
individual table elements? There are two common approaches. The elements
can be stored in row-major order or column-major order . Most high-level
programming languages use row-major order, with FORTRAN being one of the
few languages that uses column-major ordering to store and manage 2-D arrays.
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Figure 3.6: The abstract view of a sample 3× 5 two-dimensional array.

In row-major order, the individual rows are stored sequentially, one at a time,
as illustrated in Figure 3.7. The first row of 5 elements are stored in the first 5
sequential elements of the 1-D array, the second row of 5 elements are stored in
the next five sequential elements, and so forth.

In column-major order, the 2-D array is stored sequentially, one entire column
at a time, as illustrated in Figure 3.8. The first column of 3 elements are stored in
the first 3 sequential elements of the 1-D array, followed by the 3 elements of the
second column, and so on.

For larger dimensions, a similar approach can be used. With a three-dimensional
array, the individual tables can be stored contiguously using either row-major or
column-major ordering. As the number of dimensions grow, all elements within
a single instance of each dimension are stored contiguously before the next in-
stance. For example, given a four-dimensional array, which can be thought of as
an array of boxes, all elements of an individual box (3-D array) are stored before
the next box.



3.3 Multi-Dimensional Arrays 83

     1212 5252404022 1515 4545 1313 7878 9191 8686 5959 2525 3333 4141 66

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

row 0 row 1 row 2

22 1515 4545 1313 7878

4040 1212 5252 9191 8686

5959 2525 3333 4141 66

0 1 2 3 4

0

1

2

Physical storage 
of a 2-D array using 
row-major order.

Figure 3.7: Physical storage of a sample 2-D array (top) in a 1-D array using row-major
order (bottom).

Index Computation

Since multi-dimensional arrays are created and managed by instructions in the
programming language, accessing an individual element must also be handled by
the language. When an individual element of a 2-D array is accessed, the compiler
must include additional instructions to calculate the offset of the specific element
within the 1-D array. Given a 2-D array of size m×n and using row-major ordering,
an equation can be derived to compute this offset.

To derive the formula, consider the 2-D array illustrated in Figure 3.7 and
observe the physical storage location within the 1-D array for the first element in
several of the rows. Element (0, 0) maps to position 0 since it is the first element
in both the abstract 2-D and physical 1-D arrays. The first entry of the second
row (1, 0) maps to position n since it follows the first n elements of the first row.
Likewise, element (2, 0) maps to position 2n since it follows the first 2n elements
in the first two rows. We could continue in the same fashion through all of the
rows, but you would soon notice the position for the first element of the ith row is
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Figure 3.8: Physical storage of a sample 2-D array (top) in a 1-D array using column-
major order (bottom).
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n ∗ i. Since the subscripts start from zero, the ith subscript not only represents a
specific row but also indicates the number of complete rows skipped to reach the
ith row.

Knowing the position of the first element of each row, the position for any
element within a 2-D array can be determined. Given an element (i, j) of a 2-D
array, the storage location of that element in the 1-D array is computed as

index2(i, j) = i ∗ n + j (3.1)

The column index, j, is not only the offset within the given row but also the
number of elements that must be skipped in the ith row to reach the jth column.
To see this formula in action, again consider the 2-D array from Figure 3.7 and
assume we want to access element (2, 3). Finding the target element within the
1-D array requires skipping over the first 2 complete rows of elements:

22 1515 4545 1313 7878

4040 1212 5252 9191 8686

i

5959 2525 3333 4141 66

n

and the first 3 elements within row 2:

j

5959 2525 3333 4141 66

Plugging the indices into the equation from above results in an index position of
13, which corresponds to the position of element (2, 3) within the 1-D array used
to physically store the 2-D array.

Similar equations can be derived for arrays of higher dimensions. Given a 3-D
array of size d1 × d2 × d3, the 1-D array offset of element (i1, i2, i3) stored using
row-major order will be

index3(i1, i2, i3) = i1 ∗ (d2 ∗ d3) + i2 ∗ d3 + i3 (3.2)

For each component (i) in the subscript, the equation computes the number of
elements that must be skipped within the corresponding dimension. For example,
the factor (d2 ∗ d3) indicates the number of elements in a single table of the cube.
When it’s multiplied by i1 we get the number of complete tables to skip and in turn
the number of elements to skip in order to arrive at the first element of table i1.
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The remaining part of the equation (i2 ∗ d3 + i3) is equivalent to index2(i2, i3),
which indicates the number of elements to skip within the i1 table. As the number
of dimensions increase, additional products are added to the equation, one for each
new dimension. For example, the equation to compute the offset for a 4-D array is

index4(i1, i2, i3, i4) = i1 ∗ (d2 ∗ d3 ∗ d4) + i2 ∗ (d3 ∗ d4) + i3 ∗ d4 + i4 (3.3)

You may notice a pattern developing as the number of dimensions increase.
This pattern leads to a general equation for computing the 1-D array offset for
element (i1, i2, . . . , in) within an n-dimensional array:

index(i1, i2, . . . , in) = i1 ∗ f1 + i2 ∗ f2 + · · ·+ in−1 ∗ fn−1 + in ∗ 1 (3.4)

where the fj values are the factors representing the number of elements to be
skipped within the corresponding dimension and are computed using

fn = 1 and fj =
n∏

k=j+1

dk ∀0<j<n (3.5)

The size of a multi-dimensional array is fixed at the time it’s created and cannot
change during execution. Likewise, the several fj products used in the equation
above will not change once the size of the array is set. This can be used to our
advantage to reduce the number of multiplications required to compute the element
offsets. Instead of computing the products every time an element is accessed, we
can compute and store the factor values and simply plug them into the equation
when needed.

3.3.3 Variable-Length Arguments
The definition of the MultiArray ADT requires a variable-length argument for
the constructor and the two element access methods. The number of arguments
passed to each method is supposed to equal the number of dimensions in the
array. Python functions and methods can be defined to accept a variable number
of arguments, which is exactly what we need to implement the MultiArray ADT.
Consider the following function, which accepts any number of arguments (assumed
to be numerical in this example) and then prints how many arguments were passed
and the sum of those arguments:
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def func( *args ):
print "Number of arguments: ", len( args )
sum = 0
for value in args :
sum += value

print( "Sum of the arguments: ", sum )

When using the function, we can pass a variable number of arguments for each
invocation. For example, all of the following are valid function calls:

func( 12 )
func( 5, 8, 2 )
func( 18, -2, 50, 21, 6 )

which results in the following output:

Number of arguments: 1
Sum of the arguments: 12
Number of arguments: 3
Sum of the arguments: 15
Number of arguments: 5
Sum of the arguments: 93

The asterisk next to the argument name (*args) tells Python to accept any
number of arguments and to combine them into a tuple. The tuple is then passed
to the function and assigned to the formal argument marked with the asterisk.
Note the asterisk is only used in the argument list to indicate that the function
or method can accept any number of arguments. It is not part of the argument
name. The len() operation can be applied to the tuple to determine the number
of actual arguments passed to the function. The individual arguments, which
are elements in the tuple, can be accessed by using the subscript notation or by
iterating the collection.

3.3.4 Implementing the MultiArray
To implement the MultiArray ADT, the elements of the multi-dimensional array
can be stored in a single 1-D array in row-major order. Not only does this create
a fast and compact array structure, but it’s also the actual technique used by
most programming languages. A partial implementation of the MultiArray class
is provided in Listing 3.3.

Listing 3.3 The array.py module with the MultiArray class.

1 # Implementation of the MultiArray ADT using a 1-D array.
2 class MultiArray :
3 # Creates a multi-dimensional array.
4 def __init__( self, *dimensions ):
5 assert len(dimensions) > 1, "The array must have 2 or more dimensions."
6 # The variable argument tuple contains the dim sizes.
7 self._dims = dimensions
8



3.3 Multi-Dimensional Arrays 87

9 # Compute the total number of elements in the array.
10 size = 1
11 for d in dimensions :
12 assert d > 0, "Dimensions must be > 0."
13 size *= d
14
15 # Create the 1-D array to store the elements.
16 self._elements = Array( size )
17 # Create a 1-D array to store the equation factors.
18 self._factors = Array( len(dimensions) )
19 self._computeFactors()
20
21 # Returns the number of dimensions in the array.
22 def numDims( self ):
23 return len(self._dims)
24
25 # Returns the length of the given dimension.
26 def length( self, dim ):
27 assert dim >= 1 and dim < len(self._dims),\
28 "Dimension component out of range."
29 return self._dims[dim - 1]
30
31 # Clears the array by setting all elements to the given value.
32 def clear( self, value ):
33 self._elements.clear( value )
34
35 # Returns the contents of element (i_1, i_2, ..., i_n).
36 def __getitem__( self, ndxTuple ):
37 assert len(ndxTuple) == self.numDims(), "Invalid # of array subscripts."
38 index = self._computeIndex( ndxTuple )
39 assert index is not None, "Array subscript out of range."
40 return self._elements[index]
41
42 # Sets the contents of element (i_1, i_2, ..., i_n).
43 def __setitem__( self, ndxTuple, value ):
44 assert len(ndxTuple) == self.numDims(), "Invalid # of array subscripts."
45 index = self._computeIndex( ndxTuple )
46 assert index is not None, "Array subscript out of range."
47 self._elements[index] = value
48
49 # Computes the 1-D array offset for element (i_1, i_2, ... i_n)
50 # using the equation i_1 * f_1 + i_2 * f_2 + ... + i_n * f_n
51 def _computeIndex( self, idx ):
52 offset = 0
53 for j in range( len(idx) ):
54 # Make sure the index components are within the legal range.
55 if idx[j] < 0 || idx[j] >= self._dims[j] :
56 return None
57 else : # sum the product of i_j * f_j.
58 offset += idx[j] * self._factors[j]
59 return offset
60
61 # Computes the factor values used in the index equation.
62 def _computeFactors( self ):
63 ......
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Constructor

The constructor, which is shown in lines 4–19, defines three data fields: dims
stores the sizes of the individual dimensions; factors stores the factor values
used in the index equation; and elements is used to store the 1-D array used as
the physical storage for the multi-dimensional array.

The constructor is defined to accept a variable-length argument as required in
the ADT definition. The resulting tuple will contain the sizes of the individual
dimensions and is assigned to the dims field. The dimensionality of the array
must be verified at the beginning of the constructor as the MultiArray ADT is
meant for use with arrays of two dimensions or more.

The elements of the multi-dimensional array will be stored in a 1-D array. The
fixed size of the array can be computed as the product of the dimension lengths
by traversing over the tuple containing the variable-length argument. During the
traversal, the precondition requiring all dimension lengths be greater than zero is
also evaluated. The Array class defined earlier in the chapter is used to create the
storage array.

Finally, a 1-D array is created and assigned to the factors field. The size of
the array is equal to the number of dimensions in the multi-dimensional array. This
array will be initialized to the factor values used in Equation 3.4 for computing
the element offsets. The actual computation and initialization is performed by the
computeFactors() helper method, which is left as an exercise. A sample instance

of the MultiArray class is illustrated in Figure 3.9.

22 1515 4545 1313 7878 4040 1212 5252 9191 8686 5959 2525 3333 4141 66

MultiArray

factors


elements



55 11

dims

 33 55

Figure 3.9: A sample MultiArray object for the 2-D array from Figure 3.6.

Dimensionality and Lengths

In the multi-dimensional version of the array, there is no single length value. In-
stead, each dimension of the array has an associated size. Python’s len() function
cannot be used for this task since we must specify a particular dimension to obtain
its size. Instead, the length() method, as shown in lines 26–29 of Listing 3.3,
is used. The method first verifies the given dimension index is between 1 and n,
which is the legal range specified in the ADT definition. The size of the requested
dimension is then returned using the appropriate value from the dims tuple. The
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numDims() method returns the dimensionality of the array, which can be obtained
from the number of elements in the dims tuple.

Element Access

Access to individual elements within an n-D array requires an n-tuple or multi-
component subscript, one for each dimension. As indicated in Section 2.3.2, when
a multi-component subscript is specified (i.e., y = x[i,j]), Python automatically
stores the components in a tuple in the order listed within the brackets and passes
the tuple to the ndxTuple argument.

The contents of the ndxTuple are passed to the computeIndex() helper method
to compute the index offset within the 1-D storage array. The use of the helper
method reduces the need for duplicate code that otherwise would be required in
both element access methods. The setitem operator method can be imple-
mented in a similar fashion. The major difference is that this method requires a
second argument to receive the value to which an element is set and modifies the
indicated element with the new value instead of returning a value.

Computing the Offset

The computeIndex() helper method, shown in lines 51–59 of Listing 3.3, imple-
ments Equation 3.4, which computes the offset within the 1-D storage array. The
method must also verify the subscript components are within the legal range of the
dimension lengths. If they are valid, the offset is computed and returned; other-
wise, None is returned to flag an invalid array index. By returning None from the
helper method instead of raising an exception within the method, better informa-
tion can be provided to the programmer as to the exact element access operation
that caused the error.

3.4 Application: Sales Reports
LazyMart, Inc. is a small regional chain department store with locations in several
different cities and states. The company maintains a collection of sales records for
the various items sold and would like to generate several different types of reports
from this data. One such report, for example, is the yearly sales by store, as
illustrated in Figure 3.10 on the next page, while others could include total sales
across all stores for a specific month or a specific item.

The sales data of the current calendar year for all of LazyMart’s stores is
maintained as a collection of entries in a text file. For example, the following
illustrates the first several lines of a sample sales data text file:

8
100
5 11 85 45.23
1 4 26 128.93
1 8 75 39.77

:
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LazyMart Sales Report
Store #1

Item#     Jan      Feb      Mar    ...     Nov      Dec
   1    1237.56  1543.23  1011.00       2101.88  2532.99
   2     829.85   974.18   776.54        802.50   643.21
   3    3100.00  3218.25  3005.34       2870.50  3287.25
   4    1099.45  1573.75  1289.21       1100.00  1498.25

   :       :        :        :     ...     :        :
   
  99     704.00   821.30   798.00        532.00   699.50
 100     881.25   401.00   375.00        732.00   500.00
        ­­­­­­­  ­­­­­­­  ­­­­­­­       ­­­­­­­  ­­­­­­­
  

Figure 3.10: A sample sales report

where the first line indicates the number of stores; the second line indicates the
number of individual items (both of which are integers); and the remaining lines
contain the sales data. Each line of the sales data consists of four pieces of in-
formation: the store number, the month number, the item number, and the sales
amount for the given item in the given store during the given month. For sim-
plicity, the store and item numbers will consist of consecutive integer values in the
range [1 . . . max], where max is the number of stores or items as extracted from
the first two lines of the file. The month is indicated by an integer in the range
[1 . . . 12] and the sales amount is a floating-point value.

Data Organization

While some reports, like the student report from Chapter 1, are easy to produce
by simply extracting the data and writing it to the report, others require that we
first organize the data in some meaningful way in order to extract the information
needed. That is definitely the case for this problem, where we may need to produce
many different reports from the same collection of data. The ideal structure for
storing the sales data is a 3-D array, as shown in Figure 3.11, in which one dimen-
sion represents the stores, another represents the items sold in the stores, and the
last dimension represents each of the 12 months in the calendar year. The 3-D
array can be viewed as a collection of spreadsheets, as illustrated in Figure 3.12.
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Figure 3.11: The sales data stored in a 3-D array.
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Figure 3.12: The sales data viewed as a collection of spreadsheets.

Each spreadsheet contains the sales for a specific store and is divided into rows and
columns where each row contains the sales for one item and the columns contain
the sales for each month.

Since the store, item, and month numbers are all composed of consecutive
integer values starting from 1, we can easily represent each by a unique index
that is one less than the given number. For example, the data for January will be
stored in column 0, the data for February will be stored in column 1, and so on.
Likewise, the data for item number 1 will be stored in row 0, the data for item
number 2 will be stored in row 1, and so on. We leave the actual extraction of
the data from a text file as an exercise. But for illustration purposes, we assume
this step has been completed resulting in the creation and initialization of the 3-D
array as shown here:

salesData = MultiArray( 8, 100, 12 )

Total Sales by Store

With the data loaded from the file and stored in a 3-D array, we can produce many
different types of reports or extract various information from the sales data. For
example, suppose we want to determine the total sales for a given store, which
includes the sales figures of all items sold in that store for all 12 months. The
following function computes this value:

# Compute the total sales of all items for all months in a given store.
def totalSalesByStore( salesData, store ):

# Subtract 1 from the store # since the array indices are 1 less
# than the given store #.
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s = store-1
# Accumulate the total sales for the given store.
total = 0.0

# Iterate over item.
for i in range( salesData.length(2) ):

# Iterate over each month of the i item.
for m in range( salesData.length(3) ):
total += salesData[s, i, m]

return total

Assuming our view of the data as a collection of spreadsheets, this requires travers-
ing over every element in the spreadsheet containing the data for the given store.
If store equals 1, this is equivalent to processing every element in the spreadsheet
shown at the front of Figure 3.12. Two nested loops are required since we must sum
the values from each row and column contained in the given store spreadsheet.
The number of rows (dimension number 2) and columns (dimension number 3) can
be obtained using the length() array method.

Total Sales by Month

Next, suppose we want to compute the total sales for a given month that includes
the sales figures of all items in all stores sold during that month. This value can
be computed using the following function:

# Compute the total sales of all items in all stores for a given month.
def totalSalesByMonth( salesData, month ):

# The month number must be offset by 1.
m = month - 1
# Accumulate the total sales for the given month.
total = 0.0

# Iterate over each store.
for s in range( salesData.length(1) ):

# Iterate over each item of the s store.
for i in range( salesData.length(2) ):
total += salesData[s, i, m]

return total

This time, the two nested loops have to iterate over every row of every spread-
sheet for the single column representing the given month. If we use this function
to compute the total sales for the month of January, the elements of the 3-D array
that will be accessed are shown by the shaded area in Figure 3.13(a).

Total Sales by Item

Another value that we can compute from the sales data in the 3-D array is the
total sales for a given item, which includes the sales figures for all 12 months and
from all 8 stores. This is computed by the following function:
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# Compute the total sales of a single item in all stores over all months.
def totalSalesByItem( salesData, item ):

# The item number must be offset by 1.
m = item - 1

# Accumulate the total sales for the given month.
total = 0.0

# Iterate over each store.
for s in range( salesData.length(1) ):

# Iterate over each month of the s store.
for m in range( salesData.length(3) ):
total += salesData[s, i, m]

return total

The cells of the array that would be accessed when using this function to
compute the total sales for item number 5 are shown by the shaded area in Fig-
ure 3.13(b). Remember, the sales for each item are stored in a specific row of the
array and the index of that row is one less than the item number since the indices
start at 0.
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Figure 3.13: The elements of the 3-D array that must be accessed to compute the total
sales: (a) for the month of January and (b) for item number 5.

Monthly Sales by Store

Finally, suppose we want to compute the total monthly sales for each of the 12
months at a given store. While the previous examples computed a single value,
this task requires the computation of 12 different totals, one for each month. We
can store the monthly totals in a 1-D array and return the structure, as is done in
the following function:
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# Compute the total sales per month for a given store. A 1-D array is
# returned that contains the totals for each month.

def totalSalesPerMonth( salesData, store ):
# The store number must be offset by 1.
s = store - 1

# The totals will be returned in a 1-D array.
totals = Array( 12 )

# Iterate over the sales of each month.
for m in range( salesData.length(3) ):
sum = 0.0

# Iterate over the sales of each item sold during the m month.
for i in range( salesData.length(2) ):
sum += salesData[s, i, m]

# Store the result in the corresponding month of the totals array.
totals[m] = sum

# Return the 1-D array.
return totals

Figure 3.14 illustrates the use of the 1-D array for storing the individual
monthly totals. The shaded area shows the elements of the 3-D array that are
accessed when computing the total sales for the month of April at store number 1.
The monthly total will be stored at index position 3 within the 1-D array since
that is the corresponding column in the 3-D array for the month of April.
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Figure 3.14: The elements the 3-D array that must be accessed to compute the monthly
sales for store number 1.
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Exercises
3.1 Complete the Set ADT by implementing intersect() and difference().

3.2 Modify the Set() constructor to accept an optional variable argument to
which a collection of initial values can be passed to initialize the set. The
prototype for the new constructor should look as follows:

def Set( self, *initElements = None )

It can then be used as shown here to create a set initialized with the given
values:

s = Set( 150, 75, 23, 86, 49 )

3.3 Add a new operation to the Set ADT to test for a proper subset. Given two
sets, A and B, A is a proper subset of B, if A is a subset of B and A does not
equal B.

3.4 Add the str() method to the Set implementation to allow a user to print
the contents of the set. The resulting string should look similar to that of a
list, except you are to use curly braces to surround the elements.

3.5 Add Python operator methods to the Set class that can be used to perform
similar operations to those already defined by named methods:

Operator Method Current Method
add (setB) union(setB)

mul (setB) interset(setB)

sub (setB) difference(setB)

lt (setB) isSubsetOf(setB)

3.6 Add a new operation keyArray() to the Map class that returns an array con-
taining all of the keys stored in the map. The array of keys should be in no
particular ordering.

3.7 Add Python operators to the Map class that can be used to perform similar
operations to those already defined by named methods:

Operator Method Current Method
setitem (key, value) add(key, value)

getitem (key) valueOf(key)

3.8 Design and implement the iterator class SetIterator for use with the Set
ADT implemented using a list.
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3.9 Design and implement the iterator class MapIterator for use with the Map
ADT implemented using a list.

3.10 Develop the index equation that computes the location within a 1-D array for
element (i, j) of a 2-D array stored in column-major order.

3.11 The 2-D array described in Chapter 2 is a simple rectan-
gular structure consisting of the same number of elements
in each row. Other layouts are possible and sometimes
required by problems in computer science. For example,
the lower triangular array shown on the right is organized
such that the rows are staggered with each successive row
consisting of one more element than the previous row.
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(a) Derive an equation that computes the total number of elements in the
lower triangular table for a table of size m× n.

(b) Derive an index equation that maps an element of the lower triangular
table onto a one-dimensional array stored in row-major order.

3.12 Complete the implementation of the MultiArray class by implementing the
helper method computeFactors().

Programming Projects
3.1 In this chapter, we implemented the Set ADT using a list. Implement the Set

ADT using a bag created from the Bag class. In your opinion, which is the
better implementation? Explain your answer.

3.2 Define a new class named TriangleArray to implement the lower triangular
table described in Exercise 3.11.

3.3 Given a collection of items stored in a bag, design a linear time algorithm that
determines the number of unique items in the collection.

3.4 Write a function that extracts the sales data from a text file and builds the
3-D array used to produce the various reports in Section 3.4. Assume the data
file has the format as described in the chapter.

3.5 Write a menu-driven program that uses your function from the previous ques-
tion to extract the sales data and can produce any of the following reports:

(a) Each of the four types of reports described in the chapter.
(b) The sales for a single store similar to that shown in Section 3.4 with the

data sorted by total sales.
(c) The total sales for each store sorted by total sales from largest to smallest.
(d) The total sales for each item sorted by item number.



CHAPTER 4
Algorithm Analysis

Algorithms are designed to solve problems, but a given problem can have many
different solutions. How then are we to determine which solution is the most
efficient for a given problem? One approach is to measure the execution time. We
can implement the solution by constructing a computer program, using a given
programming language. We then execute the program and time it using a wall
clock or the computer’s internal clock.

The execution time is dependent on several factors. First, the amount of data
that must be processed directly affects the execution time. As the data set size
increases, so does the execution time. Second, the execution times can vary de-
pending on the type of hardware and the time of day a computer is used. If
we use a multi-process, multi-user system to execute the program, the execution
of other programs on the same machine can directly affect the execution time of
our program. Finally, the choice of programming language and compiler used to
implement an algorithm can also influence the execution time. Some compilers
are better optimizers than others and some languages produce better optimized
code than others. Thus, we need a method to analyze an algorithm’s efficiency
independent of the implementation details.

4.1 Complexity Analysis
To determine the efficiency of an algorithm, we can examine the solution itself and
measure those aspects of the algorithm that most critically affect its execution time.
For example, we can count the number of logical comparisons, data interchanges,
or arithmetic operations. Consider the following algorithm for computing the sum
of each row of an n× n matrix and an overall sum of the entire matrix:

totalSum = 0 # Version 1
for i in range( n ) :
rowSum[i] = 0
for j in range( n ) :
rowSum[i] = rowSum[i] + matrix[i,j]
totalSum = totalSum + matrix[i,j]

97
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Suppose we want to analyze the algorithm based on the number of additions
performed. In this example, there are only two addition operations, making this a
simple task. The algorithm contains two loops, one nested inside the other. The
inner loop is executed n times and since it contains the two addition operations,
there are a total of 2n additions performed by the inner loop for each iteration
of the outer loop. The outer loop is also performed n times, for a total of 2n2

additions.
Can we improve upon this algorithm to reduce the total number of addition

operations performed? Consider a new version of the algorithm in which the second
addition is moved out of the inner loop and modified to sum the entries in the
rowSum array instead of individual elements of the matrix.

totalSum = 0 # Version 2
for i in range( n ) :
rowSum[i] = 0
for j in range( n ) :
rowSum[i] = rowSum[i] + matrix[i,j]

totalSum = totalSum + rowSum[i]

In this version, the inner loop is again executed n times, but this time, it only
contains one addition operation. That gives a total of n additions for each iteration
of the outer loop, but the outer loop now contains an addition operator of its own.
To calculate the total number of additions for this version, we take the n additions
performed by the inner loop and add one for the addition performed at the bottom
of the outer loop. This gives n + 1 additions for each iteration of the outer loop,
which is performed n times for a total of n2 + n additions.

If we compare the two results, it’s obvious the number of additions in the second
version is less than the first for any n greater than 1. Thus, the second version will
execute faster than the first, but the difference in execution times will not be signif-
icant. The reason is that both algorithms execute on the same order of magnitude,
namely n2. Thus, as the size of n increases, both algorithms increase at approxi-
mately the same rate (though one is slightly better), as illustrated numerically in
Table 4.1 and graphically in Figure 4.1.

n 2n2 n2 + n

10 200 110

100 20,000 10,100

1000 2,000,000 1,001,000

10000 200,000,000 100,010,000

100000 20,000,000,000 10,000,100,000

Table 4.1: Growth rate comparisons for different input sizes.
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Figure 4.1: Graphical comparison of the growth rates from Table 4.1.

4.1.1 Big-O Notation
Instead of counting the precise number of operations or steps, computer scientists
are more interested in classifying an algorithm based on the order of magnitude
as applied to execution time or space requirements. This classification approx-
imates the actual number of required steps for execution or the actual storage
requirements in terms of variable-sized data sets. The term big-O , which is de-
rived from the expression “on the order of,” is used to specify an algorithm’s
classification.

Defining Big-O

Assume we have a function T (n) that represents the approximate number of steps
required by an algorithm for an input of size n. For the second version of our
algorithm in the previous section, this would be written as

T2(n) = n2 + n

Now, suppose there exists a function f(n) defined for the integers n ≥ 0, such that
for some constant c, and some constant m,

T (n) ≤ cf(n)

for all sufficiently large values of n ≥ m. Then, such an algorithm is said to have a
time-complexity of, or executes on the order of, f(n) relative to the number of
operations it requires. In other words, there is a positive integer m and a constant
c (constant of proportionality) such that for all n ≥ m, T (n) ≤ cf(n). The
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function f(n) indicates the rate of growth at which the run time of an algorithm
increases as the input size, n, increases. To specify the time-complexity of an
algorithm, which runs on the order of f(n), we use the notation

O( f(n) )

Consider the two versions of our algorithm from earlier. For version one, the
time was computed to be T1(n) = 2n2. If we let c = 2, then

2n2 ≤ 2n2

for a result of O(n2). For version two, we computed a time of T2(n) = n2 + n.
Again, if we let c = 2, then

n2 + n ≤ 2n2

for a result of O(n2). In this case, the choice of c comes from the observation that
when n ≥ 1, we have n ≤ n2 and n2 + n ≤ n2 + n2, which satisfies the equation in
the definition of big-O.

The function f(n) = n2 is not the only choice for satisfying the condition
T (n) ≤ cf(n). We could have said the algorithms had a run time of O(n3) or
O(n4) since 2n2 ≤ n3 and 2n2 ≤ n4 when n > 1. The objective, however, is
to find a function f(·) that provides the tightest (lowest) upper bound or limit
for the run time of an algorithm. The big-O notation is intended to indicate an
algorithm’s efficiency for large values of n. There is usually little difference in the
execution times of algorithms when n is small.

Constant of Proportionality

The constant of proportionality is only crucial when two algorithms have the same
f(n). It usually makes no difference when comparing algorithms whose growth
rates are of different magnitudes. Suppose we have two algorithms, L1 and L2,
with run times equal to n2 and 2n respectively. L1 has a time-complexity of O(n2)
with c = 1 and L2 has a time of O(n) with c = 2. Even though L1 has a smaller
constant of proportionality, L1 is still slower and, in fact an order of magnitude
slower, for large values of n. Thus, f(n) dominates the expression cf(n) and the run
time performance of the algorithm. The differences between the run times of these
two algorithms is shown numerically in Table 4.2 and graphically in Figure 4.2.

Constructing T(n)

Instead of counting the number of logical comparisons or arithmetic operations, we
evaluate an algorithm by considering every operation. For simplicity, we assume
that each basic operation or statement, at the abstract level, takes the same amount
of time and, thus, each is assumed to cost constant time . The total number of
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n n2 2n

10 100 20

100 10,000 200

1000 1,000,000 2,000

10000 100,000,000 20,000

100000 10,000,000,000 200,000

Table 4.2: Numerical comparison of two sample algorithms.
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Figure 4.2: Graphical comparison of the data from Table 4.2.

operations required by an algorithm can be computed as a sum of the times required
to perform each step:

T (n) = f1(n) + f2(n) + . . . + fk(n).

The steps requiring constant time are generally omitted since they eventually
become part of the constant of proportionality. Consider Figure 4.3(a), which
shows a markup of version one of the algorithm from earlier. The basic operations
are marked with a constant time while the loops are marked with the appropriate
total number of iterations. Figure 4.3(b) shows the same algorithm but with the
constant steps omitted since these operations are independent of the data set size.
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totalSum = 0

for i in range( n ) :
  rowSum[i] = 0

  for j in range( n ) :
    rowSum[i] = rowSum[i] + matrix[i,j]
    totalSum = totalSum + matrix[i,j]

1
1

n

1

n

1

1

1

for i in range( n ) :
     ...

  for j in range( n ) :
       ...
n

n

(a)

(b)

Figure 4.3: Markup for version one of the matrix summing algorithm: (a) shows all oper-
ations marked with the appropriate time and (b) shows only the non-constant time steps.

Choosing the Function

The function f(n) used to categorize a particular algorithm is chosen to be the
dominant term within T (n). That is, the term that is so large for big values of
n, that we can ignore the other terms when computing a big-O value. For example,
in the expression

n2 + log2n + 3n

the term n2 dominates the other terms since for n ≥ 3, we have

n2 + log2 n + 3n ≤ n2 + n2 + n2

n2 + log2 n + 3n ≤ 3n2

which leads to a time-complexity of O(n2). Now, consider the function T (n) =
2n2 + 15n + 500 and assume it is the polynomial that represents the exact number
of instructions required to execute some algorithm. For small values of n (less
than 16), the constant value 500 dominates the function, but what happens as n
gets larger, say 100, 000? The term n2 becomes the dominant term, with the other
two becoming less significant in computing the final result.

Classes of Algorithms

We will work with many different algorithms in this text, but most will have a
time-complexity selected from among a common set of functions, which are listed
in Table 4.3 and illustrated graphically in Figure 4.4.

Algorithms can be classified based on their big-O function. The various classes
are commonly named based upon the dominant term. A logarithmic algorithm is
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f(·) Common Name

1 constant

log n logarithmic

n linear

n log n log linear

n2 quadratic

n3 cubic

an exponential

Table 4.3: Common big-O functions listed from smallest to largest order of magnitude.
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Figure 4.4: Growth rates of the common time-complexity functions.

any algorithm whose time-complexity is O(loga n). These algorithms are generally
very efficient since loga n will increase more slowly than n. For many problems
encountered in computer science a will typically equal 2 and thus we use the no-
tation log n to imply log2 n. Logarithms of other bases will be explicitly stated.
Polynomial algorithms with an efficiency expressed as a polynomial of the form

amnm + am−1n
m−1 + . . . + a2n

2 + a1n + a0
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are characterized by a time-complexity of O(nm) since the dominant term is the
highest power of n. The most common polynomial algorithms are linear (m = 1),
quadratic (m = 2), and cubic (m = 3). An algorithm whose efficiency is char-
acterized by a dominant term in the form an is called exponential . Exponential
algorithms are among the worst algorithms in terms of time-complexity.

4.1.2 Evaluating Python Code
As indicated earlier, when evaluating the time complexity of an algorithm or code
segment, we assume that basic operations only require constant time. But what
exactly is a basic operation? The basic operations include statements and func-
tion calls whose execution time does not depend on the specific values of the data
that is used or manipulated by the given instruction. For example, the assignment
statement

x = 5

is a basic instruction since the time required to assign a reference to the given
variable is independent of the value or type of object specified on the righthand
side of the = sign. The evaluation of arithmetic and logical expressions

y = x
z = x + y * 6
done = x > 0 and x < 100

are basic instructions, again since they require the same number of steps to perform
the given operations regardless of the values of their operands. The subscript
operator, when used with Python’s sequence types (strings, tuples, and lists) is
also a basic instruction.

Linear Time Examples

Now, consider the following assignment statement:

y = ex1(n)

An assignment statement only requires constant time, but that is the time required
to perform the actual assignment and does not include the time required to execute
any function calls used on the righthand side of the assignment statement.

To determine the run time of the previous statement, we must know the cost of
the function call ex1(n). The time required by a function call is the time it takes
to execute the given function. For example, consider the ex1() function, which
computes the sum of the integer values in the range [0 . . . n):

def ex1( n ):
total = 0
for i in range( n ) :
total += i

return total
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i Efficiency of String Operations. Most of the string operations have

a time-complexity that is proportional to the length of the string. For
most problems that do not involve string processing, string operations sel-
dom have an impact on the run time of an algorithm. Thus, in the text, we
assume the string operations, including the use of the print() function, only
require constant time, unless explicitly stated otherwise.

The time required to execute a loop depends on the number of iterations per-
formed and the time needed to execute the loop body during each iteration. In this
case, the loop will be executed n times and the loop body only requires constant
time since it contains a single basic instruction. (Note that the underlying mech-
anism of the for loop and the range() function are both O(1).) We can compute
the time required by the loop as T (n) = n ∗ 1 for a result of O(n).

But what about the other statements in the function? The first line of the
function and the return statement only require constant time. Remember, it’s
common to omit the steps that only require constant time and instead focus on
the critical operations, those that contribute to the overall time. In most instances,
this means we can limit our evaluation to repetition and selection statements and
function and method calls since those have the greatest impact on the overall time
of an algorithm. Since the loop is the only non-constant step, the function ex1()
has a run time of O(n). That means the statement y = ex1(n) from earlier requires
linear time. Next, consider the following function, which includes two for loops:

def ex2( n ):
count = 0
for i in range( n ) :
count += 1

for j in range( n ) :
count += 1

return count

To evaluate the function, we have to determine the time required by each loop.
The two loops each require O(n) time as they are just like the loop in function
ex1() earlier. If we combine the times, it yields T (n) = n + n for a result of O(n).

Quadratic Time Examples

When presented with nested loops, such as in the following, the time required by
the inner loop impacts the time of the outer loop.

def ex3( n ):
count = 0
for i in range( n ) :
for j in range( n ) :
count += 1

return count
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Both loops will be executed n, but since the inner loop is nested inside the outer
loop, the total time required by the outer loop will be T (n) = n ∗ n, resulting in
a time of O(n2) for the ex3() function. Not all nested loops result in a quadratic
time. Consider the following function:

def ex4( n ):
count = 0
for i in range( n ) :
for j in range( 25 ) :
count += 1

return count

which has a time-complexity of O(n). The function contains a nested loop, but
the inner loop executes independent of the size variable n. Since the inner loop
executes a constant number of times, it is a constant time operation. The outer
loop executes n times, resulting in a linear run time. The next example presents a
special case of nested loops:

def ex5( n ):
count = 0
for i in range( n ) :
for j in range( i+1 ) :
count += 1

return count

How many times does the inner loop execute? It depends on the current it-
eration of the outer loop. On the first iteration of the outer loop, the inner loop
will execute one time; on the second iteration, it executes two times; on the third
iteration, it executes three times, and so on until the last iteration when the inner
loop will execute n times. The time required to execute the outer loop will be the
number of times the increment statement count += 1 is executed. Since the inner
loop varies from 1 to n iterations by increments of 1, the total number of times
the increment statement will be executed is equal to the sum of the first n positive
integers:

T (n) =
n(n + 1)

2
=

n2 + n

2

which results in a quadratic time of O(n2).

Logarithmic Time Examples

The next example contains a single loop, but notice the change to the modification
step. Instead of incrementing (or decrementing) by one, it cuts the loop variable
in half each time through the loop.

def ex6( n ):
count = 0
i = n
while i >= 1 :
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count += 1
i = i // 2

return count

To determine the run time of this function, we have to determine the number of
loop iterations just like we did with the earlier examples. Since the loop variable is
cut in half each time, this will be less than n. For example, if n equals 16, variable
i will contain the following five values during subsequent iterations (16, 8, 4, 2, 1).

Given a small number, it’s easy to determine the number of loop iterations.
But how do we compute the number of iterations for any given value of n? When
the size of the input is reduced by half in each subsequent iteration, the number
of iterations required to reach a size of one will be equal to

blog2 nc+ 1

or the largest integer less than log2 n, plus 1. In our example of n = 16, there are
log2 16 + 1, or four iterations. The logarithm to base a of a number n, which is
normally written as y = logan, is the power to which a must be raised to equal
n, n = ay. Thus, function ex6() requires O(log n) time. Since many problems in
computer science that repeatedly reduce the input size do so by half, it’s not un-
common to use log n to imply log2 n when specifying the run time of an algorithm.

Finally, consider the following definition of function ex7(), which calls ex6()
from within a loop. Since the loop is executed n times and function ex6() requires
logarithmic time, ex7() will have a run time of O(n log n).

def ex7( n ):
count = 0
for i in range( n )
count += ex6( n )

return count

Different Cases

Some algorithms can have run times that are different orders of magnitude for
different sets of inputs of the same size. These algorithms can be evaluated for
their best, worst, and average cases. Algorithms that have different cases can
typically be identified by the inclusion of an event-controlled loop or a conditional
statement. Consider the following example, which traverses a list containing integer
values to find the position of the first negative value. Note that for this problem,
the input is the collection of n values contained in the list.

def findNeg( intList ):
n = len(intList)
for i in range( n ) :
if intList[i] < 0 :
return i

return None
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At first glance, it appears the loop will execute n times, where n is the size of
the list. But notice the return statement inside the loop, which can cause it to
terminate early. If the list does not contain a negative value,

L = [ 72, 4, 90, 56, 12, 67, 43, 17, 2, 86, 33 ]
p = findNeg( L )

the return statement inside the loop will not be executed and the loop will ter-
minate in the normal fashion from having traversed all n times. In this case, the
function requires O(n) time. This is known as the worst case since the function
must examine every value in the list requiring the most number of steps. Now
consider the case where the list contains a negative value in the first element:

L = [ -12, 50, 4, 67, 39, 22, 43, 2, 17, 28 ]
p = findNeg( L )

There will only be one iteration of the loop since the test of the condition by the
if statement will be true the first time through and the return statement inside
the loop will be executed. In this case, the findNeg() function only requires O(1)
time. This is known as the best case since the function only has to examine the
first value in the list requiring the least number of steps.

The average case is evaluated for an expected data set or how we expect the
algorithm to perform on average. For the findNeg() function, we would expect the
search to iterate halfway through the list before finding the first negative value,
which on average requires n/2 iterations. The average case is more difficult to
evaluate because it’s not always readily apparent what constitutes the average
case for a particular problem.

In general, we are more interested in the worst case time-complexity of an
algorithm as it provides an upper bound over all possible inputs. In addition, we
can compare the worst case run times of different implementations of an algorithm
to determine which is the most efficient for any input.

4.2 Evaluating the Python List
We defined several abstract data types for storing and using collections of data in
the previous chapters. The next logical step is to analyze the operations of the
various ADTs to determine their efficiency. The result of this analysis depends on
the efficiency of the Python list since it was the primary data structure used to
implement many of the earlier abstract data types.

The implementation details of the list were discussed in Chapter 2. In this
section, we use those details and evaluate the efficiency of some of the more common
operations. A summary of the worst case run times are shown in Table 4.4.
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List Operation Worst Case

v = list() O(1)

v = [ 0 ] * n O(n)

v[i] = x O(1)

v.append(x) O(n)

v.extend(w) O(n)

v.insert(x) O(n)

v.pop() O(n)

traversal O(n)

Table 4.4: Worst case time-complexities for the more common list operations.

List Traversal

A sequence traversal accesses the individual items, one after the other, in order to
perform some operation on every item. Python provides the built-in iteration for
the list structure, which accesses the items in sequential order starting with the
first item. Consider the following code segment, which iterates over and computes
the sum of the integer values in a list:

sum = 0
for value in valueList :
sum = sum + value

To determine the order of complexity for this simple algorithm, we must first
look at the internal implementation of the traversal. Iteration over the contiguous
elements of a 1-D array, which is used to store the elements of a list, requires a
count-controlled loop with an index variable whose value ranges over the indices
of the subarray. The list iteration above is equivalent to the following:

sum = 0
for i in range( len(valueList) ) :
sum = sum + valueList[i]

Assuming the sequence contains n items, it’s obvious the loop performs n it-
erations. Since all of the operations within the loop only require constant time,
including the element access operation, a complete list traversal requires O(n) time.
Note, this time establishes a minimum required for a complete list traversal. It
can actually be higher if any operations performed during each iteration are worse
than constant time, unlike this example.

List Allocation

Creating a list, like the creation of any object, is considered an operation whose
time-complexity can be analyzed. There are two techniques commonly used to
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create a list:

temp = list()
valueList = [ 0 ] * n

The first example creates an empty list, which can be accomplished in constant
time. The second creates a list containing n elements, with each element initialized
to 0. The actual allocation of the n elements can be done in constant time, but
the initialization of the individual elements requires a list traversal. Since there
are n elements and a traversal requires linear time, the allocation of a vector with
n elements requires O(n) time.

Appending to a List

The append() operation adds a new item to the end of the sequence. If the
underlying array used to implement the list has available capacity to add the new
item, the operation has a best case time of O(1) since it only requires a single
element access. In the worst case, there are no available slots and the array has to
be expanded using the steps described in Section 2.2. Creating the new larger array
and destroying the old array can each be done in O(1) time. To copy the contents
of the old array to the new larger array, the items have to be copied element by
element, which requires O(n) time. Combining the times from the three steps
yields a time of T (n) = 1 + 1 + n and a worst case time of O(n).

Extending a List

The extend() operation adds the entire contents of a source list to the end
of the destination list. This operation involves two lists, each of which have
their own collection of items that may be of different lengths. To simplify the
analysis, however, we can assume both lists contain n items. When the destination
list has sufficient capacity to store the new items, the entire contents of the source
list can be copied in O(n) time. But if there is not sufficient capacity, the under-
lying array of the destination list has to be expanded to make room for the new
items. This expansion requires O(n) time since there are currently n items in the
destination list. After the expansion, the n items in the source list are copied to
the expanded array, which also requires O(n) time. Thus, in the worst case the
extend operation requires T (n) = n + n = 2n or O(n) time.

Inserting and Removing Items

Inserting a new item into a list is very similar to appending an item except the new
item can be placed anywhere within the list, possibly requiring a shift in elements.
An item can be removed from any element within a list, which may also involve
shifting elements. Both of these operations require linear time in the worst case,
the proof of which is left as an exercise.



4.3 Amortized Cost 111

4.3 Amortized Cost
The append() operation of the list structure introduces a special case in algorithm
analysis. The time required depends on the available capacity of the underlying ar-
ray used to implement the list. If there are available slots, a value can be appended
to the list in constant time. If the array has to be expanded to make room for
the new value, however, the append operation takes linear time. When the array
is expanded, extra capacity is added that can be used to add more items without
having to immediately expand the array. Thus, the number of times the append()
operation actually requires linear time in a sequence of n operations depends on
the strategy used to expand the underlying array. Consider the problem in which
a sequence of n append operations are performed on an initially empty list, where
n is a power of 2.

L = list()
for i in range( 1, n+1 ) :
L.append( i )

Suppose the array is doubled in capacity each time it has to be expanded and
assume the size of the underlying array for an empty list has the capacity for a
single item. We can tally or compute the total running time for this problem by
considering the time required for each individual append operation. This approach
is known as the aggregate method since it computes the total from the individual
operations.

Table 4.5 illustrates the aggregate method when applied to a sequence of 16 ap-
pend operations. si represents the time required to physically store the ith value
when there is an available slot in the array or immediately after the array has been
expanded. Storing an item into an array element is a constant time operation. ei

represents the time required to expand the array when it does not contain available
capacity to store the item. Based on our assumptions related to the size of the
array, an expansion only occurs when i − 1 is a power of 2 and the time incurred
is based on the current size of the array (i − 1). While every append operation
entails a storage cost, relatively few require an expansion cost. Note that as the
size of n increases, the distance between append operations requiring an expansion
also increases.

Based on the tabulated results in Table 4.5, the total time required to perform
a sequence of 16 append operations on an initially empty list is 31, or just under
2n. This results from a total storage cost (si) of 16 and a total expansion cost
(ei) of 15. It can be shown that for any n, the sum of the storage and expansion
costs, si + ei, will never be more than T (n) = 2n. Since there are relatively few
expansion operations, the expansion cost can be distributed across the sequence
of operations, resulting in an amortized cost of T (n) = 2n/n or O(1) for the
append operation.

Amortized analysis is the process of computing the time-complexity for a
sequence of operations by computing the average cost over the entire sequence. For
this technique to be applied, the cost per operation must be known and it must
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i si ei Size List Contents

1 1 - 1 1

2 1 1 2 21

3 1 2 4 321

4 1 - 4 4321

5 1 4 8 54321

6 1 - 8 654321

7 1 - 8 7654321

8 1 - 8 87654321

9 1 8 16 987654321

10 1 - 16 10987654321

11 1 - 16 1110987654321

12 1 - 16 121110987654321

13 1 - 16 13121110987654321

14 1 - 16 1413121110987654321

15 1 - 16 151413121110987654321

16 1 - 16 16151413121110987654321

Table 4.5: Using the aggregate method to compute the total run time for a sequence of
16 append operations.

vary in which many of the operations in the sequence contribute little cost and
only a few operations contribute a high cost to the overall time. This is exactly
the case with the append() method. In a long sequence of append operations, only
a few instances require O(n), while many of them are O(1). The amortized cost
can only be used for a long sequence of append operations. If an algorithm used a
single append operation, the cost for that one operation is still O(n) in the worst
case since we do not know if that’s the instance that causes the underlying array
to be expanded.
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Amortized Cost Is Not Average Case Time. Do not confuse amor-
tized cost with that of average case time. In average case analysis,

the evaluation is done by computing an average over all possible inputs and
sometimes requires the use of statistics. Amortized analysis computes an
average cost over a sequence of operations in which many of those opera-
tions are “cheap” and relatively few are “expensive” in terms of contributing
to the overall time.
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4.4 Evaluating the Set ADT
We can use complexity analysis to determine the efficiency of the Set ADT opera-
tions as implemented in Section 3.1. For convenience, the relevant portions of that
implementation are shown again in Listing 4.1 on the next page. The evaluation is
quite simple since the ADT was implemented using the list and we just evaluated
the methods for that structure. Table 4.6 provides a summary of the worst case
time-complexities for those operations implemented earlier in the text.

Operation Worst Case

s = Set() O(1)

len(s) O(1)

x in s O(n)

s.add(x) O(n)

s.isSubsetOf(t) O(n2)

s == t O(n2)

s.union(t) O(n2)

traversal O(n)

Table 4.6: Time-complexities for the Set ADT implementation using an unsorted list.

Simple Operations

Evaluating the constructor and length operation is straightforward as they simply
call the corresponding list operation. The contains method, which determines
if an element is contained in the set, uses the in operator to perform a linear
search over the elements stored in the underlying list. The search operation, which
requires O(n) time, will be presented in the next section and we postpone its
analysis until that time. The add() method also requires O(n) time in the worst
case since it uses the in operator to determine if the element is unique and the
append() method to add the unique item to the underlying list, both of which
require linear time in the worst case.

Operations of Two Sets

The remaining methods of the Set class involve the use of two sets, which we label
A and B, where A is the self set and B is the argument passed to the given
method. To simplify the analysis, we assume each set contains n elements. A more
complete analysis would involve the use of two variables, one for the size of each
set. But the analysis of this more specific case is sufficient for our purposes.

The isSubsetOf() method determines if A is a subset of B. It iterates over
the n elements of set A, during which the in operator is used to determine if the
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Listing 4.1 A partial listing of the linearset.py module from Listing 3.1.

1 class Set :
2 def __init__( self ):
3 self._theElements = list()
4
5 def __len__( self ):
6 return len( self._theElements )
7
8 def __contains__( self, element ):
9 return element in self._theElements

10
11 def add( self, element ):
12 if element not in self :
13 self._theElements.append( element )
14
15 def remove( self, element ):
16 assert element in self, "The element must be in the set."
17 self._theElements.remove( item )
18
19 def __eq__( self, setB ):
20 if len( self ) != len( setB ) :
21 return False
22 else :
23 return self.isSubsetOf( setB )
24
25 def isSubsetOf( self, setB ):
26 for element in self :
27 if element not in setB :
28 return False
29 return True
30
31 def union( self, setB ):
32 newSet = Set()
33 newSet._theElements.extend( self._theElements )
34 for element in setB :
35 if element not in self :
36 newSet._theElements.append( element )
37 return newSet

given element is a member of set B. Since there are n repetitions of the loop and
each use of the in operator requires O(n) time, the isSubsetOf() method has a
quadratic run time of O(n2). The set equality operation is also O(n2) since it calls
isSubsetOf() after determining the two sets are of equal size.

Set Union Operation

The set union() operation creates a new set, C, that contains all of the unique
elements from both sets A and B. It requires three steps. The first step creates
the new set C, which can be done in constant time. The second step fills set C
with the elements from set A, which requires O(n) time since the extend() list
method is used to add the elements to C. The last step iterates over the elements
of set B during which the in operator is used to determine if the given element
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is a member of set A. If the element is not a member of set A, it’s added to
set C by applying the append() list method. We know from earlier the linear
search performed by the in operator requires O(n) time and we can use the O(1)
amortized cost of the append() method since it is applied in sequence. Given that
the loop is performed n times and each iteration requires n + 1 time, this step
requires O(n2) time. Combining the times for the three steps yields a worst case
time of O(n2).

4.5 Application: The Sparse Matrix
A matrix containing a large number of zero elements is called a sparse matrix .
Sparse matrices are very common in scientific applications, especially those dealing
with systems of linear equations. A sparse matrix is formally defined to be an m×n
matrix that contains k non-zero elements such that k � m×n. The 2-D array data
structure used to implement the Matrix ADT in Chapter 2 works well for general
matrices. But when used to store huge sparse matrices, large amounts of memory
can be wasted and the operations can be inefficient since the zero elements are also
stored in the 2-D array.

Consider the sample 5 × 8 sparse matrix in Figure 4.5. Is there a different
structure or organization we can use to store the elements of a sparse matrix that
does not waste space? One approach is to organize and store the non-zero elements
of the matrix within a single list instead of a 2-D array.


· 3 · · 8 · · ·
2 · · 1 · · 5 ·
· · 9 · · 2 · ·
· 7 · · · · · 3
· · · · 4 · · ·


Figure 4.5: A sample sparse matrix with zero elements indicated with dots.

4.5.1 List-Based Implementation
In this section, we define and implement a class for storing and working with sparse
matrices in which the non-zero elements are stored in a list. The operations of a
sparse matrix are the same as those for a general matrix and many of them can be
implemented in a similar fashion as was done for the Matrix class in Listing 2.3.
This would be sufficient if our only objective was to reduce the storage cost, but we
can take advantage of only storing the non-zero elements to improve the efficiency of
several of the sparse matrix operations. The implementation of the SparseMatrix
class is provided in Listing 4.2 on the next page. Note the use of the new class
name to distinguish this version from the original Matrix ADT and to indicate it is
meant for use with sparse matrices. A sample instance of the class that corresponds
to the sparse matrix from Figure 4.5 is illustrated in Figure 4.6.
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Listing 4.2 The sparsematrix.py module.

1 # Implementation of the Sparse Matrix ADT using a list.
2
3 class SparseMatrix :
4 # Create a sparse matrix of size numRows x numCols initialized to 0.
5 def __init__( self, numRows, numCols ):
6 self._numRows = numRows
7 self._numCols = numCols
8 self._elementList = list()
9

10 # Return the number of rows in the matrix.
11 def numRows( self ):
12 return self._numRows
13
14 # Return the number of columns in the matrix.
15 def numCols( self ):
16 return self._numCols
17
18 # Return the value of element (i, j): x[i,j]
19 def __getitem__( self, ndxTuple ):
20 ......
21
22 # Set the value of element (i,j) to the value s: x[i,j] = s
23 def __setitem__( self, ndxTuple, scalar ):
24 ndx = self._findPosition( ndxTuple[0], ndxTuple[1] )
25 if ndx is not None : # if the element is found in the list.
26 if scalar != 0.0 :
27 self._elementList[ndx].value = scalar
28 else :
29 self._elementList.pop( ndx )
30 else : # if the element is zero and not in the list.
31 if scalar != 0.0 :
32 element = _MatrixElement( ndxTuple[0], ndxTuple[1], scalar )
33 self._elementList.append( element )
34
35 # Scale the matrix by the given scalar.
36 def scaleBy( self, scalar ):
37 for element in self._elementList :
38 element.value *= scalar
39
40 # The additional methods should be placed here.....
41 # def __add__( self, rhsMatrix ):
42 # def __sub__( self, rhsMatrix ):
43 # def __mul__( self, rhsMatrix ):
44
45 # Helper method used to find a specific matrix element (row,col) in the
46 # list of non-zero entries. None is returned if the element is not found.
47 def _findPosition( self, row, col ):
48 n = len( self._elementList )
49 for i in range( n ) :
50 if row == self._elementList[i].row and \
51 col == self._elementList[i].col:
52 return i # return the index of the element if found.
53 return None # return None when the element is zero.
54
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55 # Storage class for holding the non-zero matrix elements.
56 class _MatrixElement:
57 def __init__( self, row, col, value ):
58 self.row = row
59 self.col = col
60 self.value = value

Constructor

The constructor defines three attributes for storing the data related to the sparse
matrix. The elementList field stores MatrixElement objects representing the
non-zero elements. Instances of the storage class contain not only the value for a
specific element but also the row and column indices indicating its location within
the matrix. The numRows and numCols fields are used to store the dimensions of
the matrix. This information cannot be obtained from the element list as was done
with the Array2D used in the implementation of the Matrix ADT in Chapter 2.

Helper Method

Since the element list only contains the non-zero entries, accessing an individual
element is no longer as simple as directly referencing an element of the rectan-
gular grid. Instead, we must search through the list to locate a specific non-zero
element. The helper method findPosition() performs this linear search by iter-
ating through the element list looking for an entry with the given row and column
indices. If found, it returns the list index of the cell containing the element; oth-
erwise, None is returned to indicate the absence of the element.

numRows

numCols


elementList

SparseMatrix

55

88





















1100 33

0011 22

7733 33

4400 88

5522 22

6611 55

2222 99

3311 11

4444 44

1133 77

0

1

2

3

4

5

6

7

8

9

row col
_MatrixElement

value

Figure 4.6: A list of MatrixElement objects representing a sparse matrix.
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Modifying an Element

The setitem method for the SparseMatrix class is a bit more involved than
that for the Matrix class. The value of an element cannot be directly set as was
done when using the 2-D array. Instead, there are four possible conditions:

1. The element is in the list (and thus non-zero) and the new value is non-zero.

2. The element is in the list, but the new value is zero, turning the element into
a zero element.

3. The element is not currently in the list and the new value is non-zero.

4. The element is not currently in the list, and the new value is zero.

The step in implementing the setitem method, as shown in lines 23–33 of
Listing 4.2, is to determine if the element is in the list using the findPosition()
helper method. If the entry is in the list, we either change the corresponding
element to the new value if it is non-zero or we remove the entry from the list
when the new value is zero. On the other hand, if there is no entry for the given
element, then a new MatrixElement object must be created and appended to the
list. Of course, this is only done if the new value is non-zero.

Matrix Scaling

Scaling a matrix requires multiplying each element of the matrix by a given scale
factor. Since the zero elements of the matrix are not affected by the scale factor,
the implementation of this operation for the sparse matrix is as simple as traversing
the list of MatrixElement objects and scaling the corresponding value.

Matrix Addition

In the add() method of the Matrix class implemented in Chapter 2, we iterated
over the 2-D array and added the values, element by element, and stored the
results in the corresponding element of the new matrix. We could use the same
loop structure shown here for the SparseMatrix class:

# Add the corresponding elements in the two matrices.
for r in range( self.numRows() ) :
for c in range( self.numCols() ) :
newMatrix[ r, c ] = self[ r, c ] + rhsMatrix[ r, c ]

return newMatrix

Given a matrix of size n×n, this implementation of the add operation requires
O(n2) time. If the sparse matrix contains a significant number of zero elements,
this can be inefficient. Instead, only the non-zero elements contained in the two
sparse matrices must be considered when adding to matrices. The nested loops can
be replaced with two separate loops to reduce the number of required iterations.
The new solution for sparse matrix addition requires four steps:
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1. Verify the size of the two matrices to ensure they are the same as required by
matrix addition.

2. Create a new SparseMatrix object with the same number of rows and columns
as the other two.

3. Duplicate the elements of the self matrix and store them in the new matrix.

4. Iterate over the element list of the righthand side matrix (rhsMatrix) to add
the non-zero values to the corresponding elements in the new matrix.

The implementation of the add operation is provided in Listing 4.3. The first
two steps of the add operation are straightforward. The third step of copying the
elements of the self matrix to the new matrix requires a list duplication, which is
handled by the first loop. The second loop handles the fourth step outlined above
by iterating over the list of MatrixElement objects in the rhsMatrix and adding
their values to the corresponding values in the new sparse matrix. Note the use
of the getitem and setitem methods in the second loop. This is necessary
since the two methods properly manage any zero elements that may currently exist
in the newMatrix or that may result after adding corresponding elements.

Listing 4.3 Implementation of the SparseMatrix add operation.

1 class SparseMatrix :
2 # ...
3 def __add__( self, rhsMatrix ):
4 assert rhsMatrix.numRows() == self.numRows() and \
5 rhsMatrix.numCols() == self.numCols(), \
6 "Matrix sizes not compatible for the add operation."
7
8 # Create the new matrix.
9 newMatrix = SparseMatrix( self.numRows(), self.numCols() )

10
11 # Duplicate the lhs matrix. The elements are mutable, thus we must
12 # create new objects and not simply copy the references.
13 for element in self._elementList :
14 dupElement = _MatrixElement(element.row, element.col, element.value)
15 newMatrix._elementList.append( dupElement )
16
17 # Iterate through each non-zero element of the rhsMatrix.
18 for element in rhsMatrix._elementList :
19 # Get the value of the corresponding element in the new matrix.
20 value = newMatrix[ element.row, element.col ]
21 value += element.value
22 # Store the new value back to the new matrix.
23 newMatrix[ element.row, element.col ] = value
24
25 # Return the new matrix.
26 return newMatrix
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4.5.2 Efficiency Analysis
To evaluate the various operations of the sparse matrix, we can assume a square
n × n matrix since this would be the worst possible case. We begin with the
findPosition() helper method, which performs a sequential search over the list

of non-zero entries. The worst case occurs when every item in the list is examined.
But how many iterations does that require? It depends on the size of the element
list. From the definition of a sparse matrix, we know it contains k non-zero elements
such that k � n2. Thus, the worst case run time of the helper method is O(k).

The setitem method calls findPosition(), which requires k time. It
then changes the value of the target entry, which is a constant time operation, or
either removes an entry from the list or appends a new entry. The list operations
require k time in the worst case, resulting in an overall time of O(k) for the set
operation. The getitem method can be evaluated in the same fashion and also
has a worst case time of O(k).

To evaluate the operations that manipulate two SparseMatrix objects, we can
specify that both matrices are of the same size or that k will represent the size
of the larger of the two lists. Computing the worst case time for the new add()
method requires that we first determine the complexity of the individual steps.

� The size verification and new matrix creation are constant steps.

� To duplicate the entries of the lefthand side sparse matrix requires k time
since append() has an amortized cost of O(1).

� The second loop iterates over the element list of the righthand side matrix,
which we have assumed also contains k elements. Since the get and set element
operations used within the loop each require k time in the worst case, the loop
requires 2k ∗ k or 2k2 time.

Combining this with the time for the previous steps, the add operation is O(k2) in
the worst case. Is this time better than that for the add operation from the Matrix
class implemented as a 2-D array? That depends on the size of k. If there were
no zero elements in either matrix, then k = n2, which results in a worst case time
of O(n4). Remember, however, this implementation is meant to be used with a
sparse matrix in which k � m×n. In addition, the add operation only depends on
the size of the element list, k. Increasing the value of m or n does not increase the
size of k. For the analysis of this algorithm, m and n simply provide a maximum
value for k and are not variables in the equation.

The use of a list as the underlying data structure to store the non-zero elements
of a sparse matrix is a much better implementation than the use of a 2-D array as
it can save significant storage space for large matrices. On the other hand, it intro-
duces element access operations that are more inefficient than when using the 2-D
array. Table 4.7 provides a comparison of the worst case time-complexities for sev-
eral of the operations of the Matrix class using a 2-D array and the SparseMatrix
class using a list. In later chapters, we will further explore the Sparse Matrix ADT
and attempt to improve the time-complexities of the various operations.
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Operation Matrix Sparse Matrix

constructor O(n2) O(1)

s.numRows() O(1) O(1)

s.numCols() O(1) O(1)

s.scaleBy(x) O(n2) O(k)

x = s[i,j] O(1) O(k)

s[i,j] = x O(1) O(k)

r = s + t O(n2) O(k2)

Table 4.7: Comparison of the worst case time-complexities for the Matrix class imple-
mented using a 2-D array and the SparseMatrix class using a list.

Exercises
4.1 Arrange the following expressions from slowest to fastest growth rate.

n log2 n 4n k log2 n 5n2 40 log2 n log4 n 12n6

4.2 Determine the O(·) for each of the following functions, which represent the
number of steps required for some algorithm.

(a) T (n) = n2 + 400n + 5

(b) T (n) = 67n + 3n

(c) T (n) = 2n + 5n log n + 100

(d) T (n) = log n + 2n2 + 55

(e) T (n) = 3(2n) + n8 + 1024

(f) T (n, k) = kn + log k

(g) T (n, k) = 9n + k log n + 1000

4.3 What is the time-complexity of the printCalendar() function implemented
in Exercise 1.3?

4.4 Determine the O(·) for the following Set operations implemented in Chapter 1:
difference(), intersect(), and remove().

4.5 What is the time-complexity of the proper subset test operation implemented
in Exercise 3.3?

4.6 Prove or show why the worst case time-complexity for the insert() and
remove() list operations is O(n).
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4.7 Evaluate each of the following code segments and determine the O(·) for the
best and worst cases. Assume an input size of n.

(a) sum = 0
for i in range( n ) :
if i % 2 == 0 :
sum += i

(b) sum = 0
i = n
while i > 0 :
sum += i
i = i / 2

(c) for i in range( n ) :
if i % 3 == 0 :
for j in range( n / 2 ) :
sum += j

elif i % 2 == 0 :
for j in range( 5 ) :
sum += j

else :
for j in range( n ) :
sum += j

4.8 The slice operation is used to create a new list that contains a subset of items
from a source list. Implement the slice() function:

def slice( theList, first, last )

which accepts a list and creates a sublist of the values in theList. What is
the worst case time for your implementation and what is the best case time?

4.9 Implement the remaining methods of the SparseMatrix class: transpose(),
getitem , subtract(), and multiply().

4.10 Determine the worst case time-complexities for the SparseMatrix methods
implemented in the previous question.

4.11 Determine the worst case time-complexities for the methods of your
ReversiGameLogic class implemented in Programming Project 2.4.

4.12 Add Python operator methods to the SparseMatrix class that can be used in
place of the named methods for several of the operations.

Operator Method Current Method
add (rhsMatrix) add(rhsMatrix)

mul (rhsMatrix) subtract(rhsMatrix)

sub (rhsMatrix) multiply(rhsMatrix)

Programming Projects
4.1 The game of Life is defined for an infinite-sized grid. In Chapter 2, we defined

the Life Grid ADT to use a fixed-size grid in which the user specified the width
and height of the grid. This was sufficient as an illustration of the use of a 2-D
array for the implementation of the game of Life. But a full implementation
should allow for an infinite-sized grid. Implement the Sparse Life Grid ADT
using an approach similar to the one used to implement the sparse matrix.
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� SparseLifeGrid(): Creates a new infinite-sized game grid. All cells in
the grid are initially set to dead.

� minRange(): Returns a 2-tuple (minrow, mincol) that contains the mini-
mum row index and the minimum column index that is currently occupied
by a live cell.

� maxRange(): Returns a 2-tuple (maxrow, maxcol) that contains the maxi-
mum row index and the maximum column index that is currently occupied
by a live cell.

� configure( coordList ): Configures the grid for evolving the first gen-
eration. The coordList argument is a sequence of 2-tuples with each
tuple representing the coordinates (r, c) of the cells to be set as alive. All
remaining cells are cleared or set to dead.

� clearCell( row, col ): Clears the individual cell (row, col) and sets it
to dead. The cell indices must be within the valid range of the grid.

� setCell( row, col ): Sets the indicated cell (row, col) to be alive. The
cell indices must be within the valid range of the grid.

� isLiveCell( row,col ): Returns a boolean value indicating if the given
cell (row, col) contains a live organism. The cell indices must be within
the valid range of the grid.

� numLiveNeighbors( row, col ): Returns the number of live neighbors for
the given cell (row, col). The neighbors of a cell include all of the cells
immediately surrounding it in all directions. For the cells along the border
of the grid, the neighbors that fall outside the grid are assumed to be dead.
The cell indices must be within the valid range of the grid.

4.2 Implement a new version of the gameoflife.py program to use your
SparseLifeGrid class from the previous question.

4.3 Repeat Exercise 2.5 from Chapter 2 but use your new version of the
gameoflife.py program from the previous question.

4.4 The digital grayscale image was introduced in Programming Project 2.3 and an
abstract data type was defined and implemented for storing grayscale images.
A color digital image is also a two-dimensional raster image, but unlike the
grayscale image, the pixels of a color image store data representing colors
instead of a single grayscale value. There are different ways to specify color,
but one of the most common is with the use of the discrete RGB color space.
Individual colors are specified by three intensity values or components within
the range [0 . . . 255], one for each of the three primary colors that represent
the amount of red, green, and blue light that must be added to produce the
given color. We can define the RGBColor class for use in storing a single color
in the discrete RGB color space.
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class RGBColor :
def __init__( self, red = 0, green = 0, blue = 0 ):
self.red = red
self.green = green
self.blue = blue

Given the description of the operations for the Color Image ADT, implement
the abstract data type using a 2-D array that stores instances of the RGBColor
class. Note when setting the initial color in the constructor or when clearing
the image to a specific color, you can store aliases to one RGBColor object in
each element of the array.

� ColorImage( nrows, ncols ): Creates a new instance that consists of
nrows and ncols of pixels each set to black.

� width(): Returns the width of the image.
� height(): Returns the height of the image.
� clear( color ): Clears the entire image by setting each pixel to the given

RGB color.
� getitem ( row, col ): Returns the RGB color of the given pixel as an
RGBColor object. The pixel coordinates must be within the valid range.

� setitem ( row, col, color ): Set the given pixel to the given RGB color.
The pixel coordinates must be within the valid range.

4.5 Color images can also be stored using three separate color channels in which
the values of each color component is stored in a separate data structure.
Implement a new version of the Color Image ADT using three 1-D arrays to
store the red, green, and blue components of each pixel. Apply the row-major
formula from Section 3.3 to map a specific pixel given by (row, col) to an
entry in the 1-D arrays.

4.6 A color image can be easily converted to a grayscale image by converting each
pixel of the color image, specified by the three components (R, G, B), to a
grayscale value using the formula

gray = round( 0.299 * R + 0.587 * G + 0.114 * B )

The proportions applied to each color component in the formula corresponds to
the levels of sensitivity with which humans see each of the three primary colors:
red, green and blue. Note the result from the equation must be converted
capped to an integer in the range [0 . . . 255]. Use the equation and implement
the function

def colorToGrayscale( colorImg ):

which accepts a ColorImage object as an argument and creates and returns a
new GrayscaleImage that is the grayscale version of the given color image.



CHAPTER 5
Searching and Sorting

When people collect and work with data, they eventually want to search for specific
items within the collection or sort the collection for presentation or easy access.
Searching and sorting are two of the most common applications found in computer
science. In this chapter, we explore these important topics and study some of the
basic algorithms for use with sequence structures. The searching problem will be
discussed many times throughout the text as it can be applied to collections stored
using many different data structures, not just sequences. We will also further
explore the sorting problem in Chapters 12 and 13 with a discussion of more
advanced sorting algorithms.

5.1 Searching

Searching is the process of selecting particular information from a collection of
data based on specific criteria. You are familiar with this concept from your ex-
perience in performing web searches to locate pages containing certain words or
phrases or when looking up a phone number in the telephone book. In this text,
we restrict the term searching to refer to the process of finding a specific item in a
collection of data items.

The search operation can be performed on many different data structures. The
sequence search , which is the focus in this chapter, involves finding an item
within a sequence using a search key to identify the specific item. A key is
a unique value used to identify the data elements of a collection. In collections
containing simple types such as integers or reals, the values themselves are the keys.
For collections of complex types, a specific data component has to be identified as
the key. In some instances, a key may consist of multiple components, which is
also known as a compound key .

125
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5.1.1 The Linear Search
The simplest solution to the sequence search problem is the sequential or linear
search algorithm. This technique iterates over the sequence, one item at a time,
until the specific item is found or all items have been examined. In Python, a
target item can be found in a sequence using the in operator:

if key in theArray :
print( "The key is in the array." )

else :
print( "The key is not in the array." )

The use of the in operator makes our code simple and easy to read but it
hides the inner workings. Underneath, the in operator is implemented as a linear
search. Consider the unsorted 1-D array of integer values shown in Figure 5.1(a).
To determine if value 31 is in the array, the search begins with the value in the
first element. Since the first element does not contain the target value, the next
element in sequential order is compared to value 31. This process is repeated until
the item is found in the sixth position. What if the item is not in the array? For
example, suppose we want to search for value 8 in the sample array. The search
begins at the first entry as before, but this time every item in the array is compared
to the target value. It cannot be determined that the value is not in the sequence
until the entire array has been traversed, as illustrated in Figure 5.1(b).

0 1 2 3 4 5 6 7 8 9 10

1010 5151 22 1818 44 3131 1313 55 2323 6464 2929

(a) Searching for 31

start

0 1 2 3 4 5 6 7 8 9 10

1010 5151 22 1818 44 3131 1313 55 2323 6464 2929

(b) Searching for 8

start

Figure 5.1: Performing a linear search on an unsorted array: (a) the target item is found
and (b) the item is not in the array.

Finding a Specific Item

The function in Listing 5.1 implements the sequential search algorithm, which
results in a boolean value indicating success or failure of the search. This is the
same operation performed by the Python in operator. A count-controlled loop
is used to traverse through the sequence during which each element is compared
against the target value. If the item is in the sequence, the loop is terminated and
True is returned. Otherwise, a full traversal is performed and False is returned
after the loop terminates.
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Listing 5.1 Implementation of the linear search on an unsorted sequence.

1 def linearSearch( theValues, target ) :
2 n = len( theValues )
3 for i in range( n ) :
4 # If the target is in the ith element, return True
5 if theValues[i] == target
6 return True
7
8 return False # If not found, return False.

To analyze the sequential search algorithm for the worst case, we must first
determine what conditions constitute the worst case. Remember, the worst case
occurs when the algorithm performs the maximum number of steps. For a sequen-
tial search, that occurs when the target item is not in the sequence and the loop
iterates over the entire sequence. Assuming the sequence contains n items, the
linear search has a worst case time of O(n).

Searching a Sorted Sequence

A linear search can also be performed on a sorted sequence, which is a sequence
containing values in a specific order. For example, the values in the array illustrated
in Figure 5.2 are in ascending or increasing numerical order. That is, each value
in the array is larger than its predecessor.

0 1 2 3 4 5 6 7 8 9 10

22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

Searching for 8

start
22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

Figure 5.2: The linear search on a sorted array.

A linear search on a sorted sequence works in the same fashion as that for
the unsorted sequence, with one exception. It’s possible to terminate the search
early when the value is not in the sequence instead of always having to perform a
complete traversal. For example, suppose we want to search for 8 in the array from
Figure 5.2. When the fourth item, which is value 10, is examined, we know value 8
cannot be in the sorted sequence or it would come before 10. The implementation
of a linear search on a sorted sequence is shown in Listing 5.2 on the next page.

The only modification to the earlier version is the inclusion of a test to deter-
mine if the current item within the sequence is larger than the target value. If a
larger value is encountered, the loop terminates and False is returned. With the
modification to the linear search algorithm, we have produced a better version, but
the time-complexity remains the same. The reason is that the worst case occurs
when the value is not in the sequence and is larger than the last element. In this
case, we must still traverse the entire sequence of n items.
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Listing 5.2 Implementation of the linear search on a sorted sequence.

1 def sortedLinearSearch( theValues, item ) :
2 n = len( theValues )
3 for i in range( n ) :
4 # If the target is found in the ith element, return True
5 if theValues[i] == item :
6 return True
7 # If target is larger than the ith element, it's not in the sequence.
8 elif theValues[i] > item :
9 return False

10
11 return False # The item is not in the sequence.

Finding the Smallest Value

Instead of searching for a specific value in an unsorted sequence, suppose we wanted
to search for the smallest value, which is equivalent to applying Python’s min()
function to the sequence. A linear search is performed as before, but this time we
must keep track of the smallest value found for each iteration through the loop, as
illustrated in Listing 5.3.

To prime the loop, we assume the first value in the sequence is the smallest
and start the comparisons at the second item. Since the smallest value can occur
anywhere in the sequence, we must always perform a complete traversal, resulting
in a worst case time of O(n).

Listing 5.3 Searching for the smallest value in an unsorted sequence.

1 def findSmallest( theValues ):
2 n = len( theValues )
3 # Assume the first item is the smallest value.
4 smallest = theValues[0]
5 # Determine if any other item in the sequence is smaller.
6 for i in range( 1, n ) :
7 if theList[i] < smallest :
8 smallest = theValues[i]
9

10 return smallest # Return the smallest found.

5.1.2 The Binary Search
The linear search algorithm for a sorted sequence produced a slight improvement
over the linear search with an unsorted sequence, but both have a linear time-
complexity in the worst case. To improve the search time for a sorted sequence,
we can modify the search technique itself.

Consider an example where you are given a stack of exams, which are in alpha-
betical order, and are asked to find the exam for “Jessica Roberts.” In performing
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this task, most people would not begin with the first exam and flip through one at
a time until the requested exam is found, as would be done with a linear search.
Instead, you would probably flip to the middle and determine if the requested exam
comes alphabetically before or after that one. Assuming Jessica’s paper follows al-
phabetically after the middle one, you know it cannot possibly be in the top half of
the stack. Instead, you would probably continue searching in a similar fashion by
splitting the remaining stack of exams in half to determine which portion contains
Jessica’s exam. This is an example of a divide and conquer strategy, which
entails dividing a larger problem into smaller parts and conquering the smaller
part.

Algorithm Description

The binary search algorithm works in a similar fashion to the process described
above and can be applied to a sorted sequence. The algorithm starts by examining
the middle item of the sorted sequence, resulting in one of three possible conditions:
the middle item is the target value, the target value is less than the middle item,
or the target is larger than the middle item. Since the sequence is ordered, we
can eliminate half the values in the list when the target value is not found at the
middle position.

Consider the task of searching for value 10 in the sorted array from Figure 5.2.
We first determine which element contains the middle entry. As illustrated in
Figure 5.3, the middle entry contains 18, which is greater than our target of 10.
Thus, we can discard the upper half of the array from consideration since 10 cannot
possibly be in that part. Having eliminated the upper half, we repeat the process
on the lower half of the array. We then find the middle item of the lower half and
compare its value to the target. Since that entry, which contains 5, is less than the
target, we can eliminate the lower fourth of the array. The process is repeated on
the remaining items. Upon finding value 10 in the middle entry from among those
remaining, the process terminates successfully. If we had not found the target, the
process would continue until either the target value was found or we had eliminated
all values from consideration.

22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

start

22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

Figure 5.3: Searching for 10 in a sorted array using the binary search.
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Implementation

The Python implementation of the binary search algorithm is provided in List-
ing 5.4. The variables low and high are used to mark the range of elements in the
sequence currently under consideration. When the search begins, this range is the
entire sequence since the target item can be anywhere within the sequence. The
first step in each iteration is to determine the midpoint of the sequence. If the
sequence contains an even number of elements, the mid point will be chosen such
that the left sequence contains one less item than the right. Figure 5.4 illustrates
the positioning of the low, high, and mid markers as the algorithm progresses.

Listing 5.4 Implementation of the binary search algorithm.

1 def binarySearch( theValues, target ) :
2 # Start with the entire sequence of elements.
3 low = 0
4 high = len(theValues) - 1
5
6 # Repeatedly subdivide the sequence in half until the target is found.
7 while low <= high :
8 # Find the midpoint of the sequence.
9 mid = (high + low) // 2

10 # Does the midpoint contain the target?
11 if theValues[mid] == target :
12 return True
13 # Or does the target precede the midpoint?
14 elif target < theValues[mid] :
15 high = mid - 1
16 # Or does it follow the midpoint?
17 else :
18 low = mid + 1
19
20 # If the sequence cannot be subdivided further, we're done.
21 return False

After computing the midpoint, the corresponding element in that position
is examined. If the midpoint contains the target, we immediately return True.
Otherwise, we determine if the target is less than the item at the midpoint or
greater. If it is less, we adjust the high marker to be one less than the mid-
point and if it is greater, we adjust the low marker to be one greater than the
midpoint. In the next iteration of the loop, the only portion of the sequence con-
sidered are those elements between the low and high markers, as adjusted. This
process is repeated until the item is found or the low marker becomes greater
than the high marker. This condition occurs when there are no items left to be
processed, indicating the target is not in the sorted sequence.

Run Time Analysis

To evaluate the efficiency of the the binary search algorithm, assume the sorted se-
quence contains n items. We need to determine the maximum number of times the
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22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

low highmid

22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

low high mid

22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

low highmid

22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

low high

22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

low highmid

22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

low high
mid

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.4: The steps performed by the binary search algorithm in searching for 10: (a)
initial range of items, (b) locating the midpoint, (c) eliminating the upper half, (d) midpoint
of the lower half, (e) eliminating the lower fourth, and (f) finding the target item.

while loop is executed. The worst case occurs when the target value is not in the
sequence, the same as for the linear search. The difference with the binary search
is that not every item in the sequence has to be examined before determining the
target is not in the sequence, even in the worst case. Since the sequence is sorted,
each iteration of the loop can eliminate from consideration half of the remaining
values. As we saw earlier in Section 4.1.2, when the input size is repeatedly re-
duced by half during each iteration of a loop, there will be log n iterations in the
worst case. Thus, the binary search algorithm has a worst case time-complexity of
O(log n), which is more efficient than the linear search.

5.2 Sorting
Sorting is the process of arranging or ordering a collection of items such that each
item and its successor satisfy a prescribed relationship. The items can be simple
values, such as integers and reals, or more complex types, such as student records
or dictionary entries. In either case, the ordering of the items is based on the value
of a sort key . The key is the value itself when sorting simple types or it can be a
specific component or a combination of components when sorting complex types.

We encounter many examples of sorting in everyday life. Consider the listings of
a phone book, the definitions in a dictionary, or the terms in an index, all of which
are organized in alphabetical order to make finding an entry much easier. As we
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saw earlier in the chapter, the efficiency of some applications can be improved when
working with sorted lists. Another common use of sorting is for the presentation
of data in some organized fashion. For example, we may want to sort a class roster
by student name, sort a list of cities by zip code or population, rank order SAT
scores, or list entries on a bank statement by date.

Sorting is one of the most studied problems in computer science and extensive
research has been done in this area, resulting in many different algorithms. While
Python provides a sort() method for sorting a list, it cannot be used with an
array or other data structures. In addition, exploring the techniques used by some
of the sorting algorithms for improving the efficiency of the sort problem may
provide ideas that can be used with other types of problems. In this section, we
present three basic sorting algorithms, all of which can be applied to data stored
in a mutable sequence such as an array or list.

5.2.1 Bubble Sort
A simple solution to the sorting problem is the bubble sort algorithm, which re-
arranges the values by iterating over the list multiple times, causing larger values
to bubble to the top or end of the list. To illustrate how the bubble sort algorithm
works, suppose we have four playing cards (all of the same suit) that we want to
order from smallest to largest face value. We start by laying the cards out face up
on a table as shown here:

3
3

3

9
9

9

5
5

5

8
8

8

The algorithm requires multiple passes over the cards, with each pass starting
at the first card and ending one card earlier than on the previous iteration. During
each pass, the cards in the first and second positions are compared. If the first is
larger than the second, the two cards are swapped.

3
3

3

9
9

9

5
5

5

8
8

8

Next, the cards in positions two and three are compared. If the first one is larger
than the second, they are swapped. Otherwise, we leave them as they were.

3
3

3

9
9

9

8
8

8

5
5

5

This process continues for each successive pair of cards until the card with the
largest face value is positioned at the end.
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3
3

3

9
9

9

8
8

8

5
5

5

9
9

9

3
3

3

8
8

8

5
5

5

The next two passes over the cards are illustrated below. In the second pass the
card with the second largest face value is positioned in the next-to-last position.
In the third and final pass, the first two cards will be positioned correctly.

(Pass 2) Repeat the process on the first 
three cards. Compare the 5 and 8. 
Since 5 is less than 8, leave them as is.

Compare the 8 and 3. Since 8 is larger 
than 3, swap the two cards.

The second largest card (8) is now in its 
ordered position. 

(Pass 3) Repeat the process on the first 
two cards. Compare the 5 and 3. Since 
5 is larger than 3, swap the two cards.

After swapping the two cards, all of the 
cards are now in their proper order, from 
smallest to largest.

5
5

5

8
8

8

3
3

3

5
5

5

8
8

8

3
3

3

5
5

5

3
3

3

5
5

5

3
3

3

8
8

8

9
9

9

3
3

3

5
5

5

8
8

8

9
9

9

9
9

9

9
9

9

9
9

9

8
8

8

Listing 5.5 provides a Python implementation of the bubble sort algorithm.
Figure 5.5 illustrates the swaps performed during the first pass of the algorithm
when applied to an array containing 11 integer values. Figure 5.6 shows the order-
ing of the values within the array after each iteration of the outer loop.

The efficiency of the bubble sort algorithm only depends on the number of keys
in the array and is independent of the specific values and the initial arrangement
of those values. To determine the efficiency, we must determine the total number
of iterations performed by the inner loop for a sequence containing n values. The
outer loop is executed n− 1 times since the algorithm makes n− 1 passes over the
sequence. The number of iterations for the inner loop is not fixed, but depends on
the current iteration of the outer loop. On the first pass over the sequence, the
inner loop executes n − 1 times; on the second pass, n − 2 times; on the third,
n − 3 times, and so on until it executes once on the last pass. The total number
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1010 5151 22 1818 44 3131 1313 55 2323 6464 2929

1010 5151 22 1818 44 3131 1313 55 2323 6464 2929

1010 22 5151 1818 44 3131 1313 55 2323 6464 2929

1010 22 1818 5151 44 3131 1313 55 2323 6464 2929

1010 22 1818 44 5151 3131 1313 55 2323 6464 2929

1010 22 1818 44 3131 5151 1313 55 2323 6464 2929

1010 22 1818 44 3131 1313 5151 55 2323 6464 2929

1010 22 1818 44 3131 1313 55 5151 2323 6464 2929

1010 22 1818 44 3131 1313 55 2323 5151 6464 2929

1010 22 1818 44 3131 1313 55 2323 5151 6464 2929

1010 22 1818 44 3131 1313 55 2323 5151 2929 6464

Figure 5.5: First complete pass of the bubble sort algorithm, which places 64 in its correct
position. Black boxes represent values being compared; arrows indicate exchanges.

Listing 5.5 Implementation of the bubble sort algorithm.

1 # Sorts a sequence in ascending order using the bubble sort algorithm.
2 def bubbleSort( theSeq ):
3 n = len( theSeq )
4 # Perform n-1 bubble operations on the sequence
5 for i in range( n - 1 ) :
6 # Bubble the largest item to the end.
7 for j in range( i + n - 1 ) :
8 if theSeq[j] > theSeq[j + 1] : # swap the j and j+1 items.
9 tmp = theSeq[j]

10 theSeq[j] = theSeq[j + 1]
11 theSeq[j + 1] = tmp
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1010 22 1818 44 3131 1313 55 2323 5151 2929 6464

22 1010 44 1818 1313 55 2323 3131 2929 5151 6464

22 44 1010 1313 55 1818 2323 2929 3131 5151 6464

22 44 1010 55 1313 1818 2323 2929 3131 5151 6464

22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

Figure 5.6: Result of applying the bubble sort algorithm to the sample sequence. The
gray boxes show the values that are in order after each outer-loop traversal.

of iterations for the inner loop will be the sum of the first n − 1 integers, which
equals

n(n − 1)
2

− n =
1
2
n2 +

1
2
n

resulting in a run time of O(n2). Bubble sort is considered one of the most in-
efficient sorting algorithms due to the total number of swaps required. Given an
array of keys in reverse order, a swap is performed for every iteration of the inner
loop, which can be costly in practice.

The bubble sort algorithm as implemented in Listing 5.5 always performs n2

iterations of the inner loop. But what if the sequence is already in sorted order?
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In this case, there would be no need to sort the sequence. But our implementation
still performs all n2 iterations because it has no way of knowing the sequence is
already sorted.

The bubble sort algorithm can be improved by having it terminate early and
not require it to perform all n2 iterations when the sequence is in sorted order.
We can determine the sequence is in sorted order when no swaps are performed
by the if statement within the inner loop. At that point, the function can return
immediately without completing the remaining iterations. If a value is out of sorted
order, then it will either be smaller than its predecessor in the sequence or larger
than its successor at which point the condition of the if statement would be true.
This improvement, which is left as an exercise, introduces a best case that only
requires O(n) time when the initial input sequence is in sorted order.

5.2.2 Selection Sort
A second sorting algorithm, which improves on the bubble sort and works in a
fashion similar to what a human may use to sort a list of values, is known as
the selection sort . We can again use the set of playing cards to illustrate the
algorithm and start by placing five cards face up on a table that are to be sorted
in ascending order.

3
3

3

6
6

6

9
9

9

5
5

5

8
8

8
Instead of swapping the cards as was done with the bubble sort, we are going

to scan through the cards and select the smallest from among those on the table
and place it in our hand. For our set of cards, we identify the 3 as the smallest:

3
3

3

6
6

6

9
9

9

5
5

5

8
8

8

We pick up the 3 and place it in our hand, leaving the remaining cards on the
table:

3
3

3

6
6

6

9
9

9

5
5

5

8
8

8

cards on the tableour hand

We repeat the process and identify the 5 as the next smallest face value:

6
6

6

9
9

9

5
5

5

8
8

8

cards on the table
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We pick up the 5 and add it to proper sorted position, which will be on the right
side since there are no cards with a smaller face value left on the table.

3
3

3

5
5

5

6
6

6

9
9

9

8
8

8

cards on the tableour hand

This process is continued until all of the cards have been picked up and placed
in our hand in the correct sorted order from smallest to largest.

pick up the next 
smallest card (6)

pick up the next 
smallest card (8)

pickup the last 
card (9)

the resulting hand

3
3

35
5

5

6
6

6

3
3

35
5

56
6

6

8
8

8

3
3

35
5

56
6

6

8
8

8

9
9

9 3
3

35
5

56
6

6

8
8

8

9
9

9

The process we used to sort the set of five cards is similar to the approach used
by the selection sort algorithm. But when implementing insertion sort in code, the
algorithm maintains both the sorted and unsorted values within the same sequence
structure. The selection sort, which improves on the bubble sort, makes multiple
passes over the sequence, but unlike the bubble sort, it only makes a single swap
after each pass. The implementation of the selection sort algorithm is provided in
Listing 5.6.

Listing 5.6 Implementation of the selection sort algorithm.

1 # Sorts a sequence in ascending order using the selection sort algorithm.
2 def selectionSort( theSeq ):
3 n = len( theSeq )
4 for i in range( n - 1 ):
5 # Assume the ith element is the smallest.
6 smallNdx = i
7 # Determine if any other element contains a smaller value.
8 for j in range( i + 1, n ):
9 if theSeq[j] < theSeq[smallNdx] :

10 smallNdx = j
11
12 # Swap the ith value and smallNdx value only if the smallest value is
13 # not already in its proper position. Some implementations omit testing
14 # the condition and always swap the two values.
15 if smallNdx != i :
16 tmp = theSeq[i]
17 theSeq[i] = theSeq[smallNdx]
18 theSeq[smallNdx] = tmp



138 CHAPTER 5 Searching and Sorting

The process starts by finding the smallest value in the sequence and swaps it
with the value in the first position of the sequence. The second smallest value
is then found and swapped with the value in the second position. This process
continues positioning each successive value by selecting them from those not yet
sorted and swapping with the values in the respective positions. Figure 5.7 shows
the results after each iteration of the algorithm when applied to the sample array
of integers. The grayed boxes represent those items already placed in their proper
position while the black boxes show the two values that are swapped.

The selection sort, which makes n− 1 passes over the array to reposition n− 1
values, is also O(n2). The difference between the selection and bubble sorts is that
the selection sort reduces the number of swaps required to sort the list to O(n).

5.2.3 Insertion Sort
Another commonly studied sorting algorithm is the insertion sort . Continuing
with our analogy of sorting a set of playing cards to illustrate the sorting algorithms,
consider five cards stacked in a deck face up:

the deck

6
6

69
9

95
5

58
8

83
3

3

We pick up the top card from the deck and place it in our hand:

the deck

6
6

69
9

95
5

58
8

8

3
3

3

our hand

Since this is the first card, there is no decision to be made as to its position.
We again pick up the top card from the deck and compare it to the card already
in our hand and insert it into its proper sorted position:

the deck

6
6

69
9

95
5

5

our hand

3
3

3

8
8

8

After placing the 8 into our hand, the process is repeated. This time, we pick
up the 5 and find its position within our hand and insert it in the proper place:

the deck

6
6

69
9

9

our hand

3
3

3

5
5

58
8

8
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1010 5151 22 1818 44 3131 1313 55 2323 6464 2929

22 5151 1010 1818 44 3131 1313 55 2323 6464 2929

22 44 1010 1818 5151 3131 1313 55 2323 6464 2929

22 44 55 1818 5151 3131 1313 1010 2323 6464 2929

22 44 55 1010 5151 3131 1313 1818 2323 6464 2929

22 44 55 1010 1313 3131 5151 1818 2323 6464 2929

22 44 55 1010 1313 1818 5151 3131 2323 6464 2929

22 44 55 1010 1313 1818 2323 3131 5151 6464 2929

22 44 55 1010 1313 1818 2323 2929 5151 6464 3131

22 44 55 1010 1313 1818 2323 2929 3131 6464 5151

22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

Figure 5.7: Result of applying the selection sort algorithm to our sample array. The gray
boxes show the values that have been sorted; the black boxes show the values that are
swapped during each iteration of the algorithm.
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This process continues, one card at a time, until all of the cards have been removed
from the table and placed into our hand in their proper sorted position.

pick up the next 
card on top (9)

3
3

35
5

58
8

8

9
9

9 3
3

35
5

5

6
6

6

8
8

8

9
9

9

pick up the 
last card (6) the resulting hand

3
3

35
5

5

6
6

68
8

8

9
9

9

The insertion sort maintains a collection of sorted items and a collection of
items to be sorted. In the playing card analogy, the deck represents the collection
to be sorted and the cards in our hand represents those already sorted. When
implementing insertion sort in a program, the algorithm maintains both the sorted
and unsorted collections within the same sequence structure. The algorithm keeps
the list of sorted values at the front of the sequence and picks the next unsorted
value from the first of those yet to be positioned. To position the next item, the
correct spot within the sequence of sorted values is found by performing a search.
After finding the proper position, the slot has to be opened by shifting the items
down one position. A Python implementation of the insertion sort algorithm is
provided in Listing 5.7.

Listing 5.7 Implementation of the insertion sort algorithm.

1 # Sorts a sequence in ascending order using the insertion sort algorithm.
2 def insertionSort( theSeq ):
3 n = len( theSeq )
4 # Starts with the first item as the only sorted entry.
5 for i in range( 1, n ) :
6 # Save the value to be positioned.
7 value = theSeq[i]
8 # Find the position where value fits in the ordered part of the list.
9 pos = i

10 while pos > 0 and value < theSeq[pos - 1] :
11 # Shift the items to the right during the search.
12 theSeq[pos] = theSeq[pos - 1]
13 pos -= 1
14
15 # Put the saved value into the open slot.
16 theSeq[pos] = value

The insertionSort() function starts by assuming the first item is in its proper
position. Next, an iteration is performed over the remaining items so each value
can be inserted into its proper position within the sorted portion of the sequence.
The ordered portion of the sequence is at the front while those yet to be inserted
are at the end. The i loop index variable marks the separation point between the
two parts. The inner loop is used to find the insertion point within the sorted
sequence and at the same time, shifts the items down to make room for the next
item. Thus, the inner loop starts from the end of the sorted subsequence and
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works its way to the front. After finding the proper position, the item is inserted.
Figure 5.8 illustrates the application of this algorithm on an array of integer values.

The insertion sort is an example of a sorting algorithm in which the best and
worst cases are different. Determining the different cases and the corresponding
run times is left as an exercise.

1010 5151 22 1818 44 3131 1313 55 2323 6464 2929

1010 5151 22 1818 44 3131 1313 55 2323 6464 2929

22 1010 5151 1818 44 3131 1313 55 2323 6464 2929

22 1010 1818 5151 44 3131 1313 55 2323 6464 2929

22 44 1010 1818 5151 3131 1313 55 2323 6464 2929

22 44 1010 1818 3131 5151 1313 55 2323 6464 2929

22 44 1010 1313 1818 3131 5151 55 2323 6464 2929

22 44 55 1010 1313 1818 3131 5151 2323 6464 2929

22 44 55 1010 1313 1818 2323 3131 5151 6464 2929

22 44 55 1010 1313 1818 2323 3131 5151 6464 2929

22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

Figure 5.8: Result of applying the insertion sort algorithm to the sample array. The gray
boxes show values that have been sorted; the black boxes show the next value to be
positioned; and the lighter gray boxes with black text are the sorted values that have to be
shifted to the right to open a spot for the next value.
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5.3 Working with Sorted Lists
The efficiency of some algorithms can be improved when working with sequences
containing sorted values. We saw this earlier when performing a search using the
binary search algorithm on a sorted sequence. Sorting algorithms can be used to
create a sorted sequence, but they are typically applied to an unsorted sequence
in which all of the values are known and the collection remains static. In other
words, no new items will be added to the sequence nor will any be removed.

In some problems, like the set abstract data type, the collection does not remain
static but changes as new items are added and existing ones are removed. If a
sorting algorithm were applied to the underlying list each time a new value is
added to the set, the result would be highly inefficient since even the best sorting
algorithm requires O(n log n) time. Instead, the sorted list can be maintained as the
collection changes by inserting the new item into its proper position without having
to re-sort the entire list. Note that while the sorting algorithms from the previous
section all require O(n2) time in the worst case, there are more efficient sorting
algorithms (which will be covered in Chapter 12) that only require O(n log n) time.

5.3.1 Maintaining a Sorted List
To maintain a sorted list in real time, new items must be inserted into their proper
position. The new items cannot simply be appended at the end of the list as they
may be out of order. Instead, we must locate the proper position within the list
and use the insert() method to insert it into the indicated position. Consider
the sorted list from Figure 5.3. If we want to add 25 to that list, then it must be
inserted at position 7 following value 23.

To find the position of a new item within a sorted list, a modified version of the
binary search algorithm can be used. The binary search uses a divide and conquer
strategy to reduce the number of items that must be examined to find a target
item or to determine the target is not in the list. Instead of returning True or
False indicating the existence of a value, we can modify the algorithm to return
the index position of the target if it’s actually in the list or where the value should
be placed if it were inserted into the list. The modified version of the binary search
algorithm is shown in Listing 5.8.

Note the change to the two return statements. If the target value is contained
in the list, it will be found in the same fashion as was done in the original version
of the algorithm. Instead of returning True, however, the new version returns its
index position. When the target is not in the list, we need the algorithm to identify
the position where it should be inserted.

Consider the illustration in Figure 5.9, which shows the changes to the three
variables low, mid, and high as the binary search algorithm progresses in searching
for value 25. The while loop terminates when either the low or high range variable
crosses the other, resulting in the condition low > high. Upon termination of the
loop, the low variable will contain the position where the new value should be
placed. This index can then be supplied to the insert() method to insert the new
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Listing 5.8 Finding the location of a target value using the binary search.

1 # Modified version of the binary search that returns the index within
2 # a sorted sequence indicating where the target should be located.
3 def findSortedPosition( theList, target ):
4 low = 0
5 high = len(theList) - 1
6 while low <= high :
7 mid = (high + low) // 2
8 if theList[mid] == target :
9 return mid # Index of the target.

10 elif target < theList[mid] :
11 high = mid - 1
12 else :
13 low = mid + 1
14
15 return low # Index where the target value should be.

value into the list. The findOrderedPosition() function can also be used with
lists containing duplicate values, but there is no guarantee where the new value
will be placed in relation to the other duplicate values beyond the proper ordering
requirement that they be adjacent.

5.3.2 Merging Sorted Lists
Sometimes it may be necessary to take two sorted lists and merge them to create
a new sorted list. Consider the following code segment:

listA = [ 2, 8, 15, 23, 37 ]
listB = [ 4, 6, 15, 20 ]
newList = mergeSortedLists( listA, listB )
print( newList )

which creates two lists with the items ordered in ascending order and then calls a
user-defined function to create and return a new list created by merging the other
two. Printing the new merged list produces

[2, 4, 6, 8, 15, 15, 20, 23, 37]

Problem Solution

This problem can be solved by simulating the action a person might take to merge
two stacks of exam papers, each of which are in alphabetical order. Start by choos-
ing the exam from the two stacks with the name that comes first in alphabetical
order. Flip it over on the table to start a new stack. Again, choose the exam from
the top of the two stacks that comes next in alphabetical order and flip it over and
place it on top of first one. Repeat this process until one of the two original stacks
is exhausted. The exams in the remaining stack can be flipped over on top of the
new stack as they are already in alphabetical order and alphabetically follow the
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22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

low highmid

22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

low highmid

22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

low highmid

22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

low high

22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

low high
mid

(a)

(b)

(c)

(d)

(e)

(f)

low high mid

22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

low
highmid

(g)

22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

high/low
mid

(h)

22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

lowhigh
mid

(i)

Figure 5.9: Performing a binary search on a sorted list when searching for value 25.

last exam flipped onto the new stack. You now have a single stack of exams in
alphabetical order.

A similar approach can be used to merge two sorted lists. Consider the illus-
tration in Figure 5.10, which demonstrates this process on the sample lists created
in the example code segment from earlier. The items in the original list are not
removed, but instead copied to the new list. Thus, there is no “top” item from
which to select the smallest value as was the case in the example of merging two
stacks of exams. Instead, index variables are used to indicate the “top” or next
value within each list. The implementation of the mergeSortedLists() function
is provided in Listing 5.9.

The process of merging the two lists begins by creating a new empty list and
initializing the two index variables to zero. A loop is used to repeat the process
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22 88 1515 2323 3737 44 66 1515 2020

a

ListA ListB newList

b

22 88 1515 2323 3737 44 66 1515 2020

a b

22

22 88 1515 2323 3737 44 66 1515 2020

a b

22 44

22 88 1515 2323 3737 44 66 1515 2020

a b

22 44 66

22 88 1515 2323 3737 44 66 1515 2020

a b

22 44 66 88

22 88 1515 2323 3737 44 66 1515 2020

a b

22 44 66 88 1515

22 88 1515 2323 3737 44 66 1515 2020

a b

22 44 66 88 1515 1515

22 88 1515 2323 3737 44 66 1515 2020

a b

22 44 66 88 1515 1515 2020

22 88 1515 2323 3737 44 66 1515 2020

a b

22 44 66 88 1515 1515 2020 2323

22 88 1515 2323 3737 44 66 1515 2020

a b

22 44 66 88 1515 1515 2020 2323 3737

Figure 5.10: The iterative steps for merging two sorted lists into a new sorted list. a and
b are index variables indicating the next value to be merged from the respective list.

of selecting the next largest value to be added to the new merged list. During the
iteration of the loop, the value at listA[a] is compared to the value listB[b].
The largest of these two values is added or appended to the new list. If the two
values are equal, the value from listB is chosen. As values are copied from the
two original lists to the new merged list, one of the two index variables a or b is
incremented to indicate the next largest value in the corresponding list.

This process is repeated until all of the values have been copied from one of the
two lists, which occurs when a equals the length of listA or b equals the length of
listB. Note that we could have created and initialized the new list with a sufficient
number of elements to store all of the items from both listA and listB. While
that works for this specific problem, we want to create a more general solution that
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Listing 5.9 Merging two sorted lists.

1 # Merges two sorted lists to create and return a new sorted list.
2 def mergeSortedLists( listA, listB ) :
3 # Create the new list and initialize the list markers.
4 newList = list()
5 a = 0
6 b = 0
7
8 # Merge the two lists together until one is empty.
9 while a < len( listA ) and b < len( listB ) :

10 if listA[a] < listB[b] :
11 newList.append( listA[a] )
12 a += 1
13 else :
14 newList.append( listB[b] )
15 b += 1
16
17 # If listA contains more items, append them to newList.
18 while a < len( listA ) :
19 newList.append( listA[a] )
20 a += 1
21
22 # Or if listB contains more items, append them to newList.
23 while b < len( listB ) :
24 newList.append( listB[b] )
25 b += 1
26
27 return newList

we can easily modify for similar problems where the new list may not contain all
of the items from the other two lists.

After the first loop terminates, one of the two lists will be empty and one will
contain at least one additional value. All of the values remaining in that list must
be copied to the new merged list. This is done by the next two while loops, but
only one will be executed depending on which list contains additional values. The
position containing the next value to be copied is denoted by the respective index
variable a or b.

Run Time Analysis

To evaluate the solution for merging two sorted list, assume listA and listB each
contain n items. The analysis depends on the number of iterations performed by
each of the three loops, all of which perform the same action of copying a value
from one of the two original lists to the new merged list. The first loop iterates
until all of the values in one of the two original lists have been copied to the third.
After the first loop terminates, only one of the next two loops will be executed,
depending on which list still contains values.

� The first loop performs the maximum number of iterations when the selection
of the next value to be copied alternates between the two lists. This results
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in all values from either listA or listB being copied to the newList and all
but one value from the other for a total of 2n− 1 iterations. Then, one of the
next two loops will execute a single iteration in order to copy the last value
to the newList.

� The minimum number of iterations performed by the first loop occurs when
all values from one list are copied to the newList and none from the other. If
the first loop copies the entire contents of listA to the newList, it will require
n iterations followed by n iterations of the third loop to copy the values from
listB. If the first loop copies the entire contents of listB to the newList, it
will require n iterations followed by n iterations of the second loop to copy
the values from listA.

In both cases, the three loops are executed for a combined total of 2n iterations.
Since the statements performed by each of the three loops all require constant time,
merging two lists can be done in O(n) time.

5.4 The Set ADT Revisited

The implementation of the Set ADT using a list was quick and rather simple, but
several of the operations require quadratic time in the worst case. This inefficiency
is due to the linear search used to find an element in the unsorted list that is
required by several of the operations. We saw earlier in the chapter the efficiency
of the search operation can be improved by using the binary search algorithm. To
use the binary search with the Set ADT, the list of elements must be in sorted
order and that order must be maintained. The definition of the Set ADT, however,
indicates the elements have no particular ordering. While this is true, it does not
preclude us from storing the elements in sorted order. It only means there is no
requirement that the items must be stored in a particular order.

5.4.1 A Sorted List Implementation

In using the binary search algorithm to improve the efficiency of the set operations,
the list cannot be sorted each time a new element is added because it would in-
crease the time-complexity of the add() operation. For example, suppose we used
one of the sorting algorithms presented earlier in the chapter to sort the list after
each element is added. Since those algorithms require O(n2) time in the worst case,
the add() operation would then also require quadratic time. Instead, the sorted
order must be maintained when new elements are added by inserting each into
its proper position. A partial implementation of the Set ADT using a sorted list
and the binary search algorithm is provided in Listing 5.10. There are no changes
needed in the constructor or the len method, but some changes are needed in
the remaining methods.
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Listing 5.10 The binaryset.py module.

1 # Implementation of the Set ADT using a sorted list.
2 class Set :
3 # Creates an empty set instance.
4 def __init__( self ):
5 self._theElements = list()
6
7 # Returns the number of items in the set.
8 def __len__( self ):
9 return len( self._theElements )

10
11 # Determines if an element is in the set.
12 def __contains__( self, element ):
13 ndx = self._findPosition( element )
14 return ndx < len( self ) and self._theElements[ndx] == element
15
16 # Adds a new unique element to the set.
17 def add( self, element ):
18 if element not in self :
19 ndx = self._findPosition( element )
20 self._theElements.insert( ndx, element )
21
22 # Removes an element from the set.
23 def remove( self, element ):
24 assert element in self, "The element must be in the set."
25 ndx = self._findPosition( element )
26 self._theElements.pop( ndx )
27
28 # Determines if this set is a subset of setB.
29 def isSubsetOf( self, setB ):
30 for element in self :
31 if element not in setB :
32 return False
33 return True
34
35 # The remaining methods go here.
36 # ......
37
38 # Returns an iterator for traversing the list of items.
39 def __iter__( self ):
40 return _SetIterator( self._theElements )
41
42 # Finds the position of the element within the ordered list.
43 def _findPosition( self, element ):
44 low = 0
45 high = len( theList ) - 1
46 while low <= high :
47 mid = (high + low) / 2
48 if theList[ mid ] == target :
49 return mid
50 elif target < theList[ mid ] :
51 high = mid - 1
52 else :
53 low = mid + 1
54 return low
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N
O

TE
i Short-Circuit Evaluation. Most programming languages use short-

circuit evaluation when testing compound logical expressions. If the
result of the compound expression is known after evaluating the first compo-
nent, the evaluation ends and returns the result. For example, in evaluating
the logical expression a > b and a < c, if a > b is False, then there is no
need to continue the evaluation of the second component since the overall
expression must be False.

Basic Operations

Performing a binary search to locate an element in the sorted list or to find the
position where an element belongs in the sorted list is needed in several methods.
Instead of reimplementing the operation each time, we implement the modified
version of the binary search algorithm from Listing 5.8 in the findPosition()
helper method. The helper method does not detect nor distinguish between unique
and duplicate values. It only returns the index where the element is located within
the list or where it should be placed if it were added to the list. Thus, care must
be taken when implementing the various methods to check for the existence of an
element when necessary.

The contains method is easily implemented using findPosition(). The
index value returned by the helper method indicates the location where the element
should be within the sorted list, but it says nothing about the actual existence of
the element. To determine if the element is in the set, we can compare the element
at the ndx position within the list to the target element. Note the inclusion of
the condition ndx < len(self) within the compound expression. This is needed
since the value returned by findPosition() can be one larger than the number
of items in the list, which occurs when the target should be located at the end
of the list. If this value were directly used in examining the contents of the list
without making sure it was in range, an out-of-range exception could be raised.
The contains method has a worst case time of O(log n) since it uses the binary
search to locate the given element within the sorted list.

To implement the add() method, we must first determine if the element is
unique since a set cannot contain duplicate values. This is done with the use of
the in operator, which automatically calls the contains operator method. If
the element is not already a member of the set, the insert() method is called to
insert the new element in its proper position within the ordered list. Even though
the contains method has a better time-complexity when using a sorted list
and the binary search, the add() operation still requires O(n) time, the proof of
which is left as an exercise.

The remove() method requires that the target element must be a member of
the set. To verify this precondition, an assertion is made using the in operator.
After which, the findPosition() helper method is called to obtain the location
of the element, which can then be used with the pop() list method to remove the
element from the underlying sorted list. Like the add operation, the remove()
method still has a worst case time of O(n), the proof of which is left as an exercise.
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We can implement the isSubsetOf() method in the same fashion as was done
in the original version that used the unsorted list as shown in lines 29–33 of List-
ing 5.10. To evaluate the efficiency of the method, we again assume both sets
contain n elements. The isSubsetOf() method performs a traversal over the
self set during which the in operator is applied to setB. Since the in operator
requires O(log n) time and it’s called n times, isSubsetOf() has a time-complexity
of O(n log n).

A New Set Equals

We could also implement the set equals operation in the same fashion as was done
in the original version when using the unsorted list:

def __eq__( self, setB ):
if len( self ) != len( setB ) :
return False

else :
return self.isSubsetOf( setB )

But that implementation would have a time-complexity of O(n log n) since it calls
the isSubsetOf() method. A more efficient implementation of the equals opera-
tion is possible if we compare the elements in the list directly instead of using the
isSubsetOf() method. Remember, for two sets to be equal, they must contain the
exact same elements. Since the lists for both sets are sorted, not only must they
contain the same elements, but those elements must be in corresponding positions
within the two lists for the sets to be equal.

The new implementation of the eq method is provided in Listing 5.11. The
two lists are traversed simultaneously during which corresponding elements are
compared. If a single instance occurs where corresponding elements are not identi-
cal, then the two sets cannot be equal. Otherwise, having traversed the entire list
and finding no mismatched items, the two sets must be equal. The new implemen-
tation only requires O(n) time since it only involves one complete traversal of the
lists. A similar approach can be used to improve the efficiency of the isSubsetOf()
method to only require O(n) time, which is left as an exercise.

Listing 5.11 New implementation of the Set equals method.

1 class Set :
2 # ...
3 def __eq__( self, setB ):
4 if len( self ) != len( setB ) :
5 return False
6 else :
7 for i in range( len(self) ) :
8 if self._theElements[i] != setB._theElements[i] :
9 return False

10 return True
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A New Set Union

The efficiency of the set union operation can also be improved from the original
version. Set union using two sorted lists is very similar to the problem of merging
two sorted lists that was introduced in the previous section. In that problem, the
entire contents of the two sorted lists were merged into a third list. For the Set
ADT implemented using a sorted list, the result of the set union must be a new
sorted list merged from the unique values contained in the sorted lists used to
implement the two source sets.

The implementation of the new union() method, which is provided in List-
ing 5.12, uses a modified version of the mergeSortedLists() function. The only
modification required is the inclusion of an additional test within the first loop to
catch any duplicate values by advancing both index variables and only appending
one copy to the new sorted list. The new implementation only requires O(n) time
since that is the time required to merge two sorted lists and the new test for du-
plicates does not increase that complexity. The set difference and set intersection
operations can also be modified in a similar fashion and are left as an exercise.

Listing 5.12 New implementation of the Set union method.

1 class Set :
2 # ...
3 def union( self, setB ):
4 newSet = Set()
5 a = 0
6 b = 0
7 # Merge the two lists together until one is empty.
8 while a < len( self ) and b < len( setB ) :
9 valueA = self._theElements[a]

10 valueB = setB._theElements[b]
11 if valueA < valueB :
12 newSet._theElements.append( valueA )
13 a += 1
14 elif valueA > valueB :
15 newSet._theElements.append( valueB )
16 b += 1
17 else : # Only one of the two duplicates are appended.
18 newSet._theElements.append( valueA )
19 a += 1
20 b += 1
21
22 # If listA contains more items, append them to newList.
23 while a < len( self ) :
24 newSet._theElements.append( self._theElements[a] )
25 a += 1
26
27 # Or if listB contains more, append them to newList.
28 while b < len( otherSet ) :
29 newSet._theElements.append( setB._theElements[b] )
30 b += 1
31
32 return newSet
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5.4.2 Comparing the Implementations
The implementation of the Set ADT using an unsorted list was quick and easy,
but after evaluating the various operations, it became apparent many of them were
time consuming. A new implementation using a sorted list to store the elements
of the set and the binary search algorithm for locating elements improved the
contains method. This resulted in better times for the isSubsetOf() and
eq methods, but the set union, intersection, and difference operations remained

quadratic. After observing several operations could be further improved if they
were implemented to directly access the list instead of using the contains
method, we were able to provide a more efficient implementation of the Set ADT.
Table 5.1 compares the worst case time-complexities for the Set ADT operations
using an unsorted list and the improved sorted list version using the binary search
and the list merging operation.

Operation Unordered Improved

s = Set() O(1) O(1)

len(s) O(1) O(1)

x in s O(n) O(log n)

s.add(x) O(n) O(n)

s.isSubsetOf(t) O(n2) O(n)

s == t O(n2) O(n)

s.union(t) O(n2) O(n)

Table 5.1: Comparison of the two Set ADT implementations using an unsorted list and
the improved sorted list with binary search and list merging.

Exercises
5.1 Given an unsorted list of n values, what is the time-complexity to find the kth

smallest value in the worst case? What would be the complexity if the list
were sorted?

5.2 What is the O(·) for the findSortedPosition() function in the worst case?

5.3 Consider the new implementation of the Set class using a sorted list with the
binary search.

(a) Prove or show the worst case time for the add() method is O(n).

(b) What is the best case time for the add() method?
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5.4 Determine the worst case time complexity for each method of the Map ADT
implemented in Section 3.2.

5.5 Modify the binary search algorithm to find the position of the first occurrence
of a value that can occur multiple times in the ordered list. Verify your
algorithm is still O(log n).

5.6 Design and implement a function to find all negative values within a given list.
Your function should return a new list containing the negative values. When
does the worst case occur and what is the run time for that case?

5.7 In this chapter, we used a modified version of the mergeSortedLists() func-
tion to develop a linear time union() operation for our Set ADT implemented
using a sorted list. Use a similar approach to implement new linear time ver-
sions of the isSubsetOf(), intersect(), and difference() methods.

5.8 Given the following list of keys (80, 7, 24, 16, 43, 91, 35, 2, 19, 72), show the
contents of the array after each iteration of the outer loop for the indicated
algorithm when sorting in ascending order.

(a) bubble sort (b) selection sort (c) insertion sort

5.9 Given the following list of keys (3, 18, 29, 32, 39, 44, 67, 75), show the contents
of the array after each iteration of the outer loop for the

(a) bubble sort (b) selection sort (c) insertion sort

5.10 Evaluate the insertion sort algorithm to determine the best case and the worst
case time complexities.

Programming Projects
5.1 Implement the Bag ADT from Chapter 1 to use a sorted list and the binary

search algorithm. Evaluate the time complexities for each of the operations.

5.2 Implement a new version of the Map ADT from Section 3.2 to use a sorted
list and the binary search algorithm.

5.3 The implementation of the Sparse Matrix ADT from Chapter 4 can be im-
proved by storing the MatrixElement objects in a sorted list and using the
binary search to locate a specific element. The matrix elements can be sorted
based on the row and column indices using an index function similar to that
used with a 2-D array stored in a MultiArray. Implement a new version of
the Sparse Matrix ADT using a sorted list and the binary search to locate
elements.

5.4 Implement a new version of the Sparse Life Grid ADT from Chapter 4 to use
a sorted list and the binary search to locate the occupied cells.
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5.5 A colormap is a lookup table or color palette containing a limited set of colors.
Early color graphics cards could only display up to 256 unique colors at one
time. Colormaps were used to specify which 256 colors should be used to
display color images on such a device. Software applications were responsible
for mapping each color in the image that was to be displayed to a color in
the limited color set specified by the colormap. We can define a Colormap
ADT for storing a limited set of colors and for use in mapping one of the
16.7+ million colors possible in the discrete RGB color space to a color in
the colormap. Given the description below of various operations, implement
the Colormap ADT using a 1-D array structure.

� ColorMap( k ): Creates a new empty colormap that is capable of storing
up to k colors.

� length (): Returns the number of colors currently stored in the colormap.

� contains ( color ): Determines if the given color is contained in the col-
ormap.

� add( color ): Adds the given color to the colormap. Only one instance of
each color can be added to the colormap. In addition, a color cannot be
added to a full colormap.

� remove ( color ): Removes the given color from the colormap. The color
must be contained in the colormap in order to be removed.

� map( color ): Maps the given color to an entry in the colormap and
returns that color. A common approach is to map the color to its nearest
neighbor in the colormap. The nearest neighbor of a color is the entry in
the colormap that has the minimum Euclidean distance squared between
the two colors. If there is more than one nearest neighbor in the colormap,
only one is returned. In addition, the colormap must contain at least one
color in order to perform the mapping operation.

� iterator (): Creates and returns an iterator object that can be used to
iterate over the colors in the colormap.

5.6 Evaluate the map() method of your implementation of the Colormap ADT
from the previous question to determine the worst case time-complexity.

5.7 Colormaps are used in color quantization, which is the process of reducing the
number of colors in an image while trying to maintain the original appearance
as much as possible. Part of the process recolors an original image using a
reduced set of colors specified in a colormap.

(a) Implement the function recolorImage( image, colormap ), which pro-
duces a new ColorImage that results from mapping the color of each pixel
in the given image to its nearest neighbor in the given colormap.

(b) What is the worst case time-complexity for your implementation?



CHAPTER 6
Linked Structures

An array is the most basic sequence container used to store and access a collection of
data. It provides easy and direct access to the individual elements and is supported
at the hardware level. But arrays are limited in their functionality. The Python
list, which is also a sequence container, is an abstract sequence type implemented
using an array structure. It extends the functionality of an array by providing a
larger set of operations than the array, and it can automatically adjust in size as
items are added or removed.

The array and Python list can be used to implement many different abstract
data types. They both store data in linear order and provide easy access to their
elements. The binary search can be used with both structures when the items
are stored in sorted order to allow for quick searches. But there are several dis-
advantages in the use of the array and Python list. First, insertion and deletion
operations typically require items to be shifted to make room or close a gap. This
can be time consuming, especially for large sequences. Second, the size of an array
is fixed and cannot change. While the Python list does provide for an expandable
collection, that expansion does not come without a cost. Since the elements of
a Python list are stored in an array, an expansion requires the creation of a new
larger array into which the elements of the original array have to be copied. Fi-
nally, the elements of an array are stored in contiguous bytes of memory, no matter
the size of the array. Each time an array is created, the program must find and
allocate a block of memory large enough to store the entire array. For large arrays,
it can be difficult or impossible for the program to locate a block of memory into
which the array can be stored. This is especially true in the case of a Python list
that grows larger during the execution of a program since each expansion requires
ever larger blocks of memory.

In this chapter, we introduce the linked list data structure, which is a general
purpose structure that can be used to store a collection in linear order. The linked
list improves on the construction and management of an array and Python list
by requiring smaller memory allocations and no element shifts for insertions and
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deletions. But it does eliminate the constant time direct element access available
with the array and Python list. Thus, it’s not suitable for every data storage
problem. There are several varieties of linked lists. The singly linked list is a linear
structure in which traversals start at the front and progress, one element at a time,
to the end. Other variations include the circularly linked, the doubly linked, and
the circularly doubly linked lists.

6.1 Introduction
Suppose we have a basic class containing a single data field:

class ListNode :
def __init__( self, data ) :
self.data = data

We can create several instances of this class, each storing data of our choosing. In
the following example, we create three instances, each storing an integer value:

a = ListNode( 11 )
b = ListNode( 52 )
c = ListNode( 18 )

the result of which is the creation of three variables and three objects :

a


b


c



1111 5252 1818

Now, suppose we add a second data field to the ListNode class:

class ListNode :
def __init__( self, data ) :
self.data = data
self.next = None

The three objects from the previous example would now have a second data field
initialized with a null reference, as illustrated in the following:

a





b





c



1111 5252 1818
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Since the next field can contain a reference to any type of object, we can assign
to it a reference to one of the other ListNode objects. For example, suppose we
assign b to the next field of object a:

a.next = b

which results in object a being linked to object b, as shown here:

a





b





c



1111 5252 1818

And finally, we can link object b to object c:

b.next = c

resulting in a chain of objects, as illustrated here:

a





b





c



1111 5252 1818

We can remove the two external references b and c by assigning None to each,
as shown here:

a


b


c



  1111 5252 1818

The result is a linked list structure. The two objects previously pointed to by
b and c are still accessible via a. For example, suppose we wanted to print the
values of the three objects. We can access the other two objects through the next
field of the first object:

print( a.data )
print( a.next.data )
print( a.next.next.data )

A linked structure contains a collection of objects called nodes, each of which
contains data and at least one reference or link to another node. A linked list is
a linked structure in which the nodes are connected in sequence to form a linear
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list. Figure 6.1 provides an example of a linked list consisting of five nodes. The
last node in the list, commonly called the tail node , is indicated by a null link
reference. Most nodes in the list have no name and are simply referenced via the
link field of the preceding node. The first node in the list, however, must be named
or referenced by an external variable as it provides an entry point into the linked
list. This variable is commonly known as the head pointer, or head reference . A
linked list can also be empty, which is indicated when the head reference is null.

 

head



 22 5252 1818 3636 1313

Figure 6.1: A singly linked list consisting of five nodes and a head reference.

Linked structures are built using fundamental components provided by the
programming language, namely reference variables and objects. The linked list is
just one of several linked structures that we can create. If more links are added to
each node, as illustrated in Figure 6.2, we can connect the nodes to form any type
of configuration we may need. The tree structure, which organizes the nodes in
a hierarchical fashion, is another commonly used linked structure that we explore
later in Chapters 13 and 14.

entry

  

 

 

 
 

 

 

 

Figure 6.2: An example of a complex linked structure.

A linked list is a data structure that can be used to implement any number of
abstract data types. While some languages do provide, as part of their standard
library, a generic List ADT implemented using a linked list, we are going to create
and work with linked lists directly. Some algorithms and abstract data types can
be implemented more efficiently if we have direct access to the individual nodes
within the ADT than would be possible if we created a generic linked list class.
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In the next section, we explore the construction and management of a singly
linked list independent of its use in the implementation of any specific ADT. In
later sections we then present examples to show how linked lists can be used to
implement abstract data types. We also include a number of exercises at the end
of the chapter that provide practice in the construction and management of singly
linked lists.

N
O

TE

i External References. We use the term external reference to indicate
those reference variables that point to a node but are not themselves

contained within a node as is the case with the link fields. Some external
references must be permanent or exist during the lifetime of the linked list
in order to maintain the collection of nodes. Others are only needed on a
temporary basis in order to perform a specific operation. These temporary
external references should be local variables that disappear after the func-
tion or method has completed.

6.2 The Singly Linked List
A singly linked list is a linked list in which each node contains a single link field
and allows for a complete traversal from a distinctive first node to the last. The
linked list in Figure 6.1 is an example of a singly linked list.

There are several operations that are commonly performed on a singly linked
list, which we explore in this section. To illustrate the implementation of these op-
erations, our code assumes the existence of a head reference and uses the ListNode
class defined earlier. The data fields of the ListNode class will be accessed directly
but this class should not be used outside the module in which it is defined as it is
only intended for use by the linked list implementation.

6.2.1 Traversing the Nodes
In the earlier example, we accessed the second and third nodes of our sample list
by stringing together the next field name off the external reference variable a.
This may be sufficient for lists with few nodes, but it’s impractical for large lists.
Instead, we can use a temporary external reference to traverse through the list,
moving the reference along as we access the individual nodes. The implementation
is provided Listing 6.1.

The process starts by assigning a temporary external reference curNode to
point to the first node of the list, as illustrated in Figure 6.3(a). After entering the
loop, the value stored in the first node is printed by accessing the data component
stored in the node using the external reference. The external reference is then
advanced to the next node by assigning it the value of the current node’s link field,
as illustrated in Figure 6.3(b). The loop iteration continues until every node in
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(e) Advancing the external reference after printing value 36.

(d) Advancing the external reference after printing value 18.

(c) Advancing the external reference after printing value 52.

(b) Advancing the external reference after printing value 2.

(a) After initializing the temporary external reference.

(f) The external reference is set to None after printing value 13.
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







Figure 6.3: Traversing a linked list requires the initialization and adjustment of a tempo-
rary external reference variable.
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Listing 6.1 Traversing a linked list.

1 def traversal( head ):
2 curNode = head
3 while curNode is not None :
4 print curNode.data
5 curNode = curNode.next

the list has been accessed. The completion of the traversal is determined when
curNode becomes null, as illustrated in Figure 6.3(f). After accessing the last node
in the list, curNode is advanced to the next node, but there being no next node,
curNode is assigned None from the next field of the last node.

A correct implementation of the linked list traversal must also handle the case
where the list is empty. Remember, an empty list is indicated by a null head
reference. If the list were empty, the curNode reference would be set to null in
line 2 of Listing 6.1 and the loop would not execute producing the correct result.
A complete list traversal requires O(n) time since each node must be accessed and
each access only requires constant time.

6.2.2 Searching for a Node
A linear search operation can be performed on a linked list. It is very similar to the
traversal demonstrated earlier. The only difference is that the loop can terminate
early if we find the target value within the list. Our implementation of the linear
search is illustrated in Listing 6.2.

Listing 6.2 Searching a linked list.

1 def unorderedSearch( head, target ):
2 curNode = head
3 while curNode is not None and curNode.data != target :
4 curNode= curNode.next
5 return curNode is not None

Note the order of the two conditions in the while loop. It is important that we
test for a null curNode reference before trying to examine the contents of the node.
If the item is not found in the list, curNode will be null when the end of the list
is reached. If we try to evaluate the data field of the null reference, an exception
will be raised, resulting in a run-time error. Remember, a null reference does not
point to an object and thus there are no fields or methods to be referenced.

When implementing the search operation for the linked list, we must make
sure it works with both empty and non-empty lists. In this case, we do not need
a separate test to determine if the list is empty. This is done automatically by
checking the traversal reference variable as the loop condition. If the list were
empty, curNode would be set to None initially and the loop would never be entered.
The linked list search operation requires O(n) in the worst case, which occurs when
the target item is not in the list.
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6.2.3 Prepending Nodes
When working with an unordered list, new values can be inserted at any point
within the list. Since we only maintain the head reference as part of the list
structure, we can simply prepend new items with little effort. The implementation
is provided in Listing 6.3. Prepending a node can be done in constant time since
no traversal is required.

Listing 6.3 Prepending a node to the linked list.

1 # Given the head pointer, prepend an item to an unsorted linked list.
2 newNode = ListNode( item )
3 newNode.next = head
4 head = newNode

Suppose we want to add the value 96 to our example list shown in Figure 6.4(a).
Adding an item to the front of the list requires several steps. First, we must create
a new node to store the new value and then set its next field to point to the node
currently at the front of the list. We then adjust head to point to the new node
since it is now the first node in the list. These steps are represented as dashed lines
in Figure 6.4(b). Note the order of the new links since it is important we first link
the new node into the list before modifying the head reference. Otherwise, we lose
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 
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 22 5252 1818 3636 1313

(b)

9696



 

head

 22 5252 1818 3636 1313

(c)

9696



Figure 6.4: Prepending a node to the linked list: (a) the original list from Figure 6.1;
(b) link modifications required to prepend the node; and (c) the result after prepending 96.
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our external reference to the list and in turn, we lose the list itself. The results,
after linking the new node into the list, are shown in Figure 6.4(c).

When modifying or changing links in a linked list, we must consider the case
when the list is empty. For our implementation, the code works perfectly since the
head reference will be null when the list is empty and the first node inserted needs
the next field set to None.

6.2.4 Removing Nodes
An item can be removed from a linked list by removing or unlinking the node
containing that item. Consider the linked list from Figure 6.4(c) and assume we
want to remove the node containing 18. First, we must find the node containing the
target value and position an external reference variable pointing to it, as illustrated
in Figure 6.5(a). After finding the node, it has to be unlinked from the list, which
entails adjusting the link field of the node’s predecessor to point to its successor as
shown in Figure 6.5(b). The node’s link field is also cleared by setting it to None.

curNode

(a)

1

2

(b)

curNode

 


head

 22 5252 1818 3636 13139696



 

head

 22 5252 1818 3636 13139696





Figure 6.5: Deleting a node from a linked list: (a) finding the node to be removed and
assigning an external reference variable and (b) the link modifications required to unlink
and remove a node.

Accessing the node’s successor is very simple using the next link of the node.
But we must also access the node’s predecessor in order to change its link. The
only way we can do this is to position another external reference simultaneously
during the search for the given node, as illustrated in Figure 6.6(a). The result
after removing the node containing value 18 is shown in Figure 6.6(b).

Removing the first node from the list is a special case since the head pointer
references this node. There is no predecessor that has to be relinked, but the head
reference must be adjusted to point to the next node, as illustrated in Figure 6.7.
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Figure 6.6: Using a second temporary reference to remove a node from a linked list:
(a) positioning the second temporary reference variable predNode, and (b) the resulting
list after removing 18 from the linked list.

We now step through the code required for deleting a node from a singly linked
list, as illustrated in Listing 6.4. The curNode external reference is initially set to
the first node in the list, the same as is done in the traversal and search operations.
The predNode external reference is set to None since there is no predecessor to the
first node in the list.

A loop is used to position the two temporary external reference variables as
shown in lines 4–6 of Listing 6.4. As the curNode reference is moved along the list
in the body of the loop, the predNode reference follows behind. Thus, predNode
must be assigned to reference the same node as curNode before advancing curNode
to reference the next node.

After positioning the two external references, there are three possible condi-
tions: (1) the item is not in the list; (2) the item is in the first node; or (3) the
item is somewhere else in the list. If the target is not in the list, curNode will be
null, having been assigned None via the link field of the last node. This condition
is evaluated in line 8. To determine if the target is in the first node, we can simply
compare curNode to head and determine if they reference the same node. If they
do, we set head to point to the next node in the list, as shown in lines 9–10.

  22 5252 3636 13139696

head


nodepred

1

2



Figure 6.7: Modifications required to remove the first node of a linked list.
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Listing 6.4 Removing a node from a linked list.

1 # Given the head reference, remove a target from a linked list.
2 predNode = None
3 curNode = head
4 while curNode is not None and curNode.data != target :
5 predNode = curNode
6 curNode = curNode.next
7
8 if curNode is not None :
9 if curNode is head :

10 head = curNode.next
11 else :
12 predNode.next = curNode.next

If the target is elsewhere in the list, we simply adjust the link field of the
node referenced by predNode to point to the node following the one referenced by
curNode. This step is performed in the else clause of the condition as shown in
line 12 of Listing 6.4. If the last node is being removed, the same code can be
used because the next field of the node pointed to by predNode will be set to None
since curNode will be null. Removing a node from a linked list requires O(n) time
since the node could be at the end of the list, in which case a complete traversal
is required to locate the node.

6.3 The Bag ADT Revisited
To illustrate the use of the linked list structure, we implement a new version of the
Bag ADT, which we originally defined in Section 1.3. The new implementation is
shown in Listing 6.5 on the next page.

6.3.1 A Linked List Implementation
We begin our discussion of the linked list implementation of the Bag ADT with the
constructor. First, the head field will store the head pointer of the linked list. The
reference is initialized to None to represent an empty bag. The size field is used
to keep track of the number of items stored in the bag that is needed by the len
method. Technically, this field is not needed. But it does prevent us from having
to traverse the list to count the number of nodes each time the length is needed.
Notice we only define a head pointer as a data field in the object. Temporary
references such as the curNode reference used to traverse the list are not defined as
attributes, but instead as local variables within the individual methods as needed.
A sample instance of the new Bag class is illustrated in Figure 6.8.

The contains() method is a simple search of the linked list as described earlier
in the chapter. The add() method simply implements the prepend operation,
though we must also increment the item counter ( size) as new items are added.
The BagListNode class, used to represent the individual nodes, is also defined
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Listing 6.5 The llistbag.py module.

1 # Implements the Bag ADT using a singly linked list.
2
3 class Bag :
4 # Constructs an empty bag.
5 def __init__( self ):
6 self._head = None
7 self._size = 0
8
9 # Returns the number of items in the bag.

10 def __len__( self ):
11 return self._size
12
13 # Determines if an item is contained in the bag.
14 def __contains__( self, target ):
15 curNode = self._head
16 while curNode is not None and curNode.item != target :
17 curNode = curNode.next
18 return curNode is not None
19
20 # Adds a new item to the bag.
21 def add( self, item ):
22 newNode = _BagListNode( item )
23 newNode.next = self._head
24 self._head = newNode
25 self._size += 1
26
27 # Removes an instance of the item from the bag.
28 def remove( self, item ):
29 predNode = None
30 curNode = self._head
31 while curNode is not None and curNode.item != item :
32 predNode = curNode
33 curNode = curNode.next
34
35 # The item has to be in the bag to remove it.
36 assert curNode is not None, "The item must be in the bag."
37
38 # Unlink the node and return the item.
39 self._size -= 1
40 if curNode is head :
41 self._head = curNode.next
42 else :
43 predNode.next = curNode.next
44 return curNode.item
45
46 # Returns an iterator for traversing the list of items.
47 def __iter__( self ):
48 return _BagIterator( self._head )
49
50 # Defines a private storage class for creating list nodes.
51 class _BagListNode( object ):
52 def __init__( self, item ) :
53 self.item = item
54 self.next = None
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Bag

  
size head

44 1919 2323 7474 1212

Figure 6.8: Sample instance of the Bag class.

within the same module. It is specified in lines 51–54 at the bottom of the module,
but it is not intended for use outside the Bag class.

The remove() method implements the removal operation as presented in the
previous section, but with a couple of modifications. The if statement that checked
the status of the curNode variable has been replaced with an assert statement.
This was necessary since the remove operation of the bag has a precondition that
the item must be in the bag in order to be removed. If we make it pass the
assertion, the item counter is decremented to reflect one less item in the bag, the
node containing the item is unlinked from the linked list, and the item is returned
as required by the ADT definition.

6.3.2 Comparing Implementations
The Python list and the linked list can both be used to manage the elements stored
in a bag. Both implementations provide the same time-complexities for the various
operations with the exception of the add() method. When adding an item to a bag
implemented using a Python list, the item is appended to the list, which requires
O(n) time in the worst case since the underlying array may have to be expanded.
In the linked list version of the Bag ADT, a new bag item is stored in a new node
that is prepended to the linked structure, which only requires O(1). Table 6.1
shows the time-complexities for two implementations of the Bag ADT.

In general, the choice between a linked list or a Python list depends on the
application as both have advantages and disadvantages. The linked list is typically
a better choice for those applications involving large amounts of dynamic data ,
data that changes quite often. If there will be a large number of insertions and/or
deletions, the linked structure provides a fast implementation since large amounts

Operation Python List Linked List

b = Bag() O(1) O(1)

n = len(b) O(1) O(1)

x in b O(n) O(n)

b.add(x) O(n) O(1)

b.remove(x) O(n) O(n)

traversal O(n) O(n)

Table 6.1: Comparing the Bag ADT implemented using a Python list and a linked list.
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of data do not have to be shifted as is required by the Python list. This is especially
true when prepending items. On the other hand, the Python list is a better choice
in those applications where individual elements must be accessed by index. This
can be simulated with a linked list, but it requires a traversal of the list, resulting
in a linear operation whereas the Python list only requires constant time.

6.3.3 Linked List Iterators
Suppose we want to provide an iterator for our Bag ADT implemented using a
linked list as we did for the one implemented using a Python list. The process
would be similar, but our iterator class would have to keep track of the current
node in the linked list instead of the current element in the Python list. We define
a bag iterator class in Listing 6.6, which would be placed within the llistbag.py
module that can be used to iterate over the linked list.

Listing 6.6 An iterator for the Bag class implemented using a linked list.

1 # Defines a linked list iterator for the Bag ADT.
2 class _BagIterator :
3 def __init__( self, listHead ):
4 self._curNode = listHead
5
6 def __iter__( self ):
7 return self
8
9 def next( self ):

10 if self._curNode is None :
11 raise StopIteration
12 else :
13 item = self._curNode.item
14 self._curNode = self._curNode.next
15 return item

When iterating over a linked list, we need only keep track of the current node
being processed and thus we use a single data field curNode in the iterator. This
reference will be advanced through the linked list as the for loop iterates over the
nodes. As was done with our Python list-based Bag class, the linked list version
must include the iter method (shown in lines 47–48 of Listing 6.5), which
returns an instance of the BagIterator class.

Figure 6.9 illustrates the Bag and BagIterator objects at the beginning of the
for loop. The curNode pointer in the BagIterator object is used just like the
curNode pointer we used when directly performing a linked list traversal earlier
in the chapter. The only difference is that we don’t include a while loop since
Python manages the iteration for us as part of the for loop. Note, the iterator
objects can be used with any singly linked list configuration to traverse the nodes
and return the data contained in each.
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Bag
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curNode
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Figure 6.9: Sample Bag and BagIterator objects at the beginning of the for loop.

6.4 More Ways to Build a Linked List
Earlier in the chapter, we saw that new nodes can be easily added to a linked list
by prepending them to the linked structure. This is sufficient when the linked list
is used to implement a basic container in which a linear order is not needed, such
as with the Bag ADT. But a linked list can also be used to implement a container
abstract data type that requires a specific linear ordering of its elements, such as
with a Vector ADT. In addition, some implementations, such as in the case of the
Set ADT, can be improved if we have access to the end of the list or if the nodes
are sorted by element value.

6.4.1 Using a Tail Reference
The use of a single external reference to point to the head of a linked list is sufficient
for many applications. In some instances, however, we may need to append items
to the end of the list instead. Appending a new node to the list using only a head
reference requires linear time since a complete traversal is required to reach the
end of the list. Instead of a single external head reference, we can use two external
references, one for the head and one for the tail. Figure 6.10 illustrates a sample
linked list with both a head and a tail reference .

head


tail



  1919 4545 1313 772828

Figure 6.10: Sample linked list using both head and tail external references.

Appending Nodes

Adding the external tail reference to the linked list requires that we manage both
references as nodes are added and removed. Consider the process of appending a
new node to a non-empty list, as illustrated in Figure 6.11(a). First, a new node
is created to store the value to be appended to the list. Then, the node is linked
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Figure 6.11: Appending a node to a linked list using a tail reference: (a) the links required
to append the node, and (b) the resulting list after appending 21.

into the list following the last node. The next field of the node referenced by tail
is set to point to the new node. The tail reference has to be adjusted to point to
the new node since tail must always point to the last node in the list. The linked
list resulting from appending 21 to the list is illustrated in Figure 6.11(b).

If the list is empty, there is no existing node in which the link field can be
adjusted. Instead, both the head and tail references will be null. In this case, the
new node is appended to the list by simply adjusting both external references to
point to the new node. The code for appending a node to the linked list is provided
in Listing 6.7. It assumes the existence of both the head and tail reference variables.

Listing 6.7 Appending a node to a linked list using a tail reference.

1 # Given the head and tail pointers, adds an item to a linked list.
2 newNode = ListNode( item )
3 if head is None :
4 head = newNode
5 else :
6 tail.next = newNode
7 tail = newNode

Removing Nodes

Removing a node from a linked list in which both head and tail references are used
requires a simple modification to the code presented earlier in the chapter. Consider
the sample list in Figure 6.12, in which we want to delete the node containing 21.
After unlinking the node to be removed, we must check to see if it was at the end
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Figure 6.12: Deleting the last node in a list using a tail reference.

of the list. If it was, we must adjust the tail reference to point to the same node
as predNode, which is now the last node in the list.

The code for removing an item from a linked list using a tail reference is shown
in Listing 6.8. If the list contains a single node, the head reference will be assigned
None when it is assigned the contents of the node’s next field. The tail reference
will also be set to None when it is set to predNode.

Listing 6.8 Removing a node from a linked list using a tail reference.

1 # Given the head and tail references, removes a target from a linked list.
2 predNode = None
3 curNode = head
4 while curNode is not None and curNode.data != target :
5 predNode = curNode
6 curNode = curNode.next
7
8 if curNode is not None :
9 if curNode is head :

10 head = curNode.next
11 else :
12 predNode.next = curNode.next
13 if curNode is tail :
14 tail = predNode

6.4.2 The Sorted Linked List
The items in a linked list can be sorted in ascending or descending order as was
done with a sequence. Consider the sorted linked list illustrated in Figure 6.13.
The sorted list has to be created and maintained as items are added and removed.

head



  1313 1818 3636 525222

Figure 6.13: A sorted linked list with items in ascending order.
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Linear Search

The linear search for use with the linked list can be modified to take advantage
of the sorted items. The only change required is to add a second condition that
terminates the loop early if we encounter a value larger than the target. The search
routine for a sorted linked list is shown in Listing 6.9.

Listing 6.9 Searching a sorted linked list.

1 def sortedSearch( head, target ) :
2 curNode = head
3 while curNode is not None and curNode.data < target :
4 if curNode.data == target :
5 return True
6 else :
7 curNode = node.next
8 return False

Inserting Nodes

Adding a new node to an unsorted linked list is simple because we can simply add it
to the front or end of the list since its placement is not important. When adding a
node to a sorted list, however, the correct position for the new value must be found
and the new node linked into the list at that position. The Python implementation
for inserting a value into a sorted linked list is provided in Listing 6.10.

As with the removal operation for the unsorted list, we must position two
temporary external references by traversing through the linked list searching for
the correct position of the new value. The only difference is the loop termination
condition. To insert a new node, we must terminate the loop upon finding the first
value larger than the new value being added.

Listing 6.10 Inserting a value into a sorted list.

1 # Given the head pointer, insert a value into a sorted linked list.
2 # Find the insertion point for the new value.
3 predNode = None
4 curNode = head
5 while curNode is not None and value > curNode.data :
6 predNode = curNode
7 curNode = curNode.next
8
9 # Create the new node for the new value.

10 newNode = ListNode( value )
11 newNode.next = curNode
12 # Link the new node into the list.
13 if curNode is head :
14 head = newNode
15 else :
16 predNode.next = newNode
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Three cases can occur when inserting a node into a sorted linked list, as illus-
trated in Figure 6.14: the node is inserted in the front, at the end, or somewhere
in the middle. After finding the correct position, a new node is created and its
next field is changed to point to the same node referenced by curNode. This link
is required no matter where in the list the new node is inserted. If the new node
is to be inserted in the front, then the operation is a simple prepend, as was done
with an unsorted linked list, and curNode will be pointing to the first node. When
the new value being added is the largest in the list and the new node is to be added
at the end, curNode will be null and thus the next field will be null as it should
be. When the new node is inserted elsewhere in the list, curNode will be pointing
to the node that will follow the new node.

After linking the new node to the list, we must determine if it is being inserted
at the front of the list, in which case the head reference must be adjusted. We
do this by comparing the curNode reference with the head reference. If they are
aliases, the new node comes first in the linked list and we must adjust the head
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Figure 6.14: Inserting a new value into a sorted linked list: (a) inserting -7 at the front of
the list; (b) inserting 24 in the middle of the list; (c) inserting 69 at the end of the list.
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reference to point to the new node. If the two nodes are not aliases, then the node
is inserted by setting the next field of the node referenced by predNode to point
to the new node. This step is handled by lines 13–16 of Listing 6.10.

Traversing and Deleting

The traversal operation implemented for the unsorted linked list can be used with
both sorted and unsorted linked lists since it is not dependent on the contents of
the list itself. Deleting from a sorted linked list is the same operation used with
an unsorted list with one exception. Searching for the node containing the target
value can end early after encountering the first value larger than the one to be
deleted.

6.5 The Sparse Matrix Revisited
In the previous chapter, we defined and implemented the Sparse Matrix ADT.
Remember, a sparse matrix is a matrix containing a large number of zero elements.
Instead of providing space for every element in the matrix, we need only store the
non-zero elements. In our original implementation, we used a list to store the non-
zero elements of the matrix, which were stored as MatrixElement objects. This
improved the time-complexity of many of the matrix operations when compared
to the use of a 2-D array.

We can further improve the Sparse Matrix ADT by using the linked list struc-
ture. Instead of storing the elements in a single list, however, we can use an array
of sorted linked lists, one for each row of the matrix. The non-zero elements for a
given row will be stored in the corresponding linked list sorted by column index.
The row index is not needed since it corresponds to a specific linked list within the
array of linked lists. The sparse matrix from Figure 4.5 is illustrated in Figure 6.15
stored using an array of linked lists.
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Figure 6.15: A sparse matrix implemented as an array of sorted linked lists.
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6.5.1 An Array of Linked Lists Implementation
To implement the Sparse Matrix ADT using an array of sorted linked lists, we
create a new SparseMatrix class, as shown in Listing 6.11. In the constructor,
two class fields are created: one to store the number of columns in the matrix and
another to store the array of head references to the linked lists in which the matrix
elements will be stored. An array is created whose size is equal to the number of
rows in the matrix. The individual elements are initialized to None to represent
empty linked lists since there are no non-zero elements in the sparse matrix initially.
Note we did not provide a field to store the number of rows as that information
can be obtained from the length of the array. Thus, numRows() simply calls the
array’s length operation.

The MatrixElementNode class, provided in lines 95–99, is a modified version
of the MatrixElement class used in Chapter 4. The row component has been
removed while the next link field was added in order to use the objects as linked
nodes. When elements are added to the sparse matrix, nodes will be added to
the individual linked lists based on the row index of the element. Thus, the row
component does not have to be stored in each node.

Changing Element Values

The setitem method is the main linked list management routine for the un-
derlying structure. This method not only provides for the modification of element
values, but it also handles node insertions for new non-zero elements and node
removals when an element becomes zero. The three operations handled by this
method can be combined to produce an efficient implementation.

The first step is to position the two external reference variables predNode and
curNode along the linked list corresponding to the indicated row index. While
only the curNode reference will be needed for a simple element value modification,
predNode will be needed if we have to insert a new node or remove an existing
node. After positioning the two references, we can then determine what action
must be taken.

If the element corresponding to the given row and col indices is in the linked
list, curNode will be pointing to a node and the col field of that node will be
that of the element. In this case, either the value stored in the node is changed
to the new non-zero value or the node has to be deleted when the new value is
zero. Modifying the value only requires changing the value field of the curNode.
Removing the element entry for a zero value is also straightforward since the two
external references have been positioned correctly and the links can be changed as
outlined in Section 6.2.4.

If the element is not represented by a node in the linked list of the corresponding
row and the new value is non-zero, then a new node must be inserted in the proper
position based on the predNode and curNode references. The only difference in
the insertion operation from that used earlier in the chapter is that the head
reference is stored in one of the elements of the listOfRows array instead of its
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own variable. If the element is already a zero-entry and the new value is zero, no
action is required.

Setting the value of a matrix element requires O(n) time in the worst case,
where n is the number of columns in the matrix. This value is obtained by observing
that the most time-consuming part is the positioning of the two references, curNode
and predNode, which require a complete list traversal in the worst case. Since a
linked list contains a single row, we know it will contain at most n nodes.

Listing 6.11 The llistsparse.py module

1 # Implementation of the Sparse Matrix ADT using an array of linked lists.
2 from array import Array
3
4 class SparseMatrix :
5 # Creates a sparse matrix of size numRows x numCols initialized to 0.
6 def __init__( self, numRows, numCols ):
7 self._numCols = numCols
8 self._listOfRows = Array( numRows )
9

10 # Returns the number of rows in the matrix.
11 def numRows( self ):
12 return len( self._listOfRows )
13
14 # Returns the number of columns in the matrix.
15 def numCols( self ):
16 return self._numCols
17
18 # Returns the value of element (i,j): x[i,j]
19 def __getitem__( self, ndxTuple ):
20 ......
21
22 # Sets the value of element (i,j) to the value s: x[i,j] = s
23 def __setitem__( self, ndxTuple, value ):
24 predNode = None
25 curNode = self._listOfRows[row]
26 while curNode is not None and curNode.col != col :
27 predNode = curNode
28 curNode = curNode.next
29
30 # See if the element is in the list.
31 if curNode is not None and curNode.col == col :
32 if value == 0.0 : # remove the node.
33 if curNode == self._listOfRows[row] :
34 self._listOfRows[row] = curNode.next
35 else :
36 predNode.next = curNode.next
37 else : # change the node's value.
38 curNode.value = value
39
40 # Otherwise, the element is not in the list.
41 elif value != 0.0 :
42 newNode = _MatrixElementNode( col, value )
43 newNode.next == curNode
44 if curNode == self._listOfRows[row] :
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45 self._listOfRows[row] = newNode
46 else :
47 predNode.next = newnode
48
49 # Scales the matrix by the given scalar.
50 def scaleBy( self, scalar ):
51 for row in range( self.numRows() ) :
52 curNode = self._listOfRows[row]
53 while curNode is not None :
54 curNode.value *= scalar
55 curNode = curNode.next
56
57 # Creates and returns a new matrix that is the transpose of this matrix.
58 def transpose( self ):
59 ......
60
61 # Matrix addition: newMatrix = self + rhsMatrix.
62 def __add__( self, rhsMartrix ) :
63 # Make sure the two matrices have the correct size.
64 assert rhsMatrix.numRows() == self.numRows() and \
65 rhsMatrix.numCols() == self.numCols(), \
66 "Matrix sizes not compatable for adding."
67
68 # Create a new sparse matrix of the same size.
69 newMatrix = SparseMatrix( self.numRows(), self.numCols() )
70
71 # Add the elements of this matrix to the new matrix.
72 for row in range( self.numRows() ) :
73 curNode = self._listOfRows[row]
74 while curNode is not None :
75 newMatrix[row, curNode.col] = curNode.value
76 curNode = curNode.next
77
78 # Add the elements of the rhsMatrix to the new matrix.
79 for row in range( rhsMatrix.numRows() ) :
80 curNode = rhsMatrix._listOfRows[row]
81 while curNode is not None :
82 value = newMatrix[row, curNode.col]
83 value += curNode.value
84 newMatrix[row, curNode.col] = value
85 curNode = curNode.next
86
87 # Return the new matrix.
88 return newMatrix
89
90 # --- Matrix subtraction and multiplication ---

91 # def __sub__( self, rhsMatrix ) :
92 # def __mul__( self, rhsMatrix ) :
93
94 # Storage class for creating matrix element nodes.
95 class _MatrixElementNode :
96 def __init__( self, col, value ) :
97 self.col = col
98 self.value = value
99 self.next = None
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Matrix Scaling

The scaleBy() method is very similar to the version used in the list implementa-
tion of the original Sparse Matrix ADT from Chapter 4. We need only traverse over
each of the individual linked lists stored in the listOfRows array, during which
we scale the value stored in each node. Remember, this is sufficient as elements
not represented by nodes in the linked lists have zero values and thus would not
be affected by a scaling factor. The matrix scaling operation requires O(k) time
in the worst case since only the k non-zero elements are stored in the structure.

Matrix Addition

The add method for this version of the sparse matrix, which is provided in lines
62–88 of Listing 6.11, also follows the four steps outlined in Section 4.5.1. We first
create a new SparseMatrix object that will contain the new matrix resulting from
the addition. Then, the contents of the self or lefthand-side matrix is copied to
the new matrix, one element at a time. Finally, we traverse over the non-zero
elements of the righthand-side matrix and add the values of its non-zero elements
to the new matrix.

This implementation of the addition operation, which requires O(kn) time in
the worst case, is not the most efficient. Instead of using the getitem and
setitem operations, we can use temporary traversal reference variables with

each matrix to directly access the non-zero values in the two source matrices and
to store the resulting non-zero values in the new matrix. A new implementation
can be devised that only requires O(k) time in the worst case.

6.5.2 Comparing the Implementations

The Sparse Matrix ADT implemented as an array of linked lists can be evaluated
for any of the three cases: best, average, and worst. The analysis, which is left
as an exercise, depends on the relationship between the total number of non-zero
elements, k, and the number of columns, n, in the matrix.

We implemented the Matrix ADT using a 2-D array that can be used to store
a sparse matrix and we implemented the Sparse Matrix ADT using two different
data structures: a list of MatrixElement objects, and an array of linked lists.
Table 6.2 provides a comparison of the worst case time-complexities between the
three implementations for several of the matrix operations. The 2-D array imple-
mentation offers the best advantage of quick element access with the getitem
and setitem methods, but the other matrix operations are more costly. While
both the Python list and the array of linked lists implementations provide similar
times, the array of linked lists version will typically provide better times since the
efficiency for many of the operations is based on the number of columns in the
matrix and not the total number of non-zero elements.
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Operation 2-D Array Python List Linked Lists

constructor O(1) O(1) O(1)

s.numRows() O(1) O(1) O(1)

s.numCols() O(1) O(1) O(1)

x = s[i,j] O(1) O(k) O(n)

s[i,j] = x O(1) O(k) O(n)

s.scaleBy(x) O(n2) O(k) O(k)

r = s + t O(n2) O(k2) O(kn)

Table 6.2: Comparison of the Matrix and Sparse Matrix ADT implementations.

6.6 Application: Polynomials
Polynomials, which are an important concept throughout mathematics and sci-
ence, are arithmetic expressions specified in terms of variables and constants. A
polynomial in one variable can be expressed in expanded form as

anxn + an−1x
n−1 + an−2x

n−2 + . . . + a1x
1 + a0

where each aix
i component is called a term. The ai part of the term, which is a

scalar that can be zero, is called the coefficient of the term. The exponent of the
xi part is called the degree of that variable and is limited to whole numbers. For
example,

12x2 − 3x + 7

consists of three terms. The first term, 12x2, is of degree 2 and has a coefficient
of 12; the second term, −3x, is of degree 1 and has a coefficient of −3; the last
term, while constant, is of degree 0 with a coefficient of 7.

Polynomials can be characterized by degree (i.e., all second-degree polynomi-
als). The degree of a polynomial is the largest single degree of its terms. The
example polynomial above has a degree of 2 since the degree of the first term,
12x2, has the largest degree.

In this section, we design and implement an abstract data type to represent
polynomials in one variable expressed in expanded form. The discussion begins
with a review of polynomial operations and concludes with a linked list implemen-
tation of our Polynomial ADT.

6.6.1 Polynomial Operations
A number of operations can be performed on polynomials. We review several of
these operations, beginning with addition.
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Addition

Two polynomials of the same variable can be summed by adding the coefficients of
corresponding terms of equal degree. The result is a third polynomial. Consider
the following two polynomials:

5x2 + 3x− 10
2x3 + 4x2 + 3

which we can add to yield a new polynomial:

(5x2 + 3x− 10) + (2x3 + 4x2 + 3) = 2x3 + 9x2 + 3x− 7

Subtraction is performed in a similar fashion but the coefficients are subtracted
instead. Another way to view polynomial addition is to align terms by degree and
add the corresponding coefficients:

5x2 3x −10
+ 2x3 4x2 3

2x3 9x2 3x −7

Multiplication

The product of two polynomials is also a third polynomial. The new polynomial is
obtained by summing the result from multiplying each term of the first polynomial
by each term of the second. Consider the two polynomials from the previous
example:

(5x2 + 3x− 10)(2x3 + 4x2 + 3)

The second polynomial has to be multiplied by each term of the first polynomial:

5x2(2x3 + 4x2 + 3) + 3x(2x3 + 4x2 + 3) +−10(2x3 + 4x2 + 3)

We then distribute the terms of the first polynomial to yield three intermediate
polynomials:

(10x5 + 20x4 + 15x2) + (6x4 + 12x3 + 9x) + (−20x3 − 40x2 − 30)

Finally, the three polynomials are summed, resulting in

10x5 + 26x4 − 8x3 − 25x2 + 9x− 30

Evaluation

The easiest operation by far is the evaluation of a polynomial. Polynomials can be
evaluated by assigning a value to the variable, commonly called the unknown. By
making the variable known in specifying a value, the expression can be computed,
resulting in a real value. If we assign value 3 to the variable x in the equation

10x5 + 26x4 − 8x3 − 25x2 + 9x− 30

the result will be

10(3)5 + 26(3)4 − 8(3)3 − 25(3)2 + 9(3)− 30 = 4092
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6.6.2 The Polynomial ADT
Given the overview of polynomials, we now turn our attention to defining the
Polynomial ADT.

Define Polynomial ADT

A polynomial is a mathematical expression of a variable constructed of one or more
terms. Each term is of the form aix

i where ai is a scalar coefficient and xi is the
unknown variable of degree i.

� Polynomial(): Creates a new polynomial initialized to be empty and thus
containing no terms.

� Polynomial( degree, coefficient ): Creates a new polynomial initialized
with a single term constructed from the degree and coefficient arguments.

� degree(): Returns the degree of the polynomial. If the polynomial contains
no terms, a value of −1 is returned.

� getitem ( degree ): Returns the coefficient for the term of the provided de-
gree. Thus, if the expression of this polynomial is x3 + 4x + 2 and a degree of
1 is provided, this operation returns 4. The coefficient cannot be returned for
an empty polynomial.

� evaluate( scalar ): Evaluates the polynomial at the given scalar value and
returns the result. An empty polynomial cannot be evaluated.

� add ( rhsPolynomial ): Creates and returns a new Polynomial that is the
result of adding this polynomial and the rhsPoly. This operation is not
defined if either polynomial is empty.

� subtract ( rhsPoly ): Creates and returns a new Polynomial that is the re-
sult of subtracting this polynomial and the rhsPoly. This operation is not
defined if either polynomial is empty.

� multiply ( rhsPoly ): Creates and returns a new Polynomial that is the re-
sult of multiplying this polynomial and the rhsPoly. This operation is not
defined if either polynomial is empty.

Two constructors were specified for this abstract data type. Most object-
oriented languages provide a mechanism to construct an object in various ways. In
Python, we define a single constructor and supply default values for the arguments.

6.6.3 Implementation
To implement the Polynomial ADT, we must determine how best to represent
the individual terms and how to store and manage the collection of terms. In
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earlier chapters, we were limited to the use of a list or dictionary. But with the
introduction of the linked list in this chapter, we now have an additional option.
The linked list has the advantage of requiring fewer shifts and no underlying array
management as is required with the Python list. This is especially important when
working with dynamic polynomials.

Linked List Structure

We are going to implement our Polynomial ADT using a singly linked list. Given
this choice, we must decide how the data should be stored and organized within the
linked list. Since a polynomial is constructed as the sum of one or more non-zero
terms, we can simply store an individual term in each node of the list as defined
by the PolyTermNode class, shown in lines 65–69 of Listing 6.12.

Next, we must decide whether to order the nodes within the linked list. Upon
analysis of the polynomial operations, it becomes clear an ordered list would be
better since many of those operations are based on the degree of the terms. For
example, the degree of the polynomial is the degree of the largest term. If the
list is ordered, finding the polynomial degree is rather simple. Likewise, you will
soon see that ordering the terms allows for a more efficient implementation of the
addition and multiplication operations. Unlike previous examples, we are going to
order the nodes in descending order based on degree since polynomials are typically
written with the terms ordered from largest degree to smallest. A sample linked
list structure for the polynomial 5x2 + 3x− 10 is illustrated in Figure 6.16.

  

Polynomial





polyHead

polyTail

22 55 11 33 00 -10-10

Figure 6.16: A Polynomial object for the polynomial 5x2 + 3x− 10.

Finally, we need to decide whether our implementation can benefit from the
use of a tail pointer or if a head pointer alone will suffice. A rule of thumb in
making this decision is whether we will be appending nodes to the list or simply
inserting them in their proper position. If you need to append nodes to a linked
list, you should use a tail pointer. The implementation of some of our polynomial
operations can be improved if we append nodes directly to the end of the linked
list. Thus, we will use and manage a tail pointer in our implementation of the
Polynomial ADT.
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Listing 6.12 Partial implementation of the polynomial.py module.

1 # Implementation of the Polynomial ADT using a sorted linked list.
2 class Polynomial :
3 # Create a new polynomial object.
4 def __init__(self, degree = None, coefficient = None):
5 if degree is None :
6 self._polyHead = None
7 else :
8 self._polyHead = _PolyTermNode(degree, coefficient)
9 self._polyTail = self._polyHead

10
11 # Return the degree of the polynomial.
12 def degree( self ):
13 if self._polyHead is None :
14 return -1
15 else :
16 return self._polyHead.degree
17
18 # Return the coefficient for the term of the given degree.
19 def __getitem__( self, degree ):
20 assert self.degree() >= 0,
21 "Operation not permitted on an empty polynomial."
22 curNode = self._polyHead
23 while curNode is not None and curNode.degree >= degree :
24 curNode = curNode.next
25
26 if curNode is None or curNode.degree != degree :
27 return 0.0
28 else :
29 return curNode.degree
30
31 # Evaluate the polynomial at the given scalar value.
32 def evaluate( self, scalar ):
33 assert self.degree() >= 0,
34 "Only non-empty polynomials can be evaluated."
35 result = 0.0;
36 curNode = self._polyHead
37 while curNode is not None :
38 result += curNode.coefficient * (scalar ** curNode.degree)
39 curNode = curNode.next
40 return result
41
42 # Polynomial addition: newPoly = self + rhsPoly.
43 def __add__( self, rhsPoly ):
44 ......
45
46 # Polynomial subtraction: newPoly = self - rhsPoly.
47 def __sub__( self, rhsPoly ):
48 ......
49
50 # Polynomial multiplication: newPoly = self * rhsPoly.
51 def __mul__( self, rhsPoly ):
52 ......
53

(Listing Continued)
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Listing 6.12 Continued . . .

54 # Helper method for appending terms to the polynomial.
55 def _appendTerm( self, degree, coefficient ) :
56 if coefficient != 0.0 :
57 newTerm = _PolyTermNode( degree, coefficient )
58 if self._polyHead is None :
59 self._polyHead = newTerm
60 else :
61 self._polyTail.next = newTerm
62 self._polyTail = newTerm
63
64 # Class for creating polynomial term nodes used with the linked list.
65 class _PolyTermNode( object ):
66 def __init__( self, degree, coefficient ):
67 self.degree = degree
68 self.coefficient = coefficient
69 self.next = None

Basic Operations

The Polynomial ADT calls for two constructors, one for creating an empty polyno-
mial and the other that can be used to create a polynomial initialized with a single
term supplied as an argument. In Python, we can provide multiple constructors
with the use of default values. The constructor, shown in lines 4–9 of Listing 6.12,
defines two data fields, the head and tail pointers, for use with the linked list im-
plementation. These references are either initialized to None or set to point to the
first node in the list depending on how the constructor was called.

The degree() method is simple to implement as it returns either the degree
of the largest term that is stored in the first node or -1 if the polynomial is not
defined. For our ADT, a polynomial is not defined if it does not contain any terms,
which is indicated in our implementation by an empty list.

The get operation, which we implement using the subscript operator, returns
the coefficient corresponding to a specific term of the polynomial identified by
degree. A linear search of the linked list is required to find the corresponding
term. Since the nodes are sorted by degree, we can terminate the search early
if we encounter a node whose degree is smaller than the target. After the loop
terminates, there are two possible conditions. If there is no non-zero term with the
given degree, then curNode will either be None or pointing to a list node whose
degree is smaller than the target. In this case, we must return a value of 0 since
by definition a zero-term has a coefficient of 0. Otherwise, we simply return the
coefficient of the corresponding term pointed to by curNode.

A polynomial is evaluated by supplying a specific value for the variable used
to represent each term and then summing the terms. The evaluate() method is
easily implemented as a list traversal in which a sum is accumulated, term by term.
The result is a O(n) time operation, where n is the degree of the polynomial.
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Appending Terms

We included a tail reference in our linked list implementation for use by several
of the polynomial arithmetic operations in order to perform fast append opera-
tions. While the Polynomial ADT does not define an append operation, we want
to provide a helper method that implements this operation. It will be used by
other methods in the class for creating efficient operations. The appendTerm()
helper method in lines 55–62 of Listing 6.12 accepts the degree and coefficient of
a polynomial term, creates a new node to store the term, and appends the node
to the end of the list. Since we only store the non-zero terms in the linked list, we
must ensure the supplied coefficient is not zero before creating and appending the
new node.

Polynomial Addition

The addition of two polynomials can be performed for our linked list implementa-
tion using a simple brute-force method, as illustrated in the code segment below:

class Polynomial :
# ...
def simple_add( self, rhsPoly ):
newPoly = Polynomial()
if self.degree() > rhsPoly.degree() :
maxDegree = self.degree()

else
maxDegree = rhsPoly.degree()

i = maxDegree
while i >= 0 :
value = self[i] + rhsPoly[i]
self._appendTerm( i, value )
i += 1

return newPoly

The new polynomial is created by iterating over the two original polynomials,
term by term, from the largest degree among the two polynomials down to degree 0.
The element access method is used to extract the coefficients of corresponding
terms from each polynomial, which are then added, resulting in a term for the
new polynomial. Since we iterate over the polynomials in decreasing degree order,
we can simply append the new term to the end of the linked list storing the new
polynomial.

This implementation is rather simple, but it’s not very efficient. The element
access method, which is used to obtain the coefficients, requires O(n) time. Assum-
ing the largest degree between the two polynomials is n, the loop will be executed
n times, resulting in quadratic time in the worst case.

The polynomial addition operation can be greatly improved. Upon close ex-
amination it becomes clear this problem is similar to that of merging two sorted
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lists. Consider the linked lists in Figure 6.17 representing three polynomials with
the nodes positioned such that corresponding terms are aligned. The top two lists
represent the two polynomials 5x2 + 3x− 10 and 2x3 + 4x2 + 3 while the bottom
list is the polynomial resulting from adding the other two.
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  
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polyHead

polyTail

listB
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polyHead

polyTail

merged
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

polyHead

polyTail

22 55 11 33 00 -10-10

33 22 22 44 00 33

33 22 22 99 00 -7-711 33
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

Figure 6.17: The top two linked lists store the two polynomials 5x2 + 3x − 10 and
2x3 + 4x2 + 3. The bottom list is the resulting polynomial after adding the two origi-
nal polynomials.

In Chapter 4, we discussed an efficient solution for the problem of merging
two sorted lists. We also saw how that solution could be used for the set union
operation, which required a new Python list containing nonduplicate items. If
we use a similar approach, combining duplicate terms by adding their coefficients,
we can produce a more efficient solution for our current problem of polynomial
addition.

Merging two sorted arrays or Python lists, as was done in the previous chapter,
is rather simple since we can refer to individual elements by index. Merging two
sorted linked list requires several modifications. First, we must use temporary
external references to point to the individual nodes of the two original polynomials.
These references will be moved along the two linked lists as the terms are processed
and merged into the new list. Next, we must utilize the appendTerm() helper
method to append new nodes to the resulting merged list. The implementation of
the add() method using the list merge technique is provided in Listing 6.13.
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Listing 6.13 Efficient implementation of the polynomial add operation.

1 class Polynomial :
2 # ...
3 def __add__( self, rhsPoly ):
4 assert self.degree() >= 0 and rhsPoly.degree() >= 0,
5 "Addition only allowed on non-empty polynomials."
6
7 newPoly = Polynomial()
8 nodeA = self._termList
9 nodeB = rhsPoly._termList

10
11 # Add corresponding terms until one list is empty.
12 while nodeA is not None and nodeB is not None :
13 if nodeA.degree > nodeB.degree :
14 degree = nodeA.degree
15 value = nodeA.coefficient
16 nodeA = nodeA.next
17 elif listA.degree < listB.degree :
18 degree = nodeB.degree
19 value = nodeB.coefficient
20 nodeB = nodeB.next
21 else :
22 degree = nodeA.degree
23 value = nodeA.coefficient + nodeB.coefficient
24 nodeA = nodeA.next
25 nodeB = nodeB.next
26 self._appendTerm( degree, value )
27
28 # If self list contains more terms append them.
29 while nodeA is not None :
30 self._appendTerm( nodeA.degree, nodeA.coefficient )
31 nodeA = nodeA.next
32
33 # Or if rhs contains more terms append them.
34 while nodeB is not None :
35 self._appendTerm( nodeB.degree, nodeB.coefficient )
36 nodeB = nodeB.next
37
38 return newPoly

Multiplication

Computing the product of two polynomials requires multiplying the second polyno-
mial by each term in the first. This generates a series of intermediate polynomials,
which are then added to create the final product. To aide in this operation, we
create a second helper method, termMultiply(), as shown in lines 23–39 of List-
ing 6.14, which creates a new polynomial from multiplying an existing polynomial
by another term.

Using this helper method, we can now easily create a solution for the multi-
plication operation that simply implements the individual steps outlined earlier
for multiplying two polynomials. As with the earlier simple add() method, this
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method is quite simple but not very efficient. The implementation of the polyno-
mial multiplication is provided in lines 3–19 of Listing 6.14. We leave as an exercise
the proof that the mul method requires quadratic time in the worst case as well
as the development of a more efficient implementation.

Listing 6.14 Implementation of the polynomial multiply operation.

1 class Polynomial :
2 # ...
3 def multiply( self, rhsPoly ):
4 assert self.degree() >= 0 and rhsPoly.degree() >= 0,
5 "Multiplication only allowed on non-empty polynomials."
6
7 # Create a new polynomial by multiplying rhsPoly by the first term.
8 node = self._polyHead
9 newPoly = rhsPoly._termMultiply( node )

10
11 # Iterate through the remaining terms of the poly computing the
12 # product of the rhsPoly by each term.
13 node = node.next
14 while node is not None :
15 tempPoly = rhsPoly._termMultiply( node )
16 newPoly = newPoly.add( tempPoly )
17 node = node.next
18
19 return newPoly
20
21 # Helper method for creating a new polynomial from multiplying an
22 # existing polynomial by another term.
23 def _termMultiply( self, termNode ):
24 newPoly = Polynomial()
25
26 # Iterate through the terms and compute the product of each term and
27 # the term in termNode.
28 curr = curr.next
29 while curr is not None :
30 # Compute the product of the term.
31 newDegree = curr.degree + termNode.degree
32 newCoeff = curr.coefficient * termNode.coefficient
33
34 # Append it to the new polynomial.
35 newPoly._appendTerm( newDegree, newCoeff )
36
37 # Advance the current pointer.
38 curr = curr.next
39 return newPoly
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Exercises
6.1 Implement the following functions related to the singly linked list:

(a) The removeAll(head) function, which accepts a head reference to a singly
linked list, unlinks and remove every node individually from the list.

(b) The splitInHalf(head) function, which accepts a head reference to a
singly linked list, splits the list in half and returns the head reference to
the head node of the second half of the list. If the original list contains a
single node, None should be returned.

6.2 Evaluate the following code segment which creates a singly linked list. Draw
the resulting list, including the external pointers.

box = None
temp = None
for i in range( 4 ) :
if i % 3 != 0 :
temp = ListNode( i )
temp.next = box
box = temp

6.3 Consider the following singly linked list. Provide the instructions to insert the
new node immediately following the node containing 45. Do not use a loop or
any additional external references.

  

head





curNode

 



newNode



2222

7373 22 5252 1818 3636



6.4 Consider the following singly linked list. Provide the instructions to remove
the node containing 18. Do not use a loop or any additional external references.

22  5252  1818 

head



9696 

curNode

   7373 22 5252 1818 3636


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6.5 The following questions are related to the Sparse Matrix ADT.

(a) Implement the remaining methods of the SparseMatrix class presented in
the chapter using the array of sorted linked lists: getitem , transpose(),
sub , and mul .

(b) Determine the time-complexity for each of the SparseMatrix methods
implemented in part (a).

(c) Prove or show that the matrix addition operation of the SparseMatrix
class, as implemented in the chapter using an array of sorted linked lists,
has a worst case run time of O(kn).

(d) As you proved in part (c), the implementation of the SparseMatrix add
method presented in the chapter is O(kn). A more efficient implementa-
tion is possible without the use of the getitem and setitem meth-
ods. Design and implement a new version of the add method that has
a run time of no more than O(k).

(e) Show that your implementation of the add method from part(c) has a
worst case run time of O(k).

(f) What advantages are there to using sorted linked lists with the Sparse
Matrix ADT instead of unsorted linked lists?

6.6 In Programming Project 4.1, you implemented the Sparse Life Grid ADT
that creates a game grid of unlimited size for use with the game of Life. That
implementation used a single Python list to store the individual live cells,
which was similar to the technique we used with the Sparse Matrix ADT.
Explain why the array of linked lists structure used to implement the Sparse
Matrix ADT in this chapter cannot be used to implement the Sparse Life Grid
ADT.

6.7 Prove or show that the worst case time for the mul method of the Polynomial
class implemented in this chapter is O(n2).

Programming Projects
6.1 We have provided two implementations of the Set ADT in Chapter 1 and

Chapter 4.

(a) Implement a new version of the Set ADT using an unsorted linked list.

(b) Implement a new version of the Set ADT using a sorted linked list.

(c) Evaluate your new implementations to determine the worst case run time
of each operation.

(d) Compare the run times of your new versions of the Set ADT to those from
Chapter 1 and Chapter 4.
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6.2 Consider the Vector ADT from Programming Project 2.1:

(a) Implement a new version of the ADT using an unsorted linked list.

(b) Evaluate your new implementation to determine the worst case run time
of each operation.

(c) Compare the run times of your new version of the Vector ADT to that of
the original in Programming Project 2.1.

(d) What are the advantages and disadvantages of using a linked list to im-
plement the Vector ADT?

6.3 Consider the Map ADT from Section 3.2:

(a) Implement a new version of the Map ADT using an unsorted linked list.

(b) Implement a new version of the Map ADT using a sorted linked list.

(c) Evaluate your new implementations to determine the worst case run time
of each operation.

(d) Compare the run times of your new versions of the Map ADT to those
from Section 3.2 and Programming Project 5.2.

6.4 Implement the sub method for the Polynomial class implemented in the
chapter.

6.5 The implementation of the Polynomial mul method is O(n2) in the worst
case. Design and implement a more efficient solution for this operation.

6.6 Provide a new implementation of the Polynomial ADT to use a Python list
for storing the individual terms.

6.7 Integer values are implemented and manipulated at the hardware-level, al-
lowing for fast operations. But the hardware does not supported unlimited
integer values. For example, when using a 32-bit architecture, the integers are
limited to the range -2,147,483,648 through 2,147,483,647. If you use a 64-bit
architecture, this range is increased to the range -9,223,372,036,854,775,808
through 9,223,372,036,854,775,807. But what if we need more than 19 digits
to represent an integer value?

In order to provide platform-independent integers and to support integers
larger than 19 digits, Python implements its integer type in software. That
means the storage and all of the operations that can be performed on the
values are handled by executable instructions in the program and not by the
hardware. Learning to implement integer values in software offers a good
example of the need to provide efficient implementations. We define the Big
Integer ADT below that can be used to store and manipulate integer values
of any size, just like Python’s built-in int type.
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� BigInteger( initValue = "0" ): Creates a new big integer that is ini-
tialized to the integer value specified by the given string.

� toString (): Returns a string representation of the big integer.

� comparable ( other ): Compares this big integer to the other big integer
to determine their logical ordering. This comparison can be done using
any of the logical operators: <, <=, >, >=, ==, !=.

� arithmetic ( rhsInt ): Returns a new BigInteger object that is the re-
sult of performing one of the arithmetic operations on the self and rhsInt
big integers. Any of the following operations can be performed:

+ - * // % **

� bitwise-ops ( rhsInt ): Returns a new BigInteger object that is the
result of performing one of the bitwise operators on the self and rhsInt
big integers. Any of the following operations can be performed:

| & ^ << >>

(a) Implement the Big Integer ADT using a singly linked list in which each
digit of the integer value is stored in a separate node. The nodes should
be ordered from the least-significant digit to the largest. For example, the
linked list below represents the integer value 45,839:


head

99 88 33 55 44

(b) Implement the Big Integer ADT using a Python list for storing the indi-
vidual digits of an integer.

6.8 Modify your implementation of the Big Integer ADT from the previous ques-
tion by adding the assignment combo operators that can be performed on the
self and rhsInt big integers. Allow for any of the following operations to be
performed:

+= -= *= //= %= **=
<<= >>= |= &= ^=



CHAPTER 7
Stacks

In the previous chapters, we used the Python list and linked list structures to
implement a variety of container abstract data types. In this chapter, we introduce
the stack, which is a type of container with restricted access that stores a linear
collection. Stacks are very common in computer science and are used in many
types of problems. Stacks also occur in our everyday lives. Consider a stack of
trays in a lunchroom. When a tray is removed from the top, the others shift up.
If trays are placed onto the stack, the others are pushed down.

7.1 The Stack ADT
A stack is used to store data such that the last item inserted is the first item
removed. It is used to implement a last-in first-out (LIFO) type protocol. The
stack is a linear data structure in which new items are added, or existing items are
removed from the same end, commonly referred to as the top of the stack. The
opposite end is known as the base . Consider the example in Figure 7.1, which

55

1919

2323

7474

1212

2323

7474

1212

1919

1919

2323

7474

55

1212

(a) (b) (c) (d)

1919

2323

7474

55

1212

Figure 7.1: Abstract view of a stack: (a) pushing value 19; (b) pushing value 5; (c)
resulting stack after 19 and 5 are added; and (d) popping top value.

193
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illustrates new values being added to the top of the stack and one value being
removed from the top.

Define Stack ADT

A stack is a data structure that stores a linear collection of items with access
limited to a last-in first-out order. Adding and removing items is restricted to one
end known as the top of the stack. An empty stack is one containing no items.

� Stack(): Creates a new empty stack.

� isEmpty(): Returns a boolean value indicating if the stack is empty.

� length (): Returns the number of items in the stack.

� pop(): Removes and returns the top item of the stack, if the stack is not empty.
Items cannot be popped from an empty stack. The next item on the stack
becomes the new top item.

� peek(): Returns a reference to the item on top of a non-empty stack without
removing it. Peeking, which cannot be done on an empty stack, does not
modify the stack contents.

� push( item ): Adds the given item to the top of the stack.

To illustrate a simple use of the Stack ADT, we apply it to the problem of
reversing a list of integer values. The values will be extracted from the user until a
negative value is entered, which flags the end of the collection. The values will then
be printed in reverse order from how they were entered. We could use a simple list
for this problem, but a stack is ideal since the values can be pushed onto the stack
as they are entered and then popped one at a time to print them in reverse order.
A solution for this problem follows.

PROMPT = "Enter an int value (<0 to end):"
myStack = Stack()
value = int(input( PROMPT ))
while value >= 0 :
myStack.push( value )
value = int(input( PROMPT ))

while not myStack.isEmpty() :
value = myStack.pop()
print( value )

Suppose the user enters the following values, one at a time:

7 13 45 19 28 -1
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When the outer while loop terminates after the negative value is extracted, the
contents of the stack will be as illustrated in Figure 7.2. Notice the last value
entered is at the top and the first is at the base. If we pop the values from the
stack, they will be removed in the reverse order from which they were pushed onto
the stack, producing a reverse ordering.

2828

1919

4545

1313

77

Figure 7.2: Resulting stack after executing the sample application.

7.2 Implementing the Stack
The Stack ADT can be implemented in several ways. The two most common
approaches in Python include the use of a Python list and a linked list. The choice
depends on the type of application involved.

7.2.1 Using a Python List
The Python list-based implementation of the Stack ADT is the easiest to imple-
ment. The first decision we have to make when using the list for the Stack ADT
is which end of the list to use as the top and which as the base. For the most
efficient ordering, we let the end of the list represent the top of the stack and the
front represent the base. As the stack grows, items are appended to the end of the
list and when items are popped, they are removed from the same end. Listing 7.1
on the next page provides the complete implementation of the Stack ADT using a
Python list.

The peek() and pop() operations can only be used with a non-empty stack
since you cannot remove or peek at something that is not there. To enforce this
requirement, we first assert the stack is not empty before performing the given
operation. The peek() method simply returns a reference to the last item in the
list. To implement the pop() method, we call the pop() method of the list struc-
ture, which actually performs the same operation that we are trying to implement.
That is, it saves a copy of the last item in the list, removes the item from the list,
and then returns the saved copy. The push() method simply appends new items
to the end of the list since that represents the top of our stack.
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Listing 7.1 The pyliststack.py module.

1 # Implementation of the Stack ADT using a Python list.
2 class Stack :
3 # Creates an empty stack.
4 def __init__( self ):
5 self._theItems = list()
6
7 # Returns True if the stack is empty or False otherwise.
8 def isEmpty( self ):
9 return len( self ) == 0

10
11 # Returns the number of items in the stack.
12 def __len__ ( self ):
13 return len( self._theItems )
14
15 # Returns the top item on the stack without removing it.
16 def peek( self ):
17 assert not self.isEmpty(), "Cannot peek at an empty stack"
18 return self._theItems[-1]
19
20 # Removes and returns the top item on the stack.
21 def pop( self ):
22 assert not self.isEmpty(), "Cannot pop from an empty stack"
23 return self._theItems.pop()
24
25 # Push an item onto the top of the stack.
26 def push( self, item ):
27 self._theItems.append( item )

The individual stack operations are easy to evaluate for the Python list-based
implementation. isEmpty(), len , and peek() only require O(1) time. The
pop() and push() methods both require O(n) time in the worst case since the
underlying array used to implement the Python list may have to be reallocated
to accommodate the addition or removal of the top stack item. When used in
sequence, both operations have an amortized cost of O(1).

7.2.2 Using a Linked List
The Python list-based implementation may not be the best choice for stacks with
a large number of push and pop operations. Remember, each append() and pop()
list operation may require a reallocation of the underlying array used to implement
the list. A singly linked list can be used to implement the Stack ADT, alleviating
the concern over array reallocations.

To use a linked list, we again must decide how to represent the stack structure.
With the Python list implementation of the stack, it was most efficient to use the
end of the list as the top of the stack. With a linked list, however, the front of the
list provides the most efficient representation for the top of the stack. In Chapter 6,
we saw how to easily prepend nodes to the linked list as well as remove the first
node. The Stack ADT implemented using a linked list is provided in Listing 7.2.
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Listing 7.2 The lliststack.py module.

1 # Implementation of the Stack ADT using a singly linked list.
2 class Stack :
3 # Creates an empty stack.
4 def __init__( self ):
5 self._top = None
6 self._size = 0
7
8 # Returns True if the stack is empty or False otherwise.
9 def isEmpty( self ):

10 return self._top is None
11
12 # Returns the number of items in the stack.
13 def __len__( self ):
14 return self._size
15
16 # Returns the top item on the stack without removing it.
17 def peek( self ):
18 assert not self.isEmpty(), "Cannot peek at an empty stack"
19 return self._top.item
20
21 # Removes and returns the top item on the stack.
22 def pop( self ):
23 assert not self.isEmpty(), "Cannot pop from an empty stack"
24 node = self._top
25 self.top = self._top.next
26 self._size -= 1
27 return node.item
28
29 # Pushes an item onto the top of the stack.
30 def push( self, item ) :
31 self._top = _StackNode( item, self._top )
32 self._size += 1
33
34 # The private storage class for creating stack nodes.
35 class _StackNode :
36 def __init__( self, item, link ) :
37 self.item = item
38 self.next = link

The class constructor creates two instance variables for each Stack. The top
field is the head reference for maintaining the linked list while size is an integer
value for keeping track of the number of items on the stack. The latter has to be
adjusted when items are pushed onto or popped off the stack. Figure 7.3 on the
next page illustrates a sample Stack object for the stack from Figure 7.1(b).

The StackNode class is used to create the linked list nodes. Note the inclusion
of the link argument in the constructor, which is used to initialize the next field of
the new node. By including this argument, we can simplify the prepend operation
of the push() method. The two steps required to prepend a node to a linked list
are combined by passing the head reference top as the second argument of the
StackNode() constructor and assigning a reference to the new node back to top.
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Stack



size

top

44

1919 2323 7474 1212

Figure 7.3: Sample object of the Stack ADT implemented as a linked list.

The peek() method simply returns a reference to the data item in the first
node after verifying the stack is not empty. If the method were used on the stack
represented by the linked list in Figure 7.3, a reference to 19 would be returned.
The peek operation is only meant to examine the item on top of the stack. It
should not be used to modify the top item as this would violate the definition of
the Stack ADT.

The pop() method always removes the first node in the list. This operation
is illustrated in Figure 7.4(a). This is easy to implement and does not require a
search to find the node containing a specific item. The result of the linked list after
popping the top item from the stack is illustrated in Figure 7.4(b).

The linked list implementation of the Stack ADT is more efficient than the
Python-list based implementation. All of the operations are O(1) in the worst
case, the proof of which is left as an exercise.

Stack



size

top

44

1919 2323 7474 1212

(a)

(b)
Stack



size

top

33

2323 7474 1212

Figure 7.4: Popping an item from the stack: (a) the required link modifications, and (b) the
result after popping the top item.

7.3 Stack Applications
The Stack ADT is required by a number of applications encountered in computer
science. In this section, we examine several basic applications that traditionally
are presented in a data structures course.
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7.3.1 Balanced Delimiters
A number of applications use delimiters to group strings of text or simple data
into subparts by marking the beginning and end of the group. Some common ex-
amples include mathematical expressions, programming languages, and the HTML
markup language used by web browsers. There are typically strict rules as to how
the delimiters can be used, which includes the requirement of the delimiters be-
ing paired and balanced. Parentheses can be used in mathematical expressions to
group or override the order of precedence for various operations. To aide in reading
complicated expressions, the writer may choose to use different types of symbol
pairs, as illustrated here:

{A + (B * C) - (D / [E + F])}

The delimiters must be used in pairs of corresponding types: {}, [], and ().
They must also be positioned such that an opening delimiter within an outer pair
must be closed within the same outer pair. For example, the following expression
would be invalid since the pair of braces [] begin inside the pair of parentheses ()

but end outside.

(A + [B * C)] - {D / E}

Another common use of the three types of braces as delimiters is in the C++
programming language. Consider the following code segment, which implements a
function to compute and return the sum of integer values contained in an array:

int sumList( int theList[], int size )
{
int sum = 0;
int i = 0;
while( i < size ) {
sum += theList[ i ];
i += 1;

}
return sum;

}

As with the arithmetic expression, the delimiters must be paired and balanced.
However, there are additional rules of the language that dictate the proper place-
ment and use of the symbol pairs. We can design and implement an algorithm
that scans an input text file containing C++ source code and determines if the
delimiters are properly paired. The algorithm will need to remember not only the
most recent opening delimiter but also all of the preceding ones in order to match
them with closing delimiters. In addition, the opening delimiters will need to be
remembered in reverse order with the most recent one available first. The Stack
ADT is a perfect structure for implementing such an algorithm.

Consider the C++ code segment from earlier. As the file is scanned, we can
push each opening delimiter onto the stack. When a closing delimiter is encoun-
tered, we pop the opening delimiter from the stack and compare it to the closing
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delimiter. For properly paired delimiters, the two should match. Thus, if the top
of the stack contains a left bracket [, then the next closing delimiter should be a
right bracket ]. If the two delimiters match, we know they are properly paired
and can continue processing the source code. But if they do not match, then we
know the delimiters are not correct and we can stop processing the file. Table 7.1
shows the steps performed by our algorithm and the contents of the stack after
each delimiter is encountered in our sample code segment.

Operation Stack Current scan line

push ( ( int sumList(

push ( [ int sumList( int values[

pop & match ] ( int sumList( int values[]

pop & match ) int sumList( int values[], int size )

push { { {
{ int sum = 0;

{ int i = 0;

push ( { ( while(

pop & match ) { while( i < size )

push { { { while( i < size ) {
push [ { { [ sum += theList[

pop & match ] { { sum += theList[ i ]

{ { i += 1;

pop & match } { }
{ return sum;

pop & match } empty }

Table 7.1: The sequence of steps scanning a valid set of delimiters: the operation per-
formed (left column) and the contents of the stack (middle column) as each delimiter is
encountered (right column) in the code.

So far, we have assumed the delimiters are balanced with an equal number of
opening and closing delimiters occurring in the proper order. But what happens if
the delimiters are not balanced and we encounter more opening or closing delimiters
than the other? For example, suppose the programmer introduced a typographical
error in the function header:

int sumList( int theList)], int size )

Our algorithm will find the first set of parentheses correct. But what happens
when the closing bracket ] is scanned? The result is illustrated in the top part of
Table 7.2. You will notice the stack is empty since the left parenthesis was popped
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and matched with the preceding right parenthesis. Thus, unbalanced delimiters in
which there are more closing delimiters than opening ones can be detected when
trying to pop from the stack and we detect the stack is empty.

Operation Stack Current point of scan

push ( ( int sumList(

pop & match ) empty int sumList( int values)

pop & match ] error int sumList( int values)]

Scanning: int sumList( int values)], int size )

Operation Stack Current point of scan

push ( ( int sumList(

push ( ( ( int sumList( int (

push [ ( ( [ int sumList( int (values[

pop & match ] ( ( int sumList( int values[]

pop & match ) ( int sumList( int values[], int size )

Scanning: int sumList( int (values[], int size )

Table 7.2: Sequence of steps scanning an invalid set of delimiters. The function header:
(top) contains more closing delimiters than opening and (bottom) contains more closing
delimiters than opening.

Delimiters can also be out of balance in the reverse case where there are more
opening delimiters than closing ones. Consider another version of the function
header, again containing a typographical error:

int sumList( int (theList[], int size )

The result of applying our algorithm to this code fragment is illustrated in the
bottom chart in Table 7.2. If this were the complete code segment, you can see we
would end up with the stack not being empty since there are opening delimiters
yet to be paired with closing ones. Thus, in order to have a complete algorithm,
we must check for both of these errors.

A Python implementation for the validation algorithm is provided in Listing 7.3.
The function isValidSource() accepts a file object, which we assume was pre-
viously opened and contains C++ source code. The file is scanned one line at a
time and each line is scanned one character at a time to determine if it contains
properly paired and balanced delimiters.

A stack is used to store the opening delimiters and either implementation can
be used since the implementation is independent of the definition. Here, we have
chosen to use the linked list version. As the file is scanned, we need only examine
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Listing 7.3 Function for validating a C++ source file.

1 # Implementation of the algorithm for validating balanced brackets in
2 # a C++ source file.
3 from lliststack import Stack
4
5 def isValidSource( srcfile ):
6 s = Stack()
7 for line in srcfile :
8 for token in line :
9 if token in "{[(" :

10 s.push( token )
11 elif token in "}])" :
12 if s.isEmpty() :
13 return False
14 else :
15 left = s.pop()
16 if (token == "}" and left != "{") or \
17 (token == "]" and left != "[") or \
18 (token == ")" and left != "(") :
19 return False
20
21 return s.isEmpty()

the characters that correspond to one of the three types of delimiter pairs. All
other characters can be ignored. When an opening delimiter is encountered, we
push it onto the stack. When a closing delimiter occurs, we first check to make sure
the stack is not empty. If it is empty, then the delimiters are not properly paired
and balanced and no further processing is needed. We terminate the function and
return False. When the stack is not empty, the top item is popped and compared
to the closing delimiter. The two delimiters do match corresponding opening and
closing delimiters; we again terminate the function and return False. Finally,
after the entire file is processed, the stack should be empty when the delimiters are
properly paired and balanced. For the final test, we check to make sure the stack
is empty and return either True or False, accordingly.

7.3.2 Evaluating Postfix Expressions
We work with mathematical expressions on a regular basis and they are rather
easy for humans to evaluate. But the task is more difficult in a computer program
when an expression is represented as a string. Given the expression

A * B + C / D

we know A * B will be performed first, followed by the division and concluding
with addition. When evaluating this expression stored as a string and scanning
one character at a time from left to right, how do we know the addition has to wait
until after the division? Your first response is probably that we know the order
of the precedence for the operators. But how do we represent that in our string
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scanning process? Suppose we are evaluating a string containing nine non-blank
characters and have scanned the first three:

A + B / (C * D)

At this point, we have no way of knowing if the addition operation is to be
performed on the two variables A and B or if we have to save this information for
later. After moving to the the next character

A + B / (C * D)

we encounter the division operator and know that the addition is not the first
operation to be performed. Is the division the first operation to be performed? It
does have higher precedence than the addition, but it may not be the first operation
since parentheses can override the order of evaluation. We will have to scan more
of the string to determine which operation is the first to be performed.

A + B / (C * D)

After determining the first operation to be performed, we must then decide
how to return to those previously skipped. This can become a tedious process if
we have to continuously scanned forward and backward through the string in order
to properly evaluate the expression. To simplify the evaluation of a mathematical
expression, we need an alternative representation for the expression. A representa-
tion in which the order the operators are performed is the order they are specified
would allow for a single left-to-right scan of the expression string.

Three different notations can be used to represent a mathematical expression.
The most common is the traditional algebraic or infix notation where the operator
is specified between the operands A+B. The prefix notation places the operator
immediately preceding the two operands +AB, whereas in postfix notation, the
operator follows the two operands AB+.

At first glance, the different notations may seem to be nothing more than differ-
ent operator placement. But the postfix and prefix notations have the advantages
that neither uses parentheses to override the order of precedence and both create
expressions in unique form. In other words, each expression is unique and produces
a specific result unlike infix notation in which the same expression can be written
in multiple ways.

Converting from Infix to Postfix

Infix expressions can be easily converted by hand to postfix notation. The expres-
sion A + B - C would be written as AB+C- in postfix form. The evaluation of this
expression would involve first adding A and B and then subtracting C from that
result. We will examine the evaluation of postfix expressions later; for now we
focus on the conversion from infix to postfix.
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Short expressions can be easily converted to postfix form, even those using
parentheses. Consider the expression A*(B+C), which would be written in postfix
as ABC+*. Longer expressions, such as the example from earlier, A*B+C/D, are a bit
more involved. To help in this conversion we can use a simple algorithm:

1. Place parentheses around every group of operators in the correct order of
evaluation. There should be one set of parentheses for every operator in the
infix expression.

((A * B) + (C / D))

2. For each set of parentheses, move the operator from the middle to the end
preceding the corresponding closing parenthesis.

((A B *) (C D /) +)

3. Remove all of the parentheses, resulting in the equivalent postfix expression.

A B * C D / +

Compare this result to a modified version of the expression in which parentheses
are used to place the addition as the first operation:

A * (B + C) / D

Using the simple algorithm, we parenthesize the expression:

((A * (B + C)) / D)

and move the operators to the end of each parentheses pair:

((A (B C +) *) D /)

Finally, removing the parentheses yields the postfix expression:

A B C + * D /

A similar algorithm can be used for converting from infix to prefix notation.
The difference is the operators are moved to the front of each group.

Postfix Evaluation Algorithm

Parentheses are used with infix expressions to change the order of evaluation. But
in postfix notation, the order cannot be altered and thus there is no need for paren-
theses. Given the unique form or single order of evaluation, postfix notation is a
good choice when evaluating a mathematical expression represented as a string.
Of course the expression would have to either be given in postfix notation or first
converted from infix to postfix. The latter can be easily done with an appropri-
ate algorithm, but we limit our discussion to the evaluation of existing postfix
expressions.
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Evaluating a postfix expression requires the use of a stack to store the operands
or variables at the beginning of the expression until they are needed. Assume we
are given a valid postfix expression stored in a string consisting of operators and
single-letter variables. We can evaluate the expression by scanning the string, one
character or token at a time. For each token, we perform the following steps:

1. If the current item is an operand, push its value onto the stack.

2. If the current item is an operator:

(a) Pop the top two operands off the stack.

(b) Perform the operation. (Note the top value is the right operand while the
next to the top value is the left operand.)

(c) Push the result of this operation back onto the stack.

The final result of the expression will be the last value on the stack. To illustrate
the use of this algorithm, let’s evaluate the postfix expression A B C + * D / from
our earlier example. Assume the existence of an empty stack and the following
variable assignments have been made:

A = 8 C = 3
B = 2 D = 4

The complete sequence of algorithm steps and the contents of the stack after
each operation are illustrated in Table 7.3.

Token Alg. Step Stack Description

ABC+*D/ 1 8 push value of A

ABC+*D/ 1 8 2 push value of B

ABC+*D/ 1 8 2 3 push value of C

ABC+*D/ 2(a) 8 pop top two values: y = 3, x = 2

2(b) 8 compute z = x + y or z = 2 + 3

2(c) 8 5 push result (5) of the addition

ABC+*D/ 2(a) pop top two values: y = 5, x = 8

2(b) compute z = x * y or z = 8 * 5

2(c) push result (40) of the multiplication

ABC+*D/ 1 40 4 push value of D

ABC+*D/ 2(a) pop top two values: y = 4, x = 40

2(b) compute z = x / y or z = 40 / 4

2(c) 10 push result (10) of division

Table 7.3: The stack contents and sequence of algorithm steps required to evaluate the
valid postfix expression A B C + * D.
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The postfix evaluation algorithm assumes a valid expression. But what happens
if the expression is invalid? Consider the following invalid expression in which there
are more operands than available operators:

A B * C D +

After applying the algorithm to this expression, there are two values remaining
on the stack as illustrated in Table 7.4. What happens if there are too many
operators for the given number of operands? Consider such an invalid expression:

A B * + C /

In this case, there are too few operands on the stack when we encounter the
addition operator, as illustrated in Table 7.5. If we attempt to perform two pops
from the stack, an assertion error will be thrown since the stack will be empty
on the second pop. We can modify the algorithm to detect both types of errors.
In step 2(a), we must first verify the stack is not empty before popping an item.
If the stack is empty, we can stop the evaluation and flag an error. The second
modification occurs after the evaluation of the entire expression. We can pop the
result from the stack and then verify the stack is empty. If the stack is not empty,
the expression was invalid and we must flag an error.

Token Alg. Step Stack Description

AB*CD+ 1 8 push value of A

AB*CD+ 1 8 2 push value of B

AB*CD+ 2(a) pop top two values: y = 2, x = 8

2(b) compute z = x * y or z = 8 * 2

2(c) 16 push result (16) of the multiplication

AB*CD+ 1 16 3 push value of C

AB*CD+ 1 16 3 4 push value of D

AB*CD+ 2(a) 16 pop top two values: y = 4, x = 3

2(b) 16 compute z = x + y or z = 3 + 4

2(c) 16 7 push result (7) of the addition

Error xxxxxx xxxxxx Too many values left on stack.

Table 7.4: The sequence of algorithm steps when evaluating the invalid postfix expression
A B * C D +.

7.4 Application: Solving a Maze
A classic example of an application that requires the use of a stack is the problem
of finding a path through a maze. When viewing a maze drawn on paper such
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Token Alg. Step Stack Description

AB*+C/ 1 8 push value of A

AB*+C/ 1 8 2 push value of B

AB*+C/ 2(a) pop top two values: y = 2, x = 8

2(b) compute z = x * y or z = 8 * 2

2(c) 16 push result (16) of the multiplication

AB*+C/ 2(a) pop top two values: y = 16, x = ?

Error xxxxxx xxxxxx Only one value on stack, two needed.

Table 7.5: The sequence of algorithm steps taken when evaluating the invalid postfix
expression A B * + C /.

as the one illustrated in Figure 7.5, we can quickly find a path from the starting
point to the exit. This usually involves scanning the entire maze and mentally
eliminating dead ends. But consider a human size maze in which you are inside
the maze and only have a “rat’s-eye” view. You cannot see over the walls and must
travel within the maze remembering where you have been and where you need to
go. In this situation, it’s not as easy to find the exit as compared to viewing the
maze on paper.

An algorithm that can be used to find a path through a maze is likely to employ
a technique similar to what you would use if you were inside the maze. In this
section, we explore the backtracking technique to solving a maze and design an
algorithm to implement our technique.

S

E

Figure 7.5: A sample maze with the indicated starting (S) and exit (E) positions.

7.4.1 Backtracking
The most basic problem-solving technique in computer science is the brute-force
method. It involves searching for a solution to a given problem by systematically
trying all possible candidates until either a solution is found or it can be determined
there is no solution. Brute-force is time-consuming and is generally chosen as a
last resort. But some problems can only be solved using this technique.
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If applied to the maze problem, the brute-force method would require we start
at the beginning and follow a path until we either find the exit or encounter a
blocked passage. If we hit a wall instead of the exit, we would start over from
the beginning and try a different path. But this would be time consuming since
we would likely follow part of the same path from the beginning to some point
before we encountered the blocked passage. Instead of going all the way back to
the beginning, we could back up along the path we originally took until we find
a passage going in a different direction. We could then follow the new passage in
hopes of finding the exit. If we again encounter a blocked passage before the exit,
we can back up one or more steps and try a different passage.

This process of eliminating possible contenders from the solution and partially
backing up to try others is known as backtracking and is a refinement of the
basic brute-force method. There is a broad class of algorithms that employ this
technique and are known as backtracking algorithms. All of these algorithms
attempt to find a solution to a problem by extending a partial solution one step at a
time. If a “dead end” is encountered during this process, the algorithm backtracks
one or more steps in an attempt to try other possibilities without having to start
over from the beginning.

7.4.2 Designing a Solution
The solution to the maze problem is a classic example of backtracking. In this
section, we explore the technique and design a solution to the maze problem.

Problem Details

Given a maze with indicated starting and exit positions, the objectives are (1)
determine if there is a path from the starting position to the exit, and (2) specify
the path with no circles or loopbacks. In designing an algorithm to solve a maze,
it will be easier if we think of the maze as a collection of equal-sized cells laid out
in rows and columns, as illustrated in Figure 7.6. The cells will either be filled
representing walls of the maze or empty to represent open spaces. In addition, one
cell will be indicated as the starting position and another as the exit.

S

E

Figure 7.6: Sample maze from Figure 7.5 divided into equal-sized cells.
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To further aide in the algorithm development, we place certain restrictions
on movement within the maze. First, we can only move one cell at a time and
only to open positions, those not blocked by a wall or previously used along the
current path. The latter prevents us from reusing a cell as part of the solution
since we want to find a path from the start to the exit without ever having to go
in circles. Finally, we limit movement between opens cells to the horizontal and
vertical directions—up, down, left, and right—as illustrated in Figure 7.7.

X

up

down

rightleft

Figure 7.7: The legal moves allowed from a given cell in the maze.

During our search for the exit, we need to remember which cells have been
visited. Some will be part of the final path to the exit while others will have led
us to dead ends. At the end, we need to know which cells form the path from the
start to the exit. But during the search for the exit, we also need to avoid cells
that previously led to a dead end. To assist in remembering the cells, we can place
a token in each cell visited and distinguish between the two. In our example, we
will use an x to represent cells along the path and an o to represent those that led
to a dead end.

Describing the Algorithm

We begin at the starting position and attempt to move from cell to cell until we find
the exit. As we move between cells, we must consider what actions are available at
each cell. Consider the smaller maze in Figure 7.8 in which the rows and columns
have been numbered to aide in identifying the cells.

S

E

0

1

2

3

4

0      1      2      3     4

Figure 7.8: A small maze with the rows and columns labeled for easy reference.
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Finding the Exit. From the starting position (4, 1), we can examine our sur-
roundings or more specifically the four neighboring cells and determine if we can
move from this position. We want to use a systematic or well-ordered approach
in finding the path. Thus, we always examine the neighboring cells in the same
order: up, down, left, and right. In the sample maze, we find the cell above, (3, 1),
is open and prepare to move up one step. Before moving from the current position,
however, we need to lay down a token to indicate the current cell is part of our
path. As indicated earlier, we place a lowercase x in the cell to indicate it comprises
part of the path. The complete set of steps taken to solve our sample maze are
illustrated in Figure 7.9.

After placing the token, we move to the open cell above the starting position.
The current position in the maze is marked in the illustration using an uppercase
X. We repeat the process and find the cell above our current position is open. A
token is laid in the current cell and we move up one position to cell (2, 1). From
our vantage point above the matrix, we easily see the solution to the problem,
which requires that we move to the right. But from the point of view of a mouse
searching for cheese, that specific move would be unknown.

Using our systematic approach, we examine the cell above our current position.
We find it open, and move up one position to cell (1, 1). From this position, we
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Figure 7.9: The sequence of steps taken through a sample maze. S is the starting position
and E is the exit. The path is marked using the character x while the current cell is marked
with X. Cells we visited but from which we had to backtrack are marked with o.
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soon discover there are no legal moves since we are blocked by a wall on three sides
and a cell comprising part of our path. Since we can go no further from this cell,
we have no choice but to go back to our previous position in cell (2, 1). When
hitting a dead end, we don’t simply turn around and go back over a cell previously
visited as if it were part of the path since this would cause a circle. Instead, we
mark the cell with a different token indicating a dead end and move back to the
previous position. In our example, we use a lowercase o to represent a cell leading
to a dead end.

After moving back to cell (2, 1), we examine the other directions and soon find
the cell to the right is open and move in that direction, placing us in cell (2, 2).
From this position, we find the only legal move is to the right and thus move in
that direction, placing us in cell (2, 3). Next, we move up one step since the cell
above is open. But this move will result in a dead end, requiring us to once again
back up to the previous position. After backing up to our previous position at cell
(2, 3), we find the cell below is open and move to position (3, 3). Repeating the
process we soon find the exit at position (3, 4) and a path from the starting cell to
the exit.

No Path to the Exit. The exit in this example was accessible. But what happens
if there is no path between the start and exit cells? Consider a modified version of
our sample maze in Figure 7.10 where a wall has been placed in cell (3, 3) closing
the path to the exit.

When reaching position (2, 3), as described earlier, we will discover this is a
dead end and have to back up. But there are no other legal moves from cell (2, 2)
with the positions above and below blocked by a wall, the position to the right
leading to a dead end and the position to the left currently part of our path. From
position (2, 2), we have to back up and try another direction. Ultimately, we will
have to backtrack all the way to the start, having found no legal move from that
position.

S

E

Figure 7.10: A modified version of the sample maze with the exit blocked.

7.4.3 The Maze ADT
Given the description of the maze problem and the backtracking algorithm for
finding a path through the maze, we now define the Maze ADT that can be used
to construct and solve a maze.



212 CHAPTER 7 Stacks

Define Maze ADT

A maze is a two-dimensional structure divided into rows and columns of equal-sized
cells. The individual cells can be filled representing a wall or empty representing
an open space. One cell is marked as the starting position and another as the exit.

� Maze( numRows, numCols ): Creates a new maze with all of the cells initialized
as open cells. The starting and exit positions are undefined.

� numRows(): Returns the number of rows in the maze.

� numCols(): Returns the number of columns in the maze.

� setWall( row, col ): Fills the indicated cell (row, col) with a wall. The cell
indices must be within the valid range of rows and columns.

� setStart( row, col ): Sets the indicated cell (row, col) as the starting posi-
tion. The cell indices must be within the valid range.

� setExit( row, col ): Sets the indicated cell (row, col) as the exit position.
The cell indices must be within the valid range.

� findPath(): Attempts to the solve the maze by finding a path from the starting
position to the exit. If a solution is found, the path is marked with tokens (x)
and True is returned. For a maze with no solution, False is returned and the
maze is left in its original state. The maze must contain both the starting and
exit position. Cells on the perimeter of the maze can be open and it can be
assumed there is an invisible wall surrounding the entire maze.

� reset(): Resets the maze to its original state by removing any tokens placed
during the find path operation.

� draw(): Prints the maze in a readable format using characters to represent the
walls and path through the maze, if a path has been found. Both the starting
and exit positions are also indicated, if previously set.

Our ADT definition is not meant for a general purpose maze, but instead one
that can be used to build a maze and then solve and print the result. A more
general purpose ADT would most likely return the solution path as a list of tuples
instead of simply marking the cells within the maze as is the case in our definition.

Example Use

We can use this definition of the ADT to construct a program for building and
solving a maze as shown in Listing 7.4. The main routine is rather simple since we
need only build the maze, determine if a path exists and print the maze if a path
does exist.
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Listing 7.4 The solvemaze.py program.

1 # Program for building and solving a maze.
2 from maze import Maze
3
4 # The main routine.
5 def main():
6 maze = buildMaze( "mazefile.txt" )
7 if maze.findPath() :
8 print( "Path found...." )
9 maze.draw()

10 else :
11 print( "Path not found...." )
12
13 # Builds a maze based on a text format in the given file.
14 def buildMaze( filename ):
15 infile = open( filename, "r" )
16
17 # Read the size of the maze.
18 nrows, ncols = readValuePair( infile )
19 maze = Maze( nrows, ncols )
20
21 # Read the starting and exit positions.
22 row, col = readValuePair( infile )
23 maze.setStart( row, col )
24 row, col = readValuePair( infile )
25 maze.setExit( row, col )
26
27 # Read the maze itself.
28 for row in range( nrows ) :
29 line = infile.readline()
30 for col in range( len(line) ) :
31 if line[col] == "*" :
32 maze.setWall( row, col )
33
34 # Close the maze file and return the newly constructed maze.
35 infile.close()
36 return maze
37
38 # Extracts an integer value pair from the given input file.
39 def readValuePair( infile ):
40 line = infile.readline()
41 valA, valB = line.split()
42 return int(valA), int(valB)
43
44 # Call the main routine to execute the program.
45 main()

Maze Text File Format

Before searching for a path through the maze, we must first build a maze. The
maze can be constructed directly within the program by calls to setWall() with
literal indices or we can read a maze specification from a text file. Suppose a maze
is represented in a text file using the following format:
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5 5
4 1
3 4
*****
*.*.*
*...*
*.*..
*.***

The first line contains the size of the maze given as the number of rows and
columns. The two subsequent lines indicate the row and column indices of the
starting and exit positions. The remaining lines of text represent the maze itself,
with walls represented using a hash symbol and open cells represented as blank
spaces. The maze is constructed from the text file using the buildMaze() function
as shown in lines 14–42 of Listing 7.4.

7.4.4 Implementation
The implementation of our Maze ADT will require the selection of a data structure
to represent the maze and to implement the backtracking operation used to find a
path. The most obvious choice of data structure for storing the maze is a 2-D array.
The individual elements of the array will represent the cells of the maze. Strings
containing a single character can be used to represent the walls and tokens while
the open cells are easily represented as null pointers. The array representation of
our sample maze is illustrated in Figure 7.11.
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Figure 7.11: The abstract view of a maze physically represented using a 2-D array. Walls
are indicated with an asterisk (*) character, while open cells contain a null reference. The
start and exit cells will be identified by cell position stored in separate data fields.

Class Definition

A partial implementation of the Maze ADT is provided in Listing 7.5. Three
constant class variables are defined and initialized to store the various symbols
used to mark cells within the maze. Remember, class variables are not data fields
of the individual objects, but are instead variables of the class, which can be
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accessed by the individual methods. By using the named constants, the values
used to represent the maze wall and tokens could easily be changed if we were so
inclined.

Listing 7.5 The maze.py module.

1 # Implements the Maze ADT using a 2-D array.
2 from array import Array2D
3 from lliststack import Stack
4
5 class Maze :
6 # Define constants to represent contents of the maze cells.
7 MAZE_WALL = "*"
8 PATH_TOKEN = "x"
9 TRIED_TOKEN = "o"

10
11 # Creates a maze object with all cells marked as open.
12 def __init__( self, numRows, numCols ):
13 self._mazeCells = Array2D( numRows, numCols )
14 self._startCell = None
15 self._exitCell = None
16
17 # Returns the number of rows in the maze.
18 def numRows( self ):
19 return self._mazeCells.numRows()
20
21 # Returns the number of columns in the maze.
22 def numCols( self ):
23 return self._mazeCells.numCols()
24
25 # Fills the indicated cell with a "wall" marker.
26 def setWall( self, row, col ):
27 assert row >= 0 and row < self.numRows() and \
28 col >= 0 and col < self.numCols(), "Cell index out of range."
29 self._mazeCells.set( row, col, self.MAZE_WALL )
30
31 # Sets the starting cell position.
32 def setStart( self, row, col ):
33 assert row >= 0 and row < self.numRows() and \
34 col >= 0 and col < self.numCols(), "Cell index out of range."
35 self._startCell = _CellPosition( row, col )
36
37 # Sets the exit cell position.
38 def setExit( self, row, col ):
39 assert row >= 0 and row < self.numRows() and \
40 col >= 0 and col < self.numCols(), \
41 "Cell index out of range."
42 self._exitCell = _CellPosition( row, col )
43
44 # Attempts to solve the maze by finding a path from the starting cell
45 # to the exit. Returns True if a path is found and False otherwise.
46 def findPath( self ):
47 ......
48

(Listing Continued)
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Listing 7.5 Continued . . .

49 # Resets the maze by removing all "path" and "tried" tokens.
50 def reset( self ):
51 ......
52
53 # Prints a text-based representation of the maze.
54 def draw( self ):
55 ......
56
57 # Returns True if the given cell position is a valid move.
58 def _validMove( self, row, col ):
59 return row >= 0 and row < self.numRows() \
60 and col >= 0 and col < self.numCols() \
61 and self._mazeCells[row, col] is None
62
63 # Helper method to determine if the exit was found.
64 def _exitFound( self, row, col ):
65 return row == self._exitCell.row and \
66 col == self._exitCell.col
67
68 # Drops a "tried" token at the given cell.
69 def _markTried( self, row, col ):
70 self._mazeCells.set( row, col, self.TRIED_TOKEN )
71
72 # Drops a "path" token at the given cell.
73 def _markPath( self, row, col ):
74 self._mazeCells.set( row, col, self.PATH_TOKEN )
75
76
77 # Private storage class for holding a cell position.
78 class _CellPosition( object ):
79 def __init__( self, row, col ):
80 self.row = row
81 self.col = col

The class constructor, shown in lines 12–15 of Listing 7.5, creates a MultiArray
object and two fields to store the starting and exit cells. A sample Maze object for
our maze in Figure 7.11 is illustrated in Figure 7.12. The array is created using the
arguments to the constructor. The cells of the maze are automatically initialized
to None, as specified in the previous section, since this is the default value used
when creating a MultiArray object. The startCell and exitCell fields are set
to None since they are initially undefined. Later, specific positions will have to be
stored when they are defined by the respective methods. Since a cell is indicated
by its position within the array, we can define the CellPosition class to store a
specific cell.

Maze Components

Components of the maze are specified using the various set methods, which are
shown in lines 26–42 of Listing 7.5. Since the user specifies specific maze elements
with each of these methods, they must first validate the cell position to ensure the
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Figure 7.12: A sample Maze ADT object.

indices are within the valid range. The two methods that set the starting and exit
positions simply create and store CellPosition objects while the creation of a
wall fills the indicated cell using one of the named constants defined earlier.

Helper Methods

During the actual process of finding a solution in the findPath() method, we will
need to perform several routine operations that access the underlying MultiArray
object. To aide in this task, we define several helper methods, as shown in lines
58–74. First, we will need to drop or place tokens as we move through the maze.
The markTried() and markPath() methods can be used for this task. Note we
do not need a “pickup token” method since the task of picking up a path token is
immediately followed by dropping a tried token.

The exitFound() method is used to determine if the exit is found based on the
contents of the exitCell object and the current position supplied as arguments.
Finally, the validMove() helper method is used to determine if we can move to
a given cell. A move is valid if the destination cell is open and its indices are not
outside the border of the maze. Note an assertion is not used here since we do
not want to flag an error. Instead, the backtracking solution will have to try other
directions when encountering an invalid move.

Finding the Path

The findPath() method implements the actual path finding algorithm described
earlier, which searches through the maze for a path from the starting position to the

TI
P

Helper Methods. Helper methods are commonly used in implement-
ing classes to aide in subdividing larger problems and for reducing

code repetition by defining a method that can be called from within the differ-
ent methods. But helper methods can also be used to make your code more
readable even if they only contain a single line. This use of helper methods
is illustrated by the helper methods defined as part of the Maze class.
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exit. As we move through the maze, we must remember the path we took in order to
backtrack when reaching a dead end. A stack provides the ideal structure we need
to remember our path. As we move forward in the maze, we can push our current
position onto the stack using a CellPosition object before moving forward to the
next cell. When reaching a dead end, we can backtrack by popping the previous
position from the stack and backing up to that position. The implementation of
this method is left as an exercise along with the reset() and draw() methods.

Exercises
7.1 Hand execute the following code segment and show the contents of the result-

ing stack.

values = Stack()
for i in range( 16 ) :
if i % 3 == 0 :
values.push( i )

7.2 Hand execute the following code segment and show the contents of the result-
ing stack.

values = Stack()
for i in range( 16 ) :
if i % 3 == 0 :
values.push( i )

elif i % 4 == 0 :
values.pop()

7.3 Translate each of the following infix expressions into postfix.

(a) (A * B) / C

(b) A - (B * C) + D / E

(c) (X - Y) + (W * Z) / V

(d) V * W * X + Y - Z

(e) A / B * C - D + E

7.4 Translate each of the infix expressions in Exercise 7.3 to prefix notation.

7.5 Translate each of the following postfix expressions into infix.

(a) A B C - D * +

(b) A B + C D - / E +

(c) A B C D E * + / +

(d) X Y Z + A B - * -

(e) A B + C - D E * +
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7.6 Consider our implementation of the Stack ADT using the Python list, and
suppose we had used the front of the list as the top of the stack and the end
of the list as the base. What impact, if any, would this have on the run time
of the various stack operations?

7.7 Show that all of the Stack ADT operations have a constant time in the worst
case when implemented as a linked list.

7.8 Would it buy us anything to use a tail reference with the linked list structure
used to implement the Stack ADT? Explain your answer.

7.9 Evaluate the run time of the isValidSource() function where n is the number
of characters in the C++ source file.

Programming Projects
7.1 Write and test a program that extracts postfix expressions from the user,

evaluates the expression, and prints the results. You may require that the
user enter numeric values along with the operators and that each component
of the expression be separated with white space.

7.2 The isValidSource() function can be used to evaluate a C++ source file,
but it is incomplete. Brackets encountered inside comments and literal strings
would not be paired with those found elsewhere in the program.

(a) C++ comments can be specified using //, which starts a comment that
runs to the end of the current line, and the token pair /* */, which encloses
a comment that can span multiple lines. Extend the function to skip over
brackets found inside C++ comments.

(b) C++ literal strings are denoted by enclosing characters within double
quotes ("string") and literal characters are denoted by enclosing a char-
acter within single quotes ('x'). Extend the function to skip over brackets
found inside C++ literal strings and characters.

7.3 Design and implement a function that evaluates a prefix expression stored as
a text string.

7.4 Implement the findPath(), reset(), and draw() methods for the Maze class.

7.5 Implement a complete maze solving application using the components intro-
duced earlier in the chapter. Modify the solve() method to return a vector
containing tuples representing the path through the maze.

7.6 We can design and build a postfix calculator that can be used to perform simple
arithmetic operations. The calculator consists of a single storage component
that consists of an operand stack. The operations performed by the stack
always use the top two values of the stack and store the result back on the
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top of the stack. Implement the operations of the Postfix Calculator ADT as
defined here:.

� PostfixCalculator(): Creates a new postfix calculator with an empty
operand stack.

� value( x ): Pushes the given operand x onto the top of the stack.

� result(): Returns an alias to the value currently on top of the stack. If
the stack is empty, None is returned.

� clear(): Clears the entire contents of the stack.

� clearLast(): Removes the top entry from the stack and discards it.

� compute( op ): Removes the top two values from the stack and applies the
given operation on those values. The first value removed from the stack is
the righthand side operand and the second is the lefthand side operand.
The result of the operation is pushed back onto the stack. The operation
is specified as a string containing one of the operators + - * / **.

7.7 Extend the Postfix Calculator ADT as follows:

(a) To perform several unary operations commonly found on scientific calcu-
lators: absolute value, square root, sine, cosine, and tangent. The oper-
ations should be specified to the compute() method using the following
acronyms: abs, sqrt, sin, cos, tan.

(b) To use a second stack on which values can be saved. Add the following
two operations to the ADT:

� store(): Removes the top value from the operand stack and pushes
it onto the save stack.

� recall(): Removes the top value from the save stack and pushes it
onto the operand stack.

7.8 Design and implement a complete program that uses the Postfix Calculator
ADT to perform various operations extracted from the user. The user enters
text-based commands, one per line, that should be performed by the calcu-
lator. For example, to compute 12 * 15, the user would enter the following
sequence of commands:

ENTER 12
ENTER 15
MUL
RESULT

which would result in 180 being displayed. Your program should respond to
the following set of commands: ENTER, CLR, CLRLAST, RESULT, ADD, SUB,
MUL, DIV, POW.
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Queues

The term queue is commonly defined to be a line of people waiting to be served like
those you would encounter at many business establishments. Each person is served
based on their position within the queue. Thus, the next person to be served is
the first in line. As more people arrive, they enter the queue at the back and wait
their turn.

A queue structure is well suited for problems in computer science that require
data to be processed in the order in which it was received. Some common examples
include computer simulations, CPU process scheduling, and shared printer man-
agement. You are familiar with a printer queue if you have used a shared printer.
Many people may want to use the printer, but only one thing can be printed at
a time. Instead of making people wait until the printer is not being used to print
their document, multiple documents can be submitted at the same time. When a
document arrives, it is added to the end of the print queue. As the printer becomes
available, the document at the front of the queue is removed and printed.

8.1 The Queue ADT
A queue is a specialized list with a limited number of operations in which items can
only be added to one end and removed from the other. A queue is also known as
a first-in, first-out (FIFO) list. Consider Figure 8.1, which illustrates an abstract
view of a queue. New items are inserted into a queue at the back while existing
items are removed from the front. Even though the illustration shows the individual
items, they cannot be accessed directly. The definition of the Queue ADT follows.

front back2828 1919 4545 1313 77

Figure 8.1: An abstract view of a queue containing five items.
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Define Queue ADT

A queue is a data structure that a linear collection of items in which access is
restricted to a first-in first-out basis. New items are inserted at the back and
existing items are removed from the front. The items are maintained in the order
in which they are added to the structure.

� Queue(): Creates a new empty queue, which is a queue containing no items.

� isEmpty(): Returns a boolean value indicating whether the queue is empty.

� length (): Returns the number of items currently in the queue.

� enqueue( item ): Adds the given item to the back of the queue.

� dequeue(): Removes and returns the front item from the queue. An item can-
not be dequeued from an empty queue.

Using the formal definition of the Queue ADT, we can now examine the code
necessary to create the queue in Figure 8.1:

Q = Queue()
Q.enqueue( 28 )
Q.enqueue( 19 )
Q.enqueue( 45 )
Q.enqueue( 13 )
Q.enqueue( 7 )

After creating a Queue object, we simply enqueue the five values in the order as
they appear in the queue. We can then remove the values or add additional values
to the queue. Figure 8.2 illustrates the result of performing several additional
operations on the sample queue.

8.2 Implementing the Queue
Since the queue data structure is simply a specialized list, it is commonly imple-
mented using some type of list structure. There are three common approaches to
implementing a queue: using a vector, a linked list, or an array. In the following
sections, we examine and compare these three approaches.

8.2.1 Using a Python List
The simplest way to implement the Queue ADT is to use Python’s list. It provides
the necessary routines for adding and removing items at the respective ends. By
applying these routines, we can remove items from the front of the list and append
new items to the end. To use a list for the Queue ADT, the constructor must
define a single data field to store the list that is initially empty. We can test for an
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2828 1919 4545 1313 77

x = Q.dequeue()

Q.enqueue(21)

Q.enqueue(74)

1919 4545 1313 77 2121

1919 4545 1313 77 2121 7474

1919 4545 1313 77 2828 7474

Figure 8.2: Abstract view of the queue after performing additional operations.

empty queue by examining the length of the list. The complete Python list-based
implementation is provided in Listing 8.1, and an instance of the class is illustrated
in Figure 8.3 on the next page.

To enqueue an item, we simply append it to the end of the list. The dequeue
operation can be implemented by popping and returning the item in the first

Listing 8.1 The pylistqueue.py module.

1 # Implementation of the Queue ADT using a Python list.
2 class Queue :
3 # Creates an empty queue.
4 def __init__( self ):
5 self._qList = list()
6
7 # Returns True if the queue is empty.
8 def isEmpty( self ):
9 return len( self ) == 0

10
11 # Returns the number of items in the queue.
12 def __len__( self ):
13 return len( self._qList )
14
15 # Adds the given item to the queue.
16 def enqueue( self, item ):
17 self._qList.append( item )
18
19 # Removes and returns the first item in the queue.
20 def dequeue( self ):
21 assert not self.isEmpty(), "Cannot dequeue from an empty queue."
22 return self._qList.pop( 0 )
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
qList

Queue (pylist)

2828 1919 4545 1313 77

0 1 2 3 4

Figure 8.3: An instance of the Queue ADT implemented using a Python list.

element of the list. Before attempting to remove an item from the list, we must
ensure the queue is not empty. Remember, the queue definition prohibits the use
of the dequeue() operation on an empty queue. Thus, to enforce this, we must
first assert the queue is not empty and raise an exception, when the operation is
attempted on an empty queue.

Since we use list operations to implement the individual queue operations, we
need only recall the worst case times for the Python list operations. The size and
empty condition operations only require O(1) time. The enqueue operation requires
O(n) time in the worst case since the list may need to expand to accommodate the
new item. When used in sequence, the enqueue operation has an amortized cost of
O(1). The dequeue operation also requires O(n) time since the underlying array
used to implement the Python list may need to shrink when an item is removed.
In addition, when an item is removed from the front of the list, the following items
have to be shifted forward, which requires linear time no matter if an expansion
occurs or not.

8.2.2 Using a Circular Array
The list-based implementation of the Queue ADT is easy to implement, but it
requires linear time for the enqueue and dequeue operations. We can improve
these times using an array structure and treating it as a circular array. A circular
array is simply an array viewed as a circle instead of a line. An example is
illustrated in Figure 8.4.

0
1

2
34

5

6
7

0 1 2 3 4 5 6 7

     

Figure 8.4: The abstract view of a circular array (left) and the physical view (right).

A circular array allows us to add new items to a queue and remove existing
ones without having to shift items in the process. Unfortunately, this approach
introduces the concept of a maximum-capacity queue that can become full. A
circular array queue implementation is typically used with applications that only
require small-capacity queues and allows for the specification of a maximum size.
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Data Organization

To implement a queue as a circular array, we must maintain a count field and
two markers. The count field is necessary to keep track of how many items are
currently in the queue since only a portion of the array may actually contain queue
items. The markers indicate the array elements containing the first and last items
in the queue. Consider the following circular array:

front

back

0
1

2
34

5

6
7

28

19

45

13

front back
count: 5

0 1 2 3 4 5 6 7

     2828 1919 4545 1313 77

7

which illustrates the implementation of the queue from Figure 8.1. The figure
shows the corresponding abstract and physical views of the circular array.

New items are added to the queue by inserting them in the position immedi-
ately following the back marker. The marker is then advanced one position and
the counter is incremented to reflect the addition of the new item. For example,
suppose we enqueue value 32 into the sample queue. The back marker is advanced
to position 5 and value 32 is inserted:

front

back

0
1

2
34

5

6
7

28

19

45

137

32

front back
count: 6

0 1 2 3 4 5 6 7

     2828 1919 4545 1313 77 3232

To dequeue an item, the value in the element marked by front will be returned
and the marker is advanced one position:

front

back

0
1

2
34

5

6
7 19

45

137

32

front back
count: 5

0 1 2 3 4 5 6 7

     1919 4545 1313 77 3232

Notice the remaining items in the queue are not shifted. Instead, only the front
marker is moved. Now, suppose we add values 8 and 23 to the queue. These values
are added in the positions following the back marker:
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front

back

0
1

2
34

5

6
7 19

45

137

32

8

23
front back

count: 7

0 1 2 3 4 5 6 7

     1919 4545 1313 77 3232 88 2323

The queue now contains seven items in elements [1 . . . 7] with one empty slot.
What happens if value 39 is added? Since we are using a circular array, the same
procedure is used and the new item will be inserted into the position immediately
following the back marker. In this case, that position will be element 0. Thus,
the queue wraps around the circular array as items are added and removed, which
eliminates the need to shift items. The resulting queue is shown here:

front

back

0
1

2
34

5

6
7 19

45

137

32

8

23 39
frontback

count: 8

0 1 2 3 4 5 6 7

     1919 4545 1313 77 3232 88 23233939

This also represents a full queue since all slots in the array are filled. No
additional items can be added until existing items have been removed. This is a
change from the original definition of the Queue ADT and requires an additional
operation to test for a full queue.

Queue Implementation

Given the description of a circular array and its use in implementing a queue, we
turn our attention to the implementation details. A Python implementation of the
Queue ADT using a circular array is provided in Listing 8.2.

The constructor creates an object containing four data fields, including the
counter to keep track of the number of items in the queue, the two markers, and
the array itself. A sample instance of the class is illustrated in Figure 8.5.

For the circular queue, the array is created with maxSize elements as specified
by the argument to the constructor. The two markers are initialized so the first
item will be stored in element 0. This is achieved by setting front to 0 and back
to the index of the last element in the array. When the first item is added, back

count front


qArray

Queue (array)

back

0 1 2 3 4 5 6 7

     1919 4545 1313 77282855 00 44

Figure 8.5: A Queue object implemented as a circular array.
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Listing 8.2 The arrayqueue.py module.

1 # Implementation of the Queue ADT using a circular array.
2 from array import Array
3
4 class Queue :
5 # Creates an empty queue.
6 def __init__( self, maxSize ) :
7 self._count = 0
8 self._front = 0
9 self._back = maxSize - 1

10 self._qArray = Array( maxSize )
11
12 # Returns True if the queue is empty.
13 def isEmpty( self ) :
14 return self._count == 0
15
16 # Returns True if the queue is full.
17 def isFull( self ) :
18 return self._count == len(self._qArray)
19
20 # Returns the number of items in the queue.
21 def __len__( self ) :
22 return self._count
23
24 # Adds the given item to the queue.
25 def enqueue( self, item ):
26 assert not self.isFull(), "Cannot enqueue to a full queue."
27 maxSize = len(self._qArray)
28 self._back = (self._back + 1) % maxSize
29 self._qArray[self._back] = item
30 self._count += 1
31
32 # Removes and returns the first item in the queue.
33 def dequeue( self ):
34 assert not self.isEmpty(), "Cannot dequeue from an empty queue."
35 item = self._qArray[ self._front ]
36 maxSize = len(self._qArray)
37 self._front = (self._front + 1) % maxSize
38 self._count -= 1
39 return item

will wrap around to element 0 and the new value will be stored in that position.
Figure 8.6 illustrates the circular array when first created by the constructor.

The size() and isEmpty() methods use the value of count to return the
appropriate result. As indicated earlier, implementing the Queue ADT as a circular
array creates the special case of a queue with a maximum capacity, which can result
in a full queue. For this implementation of the queue, we must add the isFull()
method, which can be used to test if the queue is full. Again, the count field is
used to determine when the queue becomes full.

To enqueue an item, as shown in lines 25–30, we must first test the precondition
and verify the queue is not full. If the condition is met, the new item can be inserted
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frontback

0
1

2
34

5

6
7

front back
count: 0

0 1 2 3 4 5 6 7

     

Figure 8.6: The circular array when the queue is first created in the constructor.

into the position immediately following the back marker. But remember, we are
using a circular array and once the marker reaches the last element of the actual
linear array, it must wrap around to the first element. This can be done using a
condition statement to test if back is referencing the last element and adjusting
it appropriately, as shown here:

self._back += 1
if self._back == len( self._qArray ) :
self._back = 0

A simpler approach is to use the modulus operator as part of the increment
step. This reduces the need for the conditional and automatically wraps the marker
to the beginning of the array as follows:

self._back = ( self._back + 1 ) % len( self._qArray )

The dequeue operation is implemented in a similar fashion as enqueue() as
shown in lines 33–39 of Listing 8.2. The item to be removed is taken from the posi-
tion marked by front and saved. The marker is then advanced using the modulus
operator as was done when enqueueing a new item. The counter is decremented
and the saved item is returned.

Run Time Analysis

The circular array implementation provides a more efficient solution than the
Python list. The operations all have a worst case time-complexity of O(1) since
the array items never have to be shifted. But the circular array does introduce the
drawback of working with a maximum-capacity queue. Even with this limitation,
it is well suited for some applications.

8.2.3 Using a Linked List
A major disadvantage in using a Python list to implement the Queue ADT is the
expense of the enqueue and dequeue operations. The circular array implementation
improved on these operations, but at the cost of limiting the size of the queue. A
better solution is to use a linked list consisting of both head and tail references.
Adding the tail reference allows for quick append operations that otherwise would
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require a complete traversal to find the end of the list. Figure 8.7 illustrates a
sample linked list with the two external references.

  

Queue    (linked)

2828 1919 4545 1313 77

size qtail


qhead

55 

Figure 8.7: An instance of the Queue ADT implemented as a linked list.

The complete implementation of the Queue ADT using a linked list with a tail
reference is provided in Listing 8.3. Remember, the individual nodes in the list
contain the individual items in the queue. When dequeueing an item, we must
unlink the node from the list but return the item stored in that node and not the
node itself. An evaluation of the time-complexities is left as an exercise.

Listing 8.3 The llistqueue.py module.

1 # Implementation of the Queue ADT using a linked list.
2 class Queue :
3 # Creates an empty queue.
4 def __init__( self ):
5 self._qhead = None
6 self._qtail = None
7 self._count = 0
8
9 # Returns True if the queue is empty.

10 def isEmpty( self ):
11 return self._qhead is None
12
13 # Returns the number of items in the queue.
14 def __len__( self ):
15 return self._count
16
17 # Adds the given item to the queue.
18 def enqueue( self, item ):
19 node = _QueueNode( item )
20 if self.isEmpty() :
21 self._qhead = node
22 else :
23 self._qtail.next = node
24
25 self._qtail = node
26 self._count += 1
27
28 # Removes and returns the first item in the queue.
29 def dequeue( self ):
30 assert not self.isEmpty(), "Cannot dequeue from an empty queue."
31 node = self._qhead
32 if self._qhead is self._qtail :
33 self._qtail = None

(Listing Continued)
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Listing 8.3 Continued . . .

34
35 self._qhead = self._qhead.next
36 self._count -= 1
37 return node.item
38
39 # Private storage class for creating the linked list nodes.
40 class _QueueNode( object ):
41 def __init__( self, item ):
42 self.item = item
43 self.next = None

8.3 Priority Queues
Some applications require the use of a queue in which items are assigned a priority
and the items with a higher priority are dequeued first. However, all items with
the same priority still obey the FIFO principle. That is, if two items with the same
priority are enqueued, the first in will be the first out.

8.3.1 The Priority Queue ADT
A priority queue is simply an extended version of the basic queue with the exception
that a priority p must be assigned to each item at the time it is enqueued. There
are two basic types of priority queues: bounded and unbounded. The bounded
priority queue assumes a small limited range of p priorities over the interval of
integers [0 . . . p). The unbounded priority queue places no limit on the range of
integer values that can be used as priorities. The definition of the Priority Queue
ADT is provided below. Note that we use one definition for both bounded and
unbounded priority queues.

Define Priority Queue ADT

A priority queue is a queue in which each item is assigned a priority and items with
a higher priority are removed before those with a lower priority, irrespective of when
they were added. Integer values are used for the priorities with a smaller integer
value having a higher priority. A bounded priority queue restricts the priorities to
the integer values between zero and a predefined upper limit whereas an unbounded
priority queue places no limits on the range of priorities.

� PriorityQueue(): Creates a new empty unbounded priority queue.

� BPriorityQueue( numLevels ): Creates a new empty bounded priority queue
with priority levels in the range from 0 to numLevels - 1.

� isEmpty(): Returns a boolean value indicating whether the queue is empty.
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� length (): Returns the number of items currently in the queue.

� enqueue( item, priority ): Adds the given item to the queue by inserting it
in the proper position based on the given priority. The priority value must
be within the legal range when using a bounded priority queue.

� dequeue(): Removes and returns the front item from the queue, which is the
item with the highest priority. The associated priority value is discarded. If
two items have the same priority, then those items are removed in a FIFO
order. An item cannot be dequeued from an empty queue.

Consider the following code segment, which enqueues a number of items into
a priority queue. The priority queue is defined with six levels of priority with a
range of [0 . . . 5]. The resulting queue is shown in Figure 8.8.

Q = BPriorityQueue( 6 )
Q.enqueue( "purple", 5 )
Q.enqueue( "black", 1 )
Q.enqueue( "orange", 3 )
Q.enqueue( "white", 0 )
Q.enqueue( "green", 1 )
Q.enqueue( "yellow", 5 )

(0) “white”(0) “white” (1) “black”(1) “black” (1) “green”(1) “green” (3) “orange”(3) “orange” (5) “purple”(5) “purple” (5) “yellow”(5) “yellow”

Figure 8.8: Abstract view of a priority queue resulting from enqueueing several strings,
along with individual priorities.

The first item to be removed will be the first item with the highest priority.
Notice when items "black" and "green" are enqueued, "green" follows "black" in
the queue even though they have the same priority since items with equal priority
still obey the FIFO principle. The following code segment removes the items and
prints them to the terminal:

while not Q.isEmpty() :
item = Q.dequeue()
print( item )

which results in the following output:
white
black
green
orange
purple
yellow
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8.3.2 Implementation: Unbounded Priority Queue
There are a number of ways to implement an unbounded Priority Queue ADT.
The most basic is to use a Python list or linked list as was done with the Queue
ADT. To implement the priority queue, we must consider several facts related to
the definition of the ADT:

� A priority must be associated with each item in the queue, possibly requiring
the value to be stored along with the item.

� The next item to be dequeued from the priority queue is the item with the
highest priority.

� If multiple items have the same priority, those items must be dequeued in the
order they were originally enqueued.

Python List Implementation

We used a Python list to implement the basic queue earlier in the chapter. In that
implementation, the queue items were organized within the list from front to back
with new items appended directly to the end and existing items removed from the
front. That simple organization worked well with the basic queue. When imple-
menting the priority queue, however, the items cannot simply be added directly
to the list, but instead we must have a way to associate a priority with each item.
This can be accomplished with a simple storage class containing two fields: one for
the priority and one for the queue item. For example:

class _PriorityQEntry :
def __init__( self, item, priority ):
self.item = item
self.priority = priority

With the use of a storage class for maintaining the associated priorities, the
next question is how should the entries be organized within the vector? We can
consider two approaches, both of which satisfy the requirements of the priority
queue:

� Append new items to the end of the list. When a new item is enqueued,
simply append a new instance of the storage class (containing the item and its
priority) to the end of the list. When an item is dequeued, search the vector
for the item with the lowest priority and remove it from the list. If more than
one item has the same priority, the first one encountered during the search
will be the first to be dequeued.

� Keep the items sorted within the list based on their priority. When a new item
is enqueued, find its proper position within the list based on its priority and
insert an instance of the storage class at that point. If we order the items in the
vector from lowest priority at the front to highest at the end, then the dequeue
operation simply requires the removal of the last item in the list. To maintain
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the proper ordering of items with equal priority, the enqueue operation must
ensure newer items are inserted closer to the front of the list than the other
items with the same priority.

An implementation of the priority queue using a Python list in which new items
are appended to the end is provided in Listing 8.4. A sample instance of the class
is illustrated in Figure 8.9. Note this implementation does not use the numLevels
argument passed to the constructor since we can store items having any number
of priority levels.

Listing 8.4 The priorityq.py module.

1 # Implementation of the unbounded Priority Queue ADT using a Python list
2 # with new items appended to the end.
3
4 class PriorityQueue :
5 # Create an empty unbounded priority queue.
6 def __init__( self ):
7 self._qList = list()
8
9 # Returns True if the queue is empty.

10 def isEmpty( self ):
11 return len( self ) == 0
12
13 # Returns the number of items in the queue.
14 def __len__( self ):
15 return len( self._qList )
16
17 # Adds the given item to the queue.
18 def enqueue( self, item, priority ):
19 # Create a new instance of the storage class and append it to the list.
20 entry = _PriorityQEntry( item, priority )
21 self._qList.append( entry )
22
23 # Removes and returns the first item in the queue.
24 def dequeue( self ) :
25 assert not self.isEmpty(), "Cannot dequeue from an empty queue."
26
27 # Find the entry with the highest priority.
28 highest = self._qList[i].priority
29 for i in range( self.len() ) :
30 # See if the ith entry contains a higher priority (smaller integer).
31 if self._qList[i].priority < highest :
32 highest = self._qList[i].priority
33
34 # Remove the entry with the highest priority and return the item.
35 entry = self._qList.pop( highest )
36 return entry.item
37
38 # Private storage class for associating queue items with their priority.
39 class _PriorityQEntry( object ):
40 def __init__( self, item, prioity ):
41 self.item = item
42 self.priority = priority
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Figure 8.9: An instance of the priority queue implemented using a list.

To evaluate the efficiency, we consider the implementation of each operation.
Testing for an empty queue and determining the size can be done in O(1) time.
The enqueue operation requires linear time in the worst case since the underlying
array may have to be reallocated, but it has a O(1) amortized cost. The dequeue
operation is also O(n) since we must search through the entire list in the worst
case to find the entry with the highest priority.

Linked List Implementation

A singly linked list structure with both head and tail references can also be used
to implement the priority queue as illustrated in Figure 8.10. The QueueNode
class used in the implementation of the Queue ADT using a linked list has to be
modified to include the priority value. After that, the linked list can be used in
a similar fashion as the Python list. When an item is enqueued, the new node is
appended to the end of the linked list and when a dequeue operation is performed,
the linked list is searched to find the entry with the highest priority. We leave the
actual design and implementation as an exercise but examine the time-complexity
of this approach.
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Figure 8.10: Implementation of the priority queue from Figure 8.8 using a linked list.
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As with the Python list implementation of the priority queue, testing for an
empty queue and determining the size can be done in O(1) time. The enqueue
operation can also be done in constant time since we need only append a new node
to the end of the list. The dequeue operation, however, requires O(n) time since
the entire list must be searched in the worst case to find the entry with the highest
priority. Once that entry is located, the node can be removed from the list in
constant time.

8.3.3 Implementation: Bounded Priority Queue
The Python list and linked list versions are quite simple to implement and can be
used to implement the bounded priority queue. But they both require linear time
to dequeue an item. Since the priorities of a bounded priority queue are restricted
to a finite set [0 . . . p), we can improve this worst case time with an implementation
in which all of the operations only require constant time. This can be done using
an array of queues, as illustrated in Figure 8.11.
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Figure 8.11: Implementation of the priority queue using an array of queues.

The implementation of the bounded Priority Queue ADT is shown in List-
ing 8.5. The constructor creates two data fields. The qLevels field contains an
array of p elements in which each contains an instance of the Queue ADT. The
size field maintains the number of items in the priority queue, which can also be

used to determine if the queue is empty. When an item with priority k is added
to the priority queue, it is added to the queue stored in the qList[k] element. To
dequeue an item from the priority queue, we must iterate through the array to find
the first non-empty queue, which will contain the first item to be removed from the
priority queue. Note that we do not have to store the priorities along with each
item since all items with a given priority will be stored in the same queue. The
priority can be determined from the array indices.
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The implementation of the priority queue using an array of queues is also quite
simple. But can we obtain constant time operations? We begin with the isEmpty()
and len operations. Since a data field is maintained to store the number
of items in the priority queue, both can be performed in constant time. The
enqueue operation also requires constant time since adding an item to a general
queue can be done in constant time as can accessing an individual queue in the
array. Dequeueing from a general queue implemented as a linked list can be done
in constant time. But since we must iterate through the array to find the first
non-empty queue, the priority dequeue operation requires O(p) time. While this
time is linear, it is linear with respect to the number of priorities and not to the
number of elements in the queue (n). When the number of priorities is quite small,

Listing 8.5 The bpriorityq.py module.

1 # Implementation of the bounded Priority Queue ADT using an array of
2 # queues in which the queues are implemented using a linked list.
3 from array import Array
4 from llistqueue import Queue
5
6 class BPriorityQueue :
7 # Creates an empty bounded priority queue.
8 def __init__( self, numLevels ):
9 self._qSize = 0

10 self._qLevels = Array( numLevels )
11 for i in range( numLevels ) :
12 self._qLevels[i] = Queue()
13
14 # Returns True if the queue is empty.
15 def isEmpty( self ):
16 return len( self ) == 0
17
18 # Returns the number of items in the queue.
19 def __len__( self ):
20 return len( self._qSize )
21
22 # Adds the given item to the queue.
23 def enqueue( self, item, priority ):
24 assert priority >= 0 and priority < len(self._qLevels), \
25 "Invalid priority level."
26 self._qLevels[priority].enqueue( item )
27
28 # Removes and returns the next item in the queue.
29 def dequeue( self ) :
30 # Make sure the queue is not empty.
31 assert not self.isEmpty(), "Cannot dequeue from an empty queue."
32 # Find the first non-empty queue.
33 i = 0
34 p = len(self._qLevels)
35 while i < p and not self._qLevels[i].isEmpty() :
36 i += 1
37 # We know the queue is not empty, so dequeue from the ith queue.
38 return self._qLevels[i].dequeue()
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we can safely treat p as a constant value and specify the dequeue operation as
requiring constant time.

The disadvantage of this structure for the implementation of the priority queue
is that the number of levels is fixed. If an application requires a priority queue
with an unlimited number of priority levels, then the vector or linked-list versions
are a better choice.

8.4 Application: Computer Simulations

Computers have long been used to model and simulate real-world systems and
phenomena. These simulations are simply computer applications that have been
designed to represent and appropriately react to the significant events occurring in
the system. Simulations can allow humans to study certain behaviors or experiment
with certain changes and events in a system to determine the appropriate strategy.

Some of the more common simulations include weather forecasting and flight
simulators. A flight simulator, which is a mock-up of a real cockpit and controlled
by software, helps train pilots to deal with real situations without having to risk
the life of the pilot or loss of the aircraft. Weather forecasts today are much
more reliable due to the aide of computer simulations. Mathematical models have
been developed to simulate weather patterns and atmospheric conditions. These
models can be solved using computer applications, which then provide information
to meteorologists for use in predicting the weather.

Computer simulations are also used for less glamorous applications. Businesses
can use a computer simulation to determine the number of employees needed to
provide a service to its customers. For example, an airline may want to know how
many ticket agents are needed at certain times of the day in order to provide timely
service. Having too many agents will cost the airline money, but too few will result
in angry customers. The company could simply study the customer habits at one
airport and experiment with a different number of agents at different times. But
this can be costly and time consuming. In addition, the results may only be valid
for that one airport. To reduce the cost and allow for events that may occur at
various airports, a computer simulation can be developed to model the real system.

8.4.1 Airline Ticket Counter

Simulating an airline ticket counter, or any other queuing system where cus-
tomers stand in line awaiting service, is very common. A queue structure is used
to model the queuing system in order to study certain behaviors or outcomes.
Some of the typical results studied include average waiting time and average queue
length. Queuing systems that use a single queue are easier to model. More complex
systems like those representing a grocery store that use multiple queues, require
more complex models. In this text, we limit our discussion to single-queue systems.
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Queuing System Model

We can model a queuing system by constructing a discrete event simulation .
The simulation is a sequence of significant events that cause a change in the system.
For example, in our airline ticket counter simulation, these events would include
customer arrival, the start or conclusion of a transaction, or customer departure.

The simulation is time driven and performed over a preset time period. The
passing of time is represented by a loop, which increments a discrete time variable
once for each tick of the clock. The events can only occur at discrete time intervals.
Thus, the time units must be small enough such that no event can occur between
units. A simulation is commonly designed to allow the user to supply parameters
that define the conditions of the system. For a discrete event simulation modeling
a queuing system, these parameters include:

� The length of the simulation given in number of time units. The simulation
typically begins at time unit zero.

� The number of servers providing the service to the customers. We must have
at least one server.

� The expected service time to complete a transaction.

� The distribution of arrival times, which is used to determine when customers
arrive.

By adjusting these parameters, the user can change the conditions under which
the simulation is performed. We can change the number of servers, for example, to
determine the optimal number required to provide satisfactory service under the
given conditions.

Finally, a set of rules are defined for handling the events during each tick
of the clock. The specific rules depends on what results are being studied. To
determine the average time customers must wait in line before being served, there
are three rules:

Rule 1: If a customer arrives, he is added to the queue. At most, one customer
can arrive during each time step.

Rule 2: If there are customers waiting, for each free server, the next customer in
line begins her transaction.

Rule 3: For each server handling a transaction, if the transaction is complete, the
customer departs and the server becomes free.

When the simulation completes, the average waiting time can be computed by
dividing the total waiting time for all customers by the total number of customers.

Random Events

To correctly model a queuing system, some events must occur at random. One such
event is customer arrival. In the first rule outlined earlier, we need to determine if
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a customer arrives during the current tick of the clock. In a real-world system, this
event cannot be directly controlled but is a true random act. We need to model
this action as close as possible in our simulation.

A simple approach would be to flip a coin and let “heads” represent a customer
arrival. But this would indicate that there is a 50/50 chance a customer arrives
every time unit. This may be true for some systems, but not necessarily the one
we are modeling. We could change and use a six-sided die and let one of the sides
represent a customer arrival. But this only changes the odds to 1 in 6 that a
customer arrives.

A better approach is to allow the user to specify the odds of a customer arriving
at each time step. This can be done in one of two ways. The user can enter the
odds a customer arrives during the current time step as a real value between 0.0
(no chance) and 1.0 (a sure thing). If 0.2 is entered, then this would indicate there
is a 1 in 5 chance a customer arrives. Instead of directly entering the odds, we can
have the user enter the average time between customer arrivals. We then compute
the odds within the program. If the user enters an average time of 8.0, then on
average a customer arrives every 8 minutes. But customers can arrive during any
minute of the simulation. The average time between arrivals simply provides the
average over the entire simulation. We use the average time to compute the odds
of a customer arriving as 1.0/8.0, or 0.125.

Given the odds either directly by the user or computing them based on the
average arrival time, how is this value used to simulate the random act of a customer
arriving? We use the random number generator provided by Python to generate a
number between 0.0 and 1.0. We compare this result to the probability (prob) of
an arrival. If the generated random number is between 0.0 and prob inclusive, the
event occurs and we signal a customer arrival. On the other hand, if the random
value is greater than prob, then no customer arrives during the current time step
and no action is taken. The arrival probability can be changed to alter the number
of customers served in the simulation.

8.4.2 Implementation
We can design and implement a discrete event computer simulation to analyze the
average time passengers have to wait for service at an airport ticket counter. The
simulation will involve multiple ticket agents serving customers who have to wait
in line until they can be served. Our design will be an object-oriented solution
with multiple classes.

System Parameters

The program will prompt the user for the queuing system parameters:

Number of minutes to simulate: 25
Number of ticket agents: 2
Average service time per passenger: 3
Average time between passenger arrival: 2
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For simplicity we use minutes as the discrete time units. This would not be
sufficient to simulate a real ticket counter as multiple passengers are likely to
arrive within any given minute. The program will then perform the simulation
and produce the following output:

Number of passengers served = 12
Number of passengers remaining in line = 1
The average wait time was 1.17 minutes.

We will also have the program display event information, which can be used to
help debug the program. The debug information lists each event that occurs in the
system along with the time the events occur. For the input values shown above,
the event information displayed will be:

Time 2: Passenger 1 arrived.
Time 2: Agent 1 started serving passenger 1.
Time 3: Passenger 2 arrived.
Time 3: Agent 2 started serving passenger 2.
Time 5: Passenger 3 arrived.
Time 5: Agent 1 stopped serving passenger 1.
Time 6: Agent 1 started serving passenger 3.
Time 6: Agent 2 stopped serving passenger 2.
Time 8: Passenger 4 arrived.
Time 8: Agent 2 started serving passenger 4.
Time 9: Agent 1 stopped serving passenger 3.
Time 10: Passenger 5 arrived.
Time 10: Agent 1 started serving passenger 5.
Time 11: Passenger 6 arrived.
Time 11: Agent 2 stopped serving passenger 4.
Time 12: Agent 2 started serving passenger 6.
Time 13: Passenger 7 arrived.
Time 13: Agent 1 stopped serving passenger 5.
Time 14: Passenger 8 arrived.
Time 14: Agent 1 started serving passenger 7.
Time 15: Passenger 9 arrived.
Time 15: Agent 2 stopped serving passenger 6.
Time 16: Agent 2 started serving passenger 8.
Time 17: Agent 1 stopped serving passenger 7.
Time 18: Passenger 10 arrived.
Time 18: Agent 1 started serving passenger 9.
Time 19: Passenger 11 arrived.
Time 19: Agent 2 stopped serving passenger 8.
Time 20: Agent 2 started serving passenger 10.
Time 21: Agent 1 stopped serving passenger 9.
Time 22: Agent 1 started serving passenger 11.
Time 23: Passenger 12 arrived.
Time 23: Agent 2 stopped serving passenger 10.
Time 24: Agent 2 started serving passenger 12.
Time 25: Passenger 13 arrived.
Time 25: Agent 1 stopped serving passenger 11.
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Passenger Class

First, we need a class to store information related to a single passenger. We create
a Passenger class for this purpose. The complete implementation of this class
is provided in Listing 8.6. The class will contain two data fields. The first is an
identification number used in the output of the event information. The second field
records the time the passenger arrives. This value will be needed to determine the
length of time the passenger waited in line before beginning service with an agent.
Methods are also provided to access the two data fields. An instance of the class
is illustrated in Figure 8.12.

Listing 8.6 The Passenger class defined in the simpeople.py module.

1 # Used to store and manage information related to an airline passenger.
2 class Passenger :
3 # Creates a passenger object.
4 def __init__( self, idNum, arrivalTime ):
5 self._idNum = idNum
6 self._arrivalTime = arrivalTime
7
8 # Gets the passenger's id number.
9 def idNum( self ) :

10 return self._idNum
11
12 # Gets the passenger's arrival time.
13 def timeArrived( self ) :
14 return self._arrivalTime

Ticket Agent Class

We also need a class to represent and store information related to the ticket agents.
The information includes an agent identification number and a timer to know
when the transaction will be completed. This value is the sum of the current time
and the average time of the transaction as entered by the user. Finally, we need to
keep track of the current passenger being served by the agent in order to identify
the specific passenger when the transaction is completed. The TicketAgent class
is implemented in Listing 8.7, and an instance of the class is shown in Figure 8.12.

The passenger field is set to a null reference, which will be used to flag a
free agent. The idNum() method simply returns the id assigned to the agent when
the object is created while the isFree() method examines the passenger field to

Passenger TicketAgent

idNum

11

arrivalTime

22 
passengeridNum

11

stopTime

55

Figure 8.12: Sample Passenger and TicketAgent objects.
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determine if the agent is free. The isFinished() method is used to determine if the
passenger currently being served by this agent has completed her transaction. This
method only flags the transaction as having been completed. To actually end the
transaction, stopService() must be called. stopService() sets the passenger
field to None to again indicate the agent is free and returns the passenger object.
To begin a transaction, startService() is called, which assigns the appropriate
fields with the supplied arguments.

Listing 8.7 The TicketAgent class defined in the simpeople.py module.

1 # Used to store and manage information related to an airline ticket agent.
2 class TicketAgent :
3 # Creates a ticket agent object.
4 def __init__( self, idNum ):
5 self._idNum = idNum
6 self._passenger = None
7 self._stopTime = -1
8
9 # Gets the ticket agent's id number.

10 def idNum( self ):
11 return self._idNum
12
13 # Determines if the ticket agent is free to assist a passenger.
14 def isFree( self ):
15 return self._passenger is None
16
17 # Determines if the ticket agent has finished helping the passenger.
18 def isFinished( self, curTime ):
19 return self._passenger is not None and self._stopTime == curTime
20
21 # Indicates the ticket agent has begun assisting a passenger.
22 def startService( self, passenger, stopTime ):
23 self._passenger = passenger
24 self._stopTime = stopTime
25
26 # Indicates the ticket agent has finished helping the passenger.
27 def stopService( self ):
28 thePassenger = self._passenger
29 self._passenger = None
30 return thePassenger

Simulation Class

Finally, we construct the TicketCounterSimulation class, which is provided in
Listing 8.8, to manage the actual simulation. This class will contain the vari-
ous components, methods, and data values required to perform a discrete event
simulation. A sample instance is illustrated in Figure 8.13.

The first step in the constructor is to initialize three simulation parameters.
Note the arriveProb is the probability of a passenger arriving during the current
time step using the formula described earlier. A queue is created, which will be
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Listing 8.8 The simulation.py module.

1 # Implementation of the main simulation class.
2 from array import Array
3 from llistqueue import Queue
4 from people import TicketAgent, Passenger
5
6 class TicketCounterSimulation :
7 # Create a simulation object.
8 def __init__( self, numAgents, numMinutes, betweenTime, serviceTime ):
9 # Parameters supplied by the user.

10 self._arriveProb = 1.0 / betweenTime
11 self._serviceTime = serviceTime
12 self._numMinutes = numMinutes
13
14 # Simulation components.
15 self._passengerQ = Queue()
16 self._theAgents = Array( numAgents )
17 for i in range( numAgents ) :
18 self._theAgents[i] = TicketAgent(i+1)
19
20 # Computed during the simulation.
21 self._totalWaitTime = 0
22 self._numPassengers = 0
23
24 # Run the simulation using the parameters supplied earlier.
25 def run( self ):
26 for curTime in range(self._numMinutes + 1) :
27 self._handleArrival( curTime )
28 self._handleBeginService( curTime )
29 self._handleEndService( curTime )
30
31 # Print the simulation results.
32 def printResults( self ):
33 numServed = self._numPassengers - len(self._passengerQ)
34 avgWait = float( self._totalWaitTime ) / numServed
35 print( "" )
36 print( "Number of passengers served = ", numServed )
37 print( "Number of passengers remaining in line = %d" %
38 len(self._passengerQ) )
39 print( "The average wait time was %4.2f minutes." % avgWait )
40
41 # The remaining methods that have yet to be implemented.
42 # def _handleArrive( curTime ): # Handles simulation rule #1.
43 # def _handleBeginService( curTime ): # Handles simulation rule #2.
44 # def _handleEndService( curTime ): # Handles simulation rule #3.

TicketCounterSimulation

numMinutes


passengerQtheAgents


arriveProb totalWaitTime numPassengersserviceTime

2525 0.50.5 33 00 00

Figure 8.13: A sample TicketCounterSimulation object.
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used to represent the line in which passengers must wait until they are served by
a ticket agent. The ticket agents are represented as an array of Agent objects.
The individual objects are instantiated and each is assigned an id number, start-
ing with 1. Two data fields are needed to store data collected during the actual
simulation. The first is the summation of the time each passenger has to wait in
line before being served, and the second keeps track of the number of passengers
in the simulation. The latter will also be used to assign an id to each passenger.

The simulation is performed by calling the run() method, which simulates the
ticking of the clock by performing a count-controlled loop keeping track of the
current time in curTime. The loop executes until numMinutes have elapsed.
The events of the simulation are also performed during the terminating minute,
hence, the need for the numMinutes + 1 in the range() function. During each
iteration of the loop, the three simulation rules outlined earlier are handled by the
respective handleXYZ() helper methods. The handleArrival() method deter-
mines if a passenger arrives during the current time step and handles that arrival.
handleBeginService() determines if any agents are free and allows the next pas-

senger(s) in line to begin their transaction. The handleEndService() determines
which of the current transactions have completed, if any, and flags a passenger
departure. The implementation of the helper methods is left as an exercise.

After running the simulation, the printResults() method is called to print the
results. When the simulation terminates there may be some passengers remaining
in the queue who have not yet been assisted. Thus, we need to determine how
many passengers have exited the queue, which indicates the number of passenger
wait times included in the totalWaitTime field. The average wait time is simply
the total wait time divided by the number of passengers served.

The last component of our program is the driver module, which is left as an
exercise. The driver extracts the simulation parameters from the user and then
creates and uses a TicketCounterSimulation object to perform the simulation.
To produce the same results shown earlier, you will need to seed the random
number generator with the value 4500 before running the simulation:

random.seed( 4500 )

In a typical experiment, a simulation is performed multiple times varying the
parameters with each execution. Table 8.1 illustrates the results of a single exper-
iment with multiple executions of the simulation. Note the significant change in
the average wait time when increasing the number of ticket agents by one in the
last two sets of experiments.

Exercises
8.1 Determine the worst case time-complexity for each operation defined in the

TicketCounterSimulation class.
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Num Num Average Time Average Passengers Passengers

Minutes Agents Service Between Wait Served Remaining

100 2 3 2 2.49 49 2

500 2 3 2 3.91 240 0

1000 2 3 2 10.93 490 14

5000 2 3 2 15.75 2459 6

10000 2 3 2 21.17 4930 18

100 2 4 2 10.60 40 11

500 2 4 2 49.99 200 40

1000 2 4 2 95.72 400 104

5000 2 4 2 475.91 2000 465

10000 2 4 2 949.61 4000 948

100 3 4 2 0.51 51 0

500 3 4 2 0.50 240 0

1000 3 4 2 1.06 501 3

5000 3 4 2 1.14 2465 0

10000 3 4 2 1.21 4948 0

Table 8.1: Sample results of the ticket counter simulation experiment.

8.2 Hand execute the following code and show the contents of the resulting queue:

values = Queue()
for i in range( 16 ) :
if i % 3 == 0 :
values.enqueue( i )

8.3 Hand execute the following code and show the contents of the resulting queue:

values = Queue()
for i in range( 16 ) :
if i % 3 == 0 :
values.enqueue( i )

elif i % 4 == 0 :
values.dequeue()

8.4 Implement the remaining methods of the TicketCounterSimulation class.

8.5 Modify the TicketCounterSimulation class to use seconds for the time units
instead of minutes. Run an experiment with multiple simulations and produce
a table like Table 8.1.

8.6 Design and implement a function that reverses the order of the items in a
queue. Your solution may only use the operations defined by the Queue ADT,
but you are free to use other data structures if necessary.
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Programming Projects
8.1 Implement the Priority Queue ADT using each of the following:

(a) sorted Python list (b) sorted linked list (c) unsorted linked list

8.2 A deque (pronounced “deck”) is similar to a queue, except that elements can
be enqueued at either end and dequeued from either end. Define a Deque
ADT and then provide an implementation for your definition.

8.3 Design and implement a ToDo List ADT in which each entry can be assigned
a priority and the entries with the highest priority are performed first.

8.4 Printers can be connected to the network and made available to many users.
To manage multiple print jobs and to provide fair access, networked printers
use print queues. Design, implement, and test a computer program to simulate
a print queue that evaluates the average wait time.

8.5 Modify your simulation from Programming Project 8.4 to use a priority queue
for each print job. The priorities should range from 0 to 20 with 0 being the
highest priority. Use a random number generator to determine the priority of
each job.

8.6 Design, implement, and test a computer program to simulate a telephone
customer service center. Your simulation should evaluate the average time
customers have to wait on hold.

8.7 Design, implement, and test a computer program to simulate a bank. Your
simulation should evaluate the average time customers have to wait in line
before they are served by a teller.

8.8 Redesign the TicketCounterClass to implement a generic simulation class
from which a user can derive their own simulation classes.

8.9 Design, implement, and test a computer program to simulate the checkout
at a grocery store. Your simulation must allow for multiple checkout lines
and allow customers at the end of a line to move to another checkout line.
This simulation differs from the one described in the chapter. For this simu-
lation, you will have to accommodate the multiple checkout lines, decide how
a customer chooses a line, and decide if and when a customer moves to a new
checkout line.



CHAPTER 9
Advanced Linked Lists

In Chapter 6, we introduced the linked list data structure and saw how it can
be used to improve the construction and management of lists for certain types of
applications. In that discussion, we limited the focus to the singly linked list in
which traversals start at the front and progress, one element at a time, in a single
direction. But there are a number of variations to the linked list structure based on
how the nodes are linked and how many chains are constructed from those links.
In this chapter, we introduce some of the more common linked list variations.

9.1 The Doubly Linked List
The singly linked list introduced in Chapter 6 consists of nodes linked in a single
direction. Access and traversals begin with the first node and progress toward the
last node, one node at a time. But what if we want to traverse the nodes in reverse
order? With the singly linked list, this can be done but not efficiently. We would
have to perform multiple traversals, with each traversal starting at the front and
stopping one node earlier than on the previous traversal. Or consider the problem
in which you are given a reference to a specific node and need to insert a new node
immediately preceding that node. Since the predecessor of a given node cannot
be directly accessed, we would have to use a modified insertion operation in which
the list is traversed from the first node until the predecessor of the given node is
found. Again, this is not an efficient solution. For these operations and a number of
others, we need direct access to both the node following and immediately preceding
a given node.

9.1.1 Organization
In a doubly linked list , each node contains not only the data component and a
link to the next node as in the singly linked list, but also a second link that points

247



248 CHAPTER 9 Advanced Linked Lists

to the preceding node, as illustrated in Figure 9.1. To create the individual nodes,
we must add a third field to the node class, which we name DListNode to reflect
its use with a doubly linked list, as shown in Listing 9.1.

Listing 9.1 Storage class for a doubly linked list node.

1 class DListNode :
2 def __init__( self, data ):
3 self.data = data
4 self.next = None
5 self.prev = None

A head reference is again used to reference the first node in the list. A tail
reference, although optional, is commonly used with a doubly linked list to take
advantage of the reverse chain, which allows for traversals from back to front. The
last node is indicated by a null reference in the next link of the last node as was
done in the singly linked list. But we must also indicate the first node since the
list can be traversed in reverse order. This is done using a null reference in the
prev link of the first node.

 7474
 5858

head









tail



2121 3737

Figure 9.1: A doubly linked list with four nodes.

A doubly linked list can be sorted or unsorted depending on the specific ap-
plication. The implementation of the various operations for an unsorted doubly
linked list are very similar to those of the unsorted singly linked list. We leave the
implementation of these operations as an exercise and only focus on the use and
management of sorted doubly linked lists.

9.1.2 List Operations
The position of the nodes in a sorted doubly linked list are based on the key value
of the corresponding data item stored in each node. The basic linked list operations
can also be performed on a doubly linked list.

Traversals

The doubly linked list allows for traversals from front to back or back to front.
The traversals are performed using a temporary external reference to mark the
current node. The only difference is which node we start with and which link field
is used to advance the temporary reference. Traversing the doubly linked list from
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beginning to end is identical to that with a singly linked list. We start at the node
referenced by head and advance the temporary reference, curNode, one node at
a time, using the next link field. The reverse traversal, provided in Listing 9.2,
starts at the node referenced by tail and advances curNode, one node at a time,
using the prev link field. In either case, the traversal terminates when curNode is
set to null, resulting in a O(n) linear time operation.

Listing 9.2 Traversing a doubly linked list in reverse order.

1 def revTraversal( tail ):
2 curNode = tail
3 while curNode is not None :
4 print( curNode.data )
5 curNode = curNode.prev

Searching

Searching for a specific item in a doubly linked list, based on key value, can be
implemented in the same fashion as for a singly linked list. Start with the first node
and iterate through the list until we find the target item or we encounter a node
containing a key value larger than the target. But a doubly linked list provides
an advantage not available in the singly linked list. Since we can move forward or
backward, the search operations do not have to begin with the first node.

Suppose we perform a sequence of search operations on the list from Figure 9.1
and we begin that sequence with a search for value 58. Using the external reference
probe to iterate through the list, the target is found in the third node. If we leave
probe pointing to the third node, as illustrated in Figure 9.2, we can begin the
next search operation where the previous search left off instead of starting over
from the beginning. Suppose the next search is for value 37. We can compare
this target value to the item currently referenced by probe and determine if the
search should proceed forward or backward starting from the probe node. In this
case, we search backward, using probe to traverse the list. Thus, each time a
search is performed, we leave the probe reference where the previous search ended
and use it for subsequent searches. Note that probe is not a temporary reference
variable as curNode was in the normal search operation, but must be maintained
between operations in the same fashion as head and tail. Given the three external

probe
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head
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
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


2121 3737

Figure 9.2: A probe reference positioned after searching for value 58.
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references, head, tail, and probe, Listing 9.3 provides an implementation for
searching a sorted doubly linked list using the probing technique.

Listing 9.3 Probing a doubly linked list.

1 # Given the head, tail, and probe references, probe the list for a target.
2
3 # Make sure the list is not empty.
4 if head is None :
5 return False
6 # If probe is null, initialize it to the first node.
7 elif probe is None :
8 probe = head
9

10 # If the target comes before the probe node, we traverse backward;
11 # otherwise traverse forward.
12 if target < probe.data :
13 while probe is not None and target <= probe.data :
14 if target == probe.data :
15 return True
16 else :
17 probe = probe.prev
18 else :
19 while probe is not None and target >= probe.data :
20 if target == probe.data :
21 return True
22 else :
23 probe = probe.next
24
25 # If the target is not found in the list, return False.
26 return False

As with a singly linked list, all of the list operations must also work with an
empty list, indicated by a null head reference. With the probe operation, the search
simply fails if the list is empty. This can be quickly determined by examining the
head reference.

The probe reference can also be null at the beginning of the search operation.
This can occur when the first search is performed, since the probe reference has
not been positioned within the list by a previous search operation. We could
manage probe within the insert and deletion operations and make adjustments
each time a new node is added or deleted. But performing this check within the
search operation is just as easy, especially since this is the only operation in which
probe is utilized. The probe reference can also become null when the previous
search fails after the traversal has exhausted all possible nodes and the external
reference “falls off the list.” But unlike with a null head reference, the search does
not necessarily fail. Instead, the probe reference must be initialized to point to
the first node in the list to prepare for the current search.

The actual search is performed by either traversing forward or backward de-
pending on the relation between the target and the key value in the node referenced
by probe. If the target is smaller than probe’s key, then a reverse sorted list traver-
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sal is performed; otherwise a normal forward traversal is used. If the target is found
during the iteration of the appropriate loop, the function is terminated and True
is returned. Otherwise, the loop will terminate after exhausting all possible nodes
or stopping early when it’s determined the target cannot possibly be in the list. In
either case, False is returned as the last operation of the function.

We can add a quick test to determine if the target value cannot possibly be in
the list. This is done by comparing the target to the first and last nodes in the
list. If the target is smaller than the first item or larger than the last, we know
the search will ultimately fail since the target is not in the list. This step can be
omitted as the same results can be achieved by the search traversal follow, but it
can help to improve the search time on large lists.

The search operation, which maintains and uses a third external reference vari-
able, can improve the search time for a large number of sequential searches per-
formed on large lists. But in the worst case, it remains a linear time operation
since a complete traversal may have to be performed.

Adding Nodes

Adding new nodes to a sorted doubly linked list is done similar to that for the singly
linked list. The only difference is we do not need to keep track of the preceding
node. Once the position for the new node is located, we can access its predecessor
using the appropriate prev field. Consider Figure 9.3, which illustrates inserting
a new node into the middle of a sorted doubly linked list. The location of the
new node is found by positioning a single temporary external reference variable to
point to the node containing the first value larger than the new value. After this
position is found, the new node can be linked into the list using the various prev
and next node fields as illustrated. The resulting list after inserting the new node
is illustrated in Figure 9.4 on the next page.



 7474
 5858


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
 4646

curNodehead


tail



newNode

1
2

3 4



Figure 9.3: Linked modifications required to insert value 46 into the doubly linked list.

As with a singly linked list, inserting a node into a non-empty sorted doubly
linked list can occur in one of three places: at the front, at the end, or somewhere
in the middle. Inserting a new node into the middle of a list was illustrated above.
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head
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Figure 9.4: The result of inserting the new node into the doubly linked list.

Figure 9.5 illustrates the links required to insert a node at the front or end of a
doubly linked list.

The code for adding a node to a sorted doubly linked list is provided in List-
ing 9.4. Since a tail reference is commonly used with a doubly linked list, we can
provide a more efficient solution by dividing the operation into the four different
cases. This reduces the need for loop traversal when the list is empty or the new
node is prepended or appended to the list.
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Figure 9.5: The links required to insert a new node into a sorted doubly linked list at the
(a) front or (b) back.

Removing Nodes

Deleting a node from a doubly linked list is done in a similar fashion to that
for a singly linked list. Again, there is no need to position a pred temporary
external reference variable since the predecessor of a given node can be accessed
using the appropriate prev fields. Implementation of the delete operation is left
as an exercise.
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Listing 9.4 Inserting a value into an ordered doubly linked list.

1 # Given a head and tail reference and a new value, add the new value to a
2 # sorted doubly linked list.
3
4 newnode = DListNode( value )
5 if head is None : # empty list
6 head = newnode
7 tail = head
8 elif value < head.data : # insert before head
9 newnode.next = head

10 head.prev = newnode
11 head = newnode
12 elif value > tail.data : # insert after tail
13 newnode.prev = tail
14 tail.next = newnode
15 tail = newnode
16 else : # insert in the middle
17 node = head
18 while node is not None and node.data < value :
19 node = node.next
20
21 newnode.next = node
22 newnode.prev = node.prev
23 node.prev.next = newnode
24 node.prev = newnode

9.2 The Circular Linked List
Another variation of the linked list structure is the circular linked list in which
the nodes form a continuous circle. The circular linked list allows for a complete
traversal of the nodes starting with any node in the list. It is also commonly used
for applications in which data is processed in a round-robin fashion. For example,
when scheduling the use of a CPU, the operating system must cycle through all
of the processes running on a computer, allowing each an opportunity to use the
processor for a short period of time. By using a circular linked list, the choice of
the next process is made in a round-robin fashion.

9.2.1 Organization
The nodes in a circular linked list, as illustrated in Figure 9.6, are organized in a
linear fashion the same as those in a singly or doubly linked list. In fact, a circular
linked list can have single or double links. In a singly linked version, every node
has a successor while in a doubly linked version every node has a successor and
predecessor.

The nodes in a circular list have the same structure as those in the linear list
versions. The only difference is the next field of the last node links to the first,
and in the doubly linked version, the prev field of the first node links to the last.
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Figure 9.6: Examples of circular linked lists.

A single external reference variable is used to point to a node within the list.
Technically, this could be any node in the list, but for convenience, the external
reference is commonly set to the last node added to the list. By referencing that
node, we have quick access to both the first node added and the last.

9.2.2 List Operations
The common set of operations performed on the linear versions of the linked list
can also be performed on a circular linked list. However, some modifications are
required in the algorithm for each operation to take into account the location of
the external reference variable and the fact that none of the nodes have a null next
field. In this section, we describe the various list operations for use with a sorted
singly linked circular list. These operations require only slight modifications when
applied to an unsorted circular list or the doubly linked version.

Traversals

Traversing a circular linked list requires a temporary external reference that is
moved through the list, one node at a time, just like the linear versions. For the
circular list, several modifications are required, all of which are necessary in order
to perform a complete traversal while terminating the loop at the proper time.
Terminating the loop is not as straightforward with the circular list since there are
no nodes that have their next field set to None. Even in a single-node list, the link
field of the last node always points back to the first node.

We cannot simply initialize the curNode reference to the first node and traverse
until it “falls off” the list as was done in the linear versions. Instead, we need a
way to flag the end of the traversal independent of the link fields. The algorithm
for traversing a circular linked list is provided in Listing 9.5.

The traversal process begins by initializing curNode to reference the last node
in the list, as illustrated in Figure 9.7(a). The traversal reference begins at the
last node instead of the first because we are going to terminate the traversal when
it again reaches the last node, after iterating over the entire list. The termination
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Listing 9.5 Traversing a circular linked list.

1 def traverse( listRef ):
2 curNode = listRef
3 done = listRef is None
4 while not done :
5 curNode = curNode.next
6 print curNode.data
7 done = curNode is listRef

of the loop is handled by the boolean variable done, which is initialized based on
the status of listRef. If the list is empty, done will be set to False and the loop
never executes. When the list contains at least one node, done will be initialized
to True and the loop is executed.

In the linear versions of the linked list, the first step in the body of the loop
was to visit the current node (i.e., print the contents of the node.data field) and
then advance the traversal reference to the next node. In this version, we must
first advance curNode, as illustrated in Figure 9.7(b), and then perform the visit
operation. Remember, curNode is initialized to reference the last node in the list.
In order to begin the traversal with the first node, the temporary reference must
be advanced to the first node in the list.

(a)

(b)

listRef


curNode

  “B”“B” “G”“G” “T”“T” “V”“V”

listRef


curNode

  “B”“B” “G”“G” “T”“T” “V”“V”





Figure 9.7: Traversing a circular linked list: (a) initial assignment of the temporary refer-
ence and (b) advancement of the temporary reference to the first node in the list.

Finally, done is updated by examining curNode to determine if it has again
reached the last node in the list, as referenced by the listRef reference. curNode
was initialized to be an alias of listRef, but it was advanced at the beginning of
the loop. Thus, when curNode again reaches the end of the list, we know every
node has been visited and the loop can terminate.
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We must ensure this operation also works for a list containing a single node, as
illustrated in Figure 9.8. When curNode is advanced to the next node, it actually
still references itself. This is appropriate since the node is both the first and last
node in the list. After the node is visited and the data printed in this example,
curNode is advanced once again. When the alias test is performed at the bottom
of the loop, done will be set to True and the loop will terminate properly.

listRef


curNode

“B”“B”



Figure 9.8: Traversing a circular linked list containing a single node.

Searching

The search operation requires a traversal through the list, although it can terminate
early if we encounter the target item or reach an item larger than the target. The
implementation, shown in Listing 9.6, closely follows that of the traversal operation
from earlier.

Listing 9.6 Searching a circular linked list.

1 def searchCircularList( listRef, target ):
2 curNode = listRef
3 done = listRef is None
4 while not done :
5 curNode = curNode.next
6 if curNode.data == target :
7 return True
8 else :
9 done = curNode is listRef or curNode.data > target

10 return False

As with the traversal operation, the initialization of done handles the case
where the list is empty and prevents the loop from ever being executed. The
modification of the done flag at the bottom of the loop handles the termination of
the traversal when the target is not found. A compound logical expression is used
in order to test both conditions: a complete traversal was performed or we reached
an item larger than the target. Finally, the condition in the if statement handles
the case where the target item is found in the list.



9.2 The Circular Linked List 257

Adding Nodes

Adding nodes to an ordered circular linked list is very similar to that of the ordered
linear versions. The major difference is the management of the loopback link from
the last node to the first. The implementation is much simpler if we divide it into
four cases, as illustrated in Figure 9.9: (1) the list is empty when adding the node;
(2) the new node is inserted at the front; (3) the new node is inserted at the end;
or (4) the node is inserted somewhere in the middle. The first three cases are
straightforward and only require a few adjustments in the links. The fourth case
requires a search to find the proper location for the new node and the positioning
of the two external reference variables. This requires a traversal similar to the
one used earlier with the search operation. The Python code segment shown in
Listing 9.7 provides the implementation of the insert operation. It should be noted
again that the illustrations show the ordering in which the links should be made
to avoid accidentally unlinking and destroying existing nodes in the list.

Listing 9.7 Inserting a node into an ordered circular linked list.

1 # Given a listRef pointer and a value, add the new value
2 # to an ordered circular linked list.
3
4 newnode = ListNode( value )
5 if listRef is None : # empty list
6 listRef = newNode
7 newNode.next = newNode
8 elif value < listRef.next.data : # insert in front
9 newNode.next = listRef.next

10 listRef.next = newNode
11 elif value > listRef.data : # insert in back
12 newNode.next = listRef.next
13 listRef.next = newNode
14 listRef = newNode
15 else : # insert in the middle
16 # Position the two pointers.
17 predNode= None
18 curNode = listRef
19 done = listRef is None
20 while not done :
21 predNode = curNode
22 predNode = curNode.next
23 done = curNode is listRef or curNode.data > target
24
25 # Adjust links to insert the node.
26 newNode.next = curNode
27 predNode.next = newNode

Removing Nodes

Deleting a node from a circular linked list, for both ordered and unordered lists,
closely follows the steps required for inserting a node into an ordered circular list.
The implementation of this operation is left as an exercise.
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Figure 9.9: The links required to insert a new node into a circular list: (a) inserting the
first node into an empty list; (b) prepending to the front; (c) appending to the end; and
(d) inserting in the middle.
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9.3 Multi-Linked Lists
The doubly linked list is a special instance of the more general multi-linked list. A
multi-linked list is one in which each node contains multiple link fields which are
used to create multiple chains within the same collection of nodes. In the doubly
linked list, there are two chains through the collection of nodes, each using the key
field to form the chains. The result is two singly linked lists in which one orders
the nodes by key value in increasing order while the second orders the nodes in
reverse order.

9.3.1 Multiple Chains
In a multi-linked list, chains can be created using multiple keys or different data
components to create the multiple links. Consider the example of student records
introduced in Chapter 1. Suppose we want to create a multi-linked list containing
two chains in which the nodes are linked and sorted by id number in one chain and
by name in the other, as illustrated in Figure 9.10. The first node in each chain is
referenced by a separate head pointer. The listById reference indicates the first
node in the chain sorted by id number while listByName indicates the first node in
the chain sorted by name. For visual aid, the id chain is represented by solid lines
and darker gray link fields while the name chain is represented by dashed lines and
slightly lighter gray link fields.
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Figure 9.10: A multi-linked list storing student records with two complete chains.

The nodes in the multi-linked list can be traversed by either chain, the dashed
links or the solid links, based on the desired order. It is up to the programmer to
ensure he starts with the correct head node and follows the correct links. To create
a multi-linked list, the nodes must contain multiple link fields, one for each chain.
The StudentMListNode storage class in Listing 9.8 shows the definition used for
the multi-linked list from Figure 9.10.
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Listing 9.8 The node class for a multi-linked list.

1 class StudentMListNode :
2 def __init__( self, data ):
3 self.data = data
4 self.nextById = None
5 self.nextByName = None

When inserting nodes into the multi-linked list, a single node instance is created,
but two insertions are required. After creating the new node, the multi-linked list
is treated as two separate singly linked lists. Thus, the node must first be inserted
into the chain ordered by id and then in the chain ordered by name. Similar action
is required when deleting a node from the multi-linked list, but in this case, the
node must be removed from both chains.

In the previous example, the two chains form two complete lists. That is, all
of the nodes are part of both chains. The second chain could form a partial list
instead. For example, suppose we wanted to create a multi-linked list of student
records with one chain sorted by id and another containing only those students
whose last name is “Smith,” as illustrated in Figure 9.11. The former will contain
all of the nodes and form a complete list, but the latter will only contain a subset
of the nodes. Multi-linked lists can be organized in any number of ways with the
resulting design based on the problem being solved.
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Second chain only includes students with last name “Smith”

Figure 9.11: A multi-linked list storing with one complete chain and one partial chain.

9.3.2 The Sparse Matrix
A common use of a multi-linked list is an alternative implementation of the Sparse
Matrix ADT, which was introduced in earlier chapters. In Chapter 4, we designed
a solution for the sparse matrix using a Python list to store the non-zero elements.
We improved on the original solution in Chapter 6 by using an array of linked
lists to store the non-zero elements with a separate list for each row in the matrix.
While both improved on the 2-D array implementation, the latter provided more
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efficient solutions for many of the operations since traversals could be limited to a
per-row basis instead of a complete traversal of all non-zero elements. Some matrix
operations and applications, however, require traversals in column order instead
of row order. By organizing the non-zero elements based on the matrix rows, the
time required in these cases can actually be worse than with a single linked list.

To provide convenient traversals of both rows and columns, we can use a multi-
linked organization, as illustrated in Figure 9.12. The nodes are linked by two
chains along the respective row and column. This requires two arrays of linked
lists, one for the row lists and another for the column lists.
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Figure 9.12: A multi-linked list implementation of the sparse matrix from Figure 4.5.

An individual element can be accessed by traversing the row chain or the column
chain as needed. This dual access requires that each node contain both the row
and column indices in addition to the two link fields, as shown in Listing 9.9. The
implementation of the Sparse Matrix ADT using a multi-linked list is left as an
exercise.

Listing 9.9 The multi-linked nodes for implementing the Sparse Matrix ADT.

1 class MatrixMListNode :
2 def __init__( self, row, col, value ) :
3 self.row = row
4 self.col = col
5 self.value = value
6 self.nextCol = None
7 self.nextRow = None
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9.4 Complex Iterators

The iterators designed and used in earlier chapters were examples of simple itera-
tors since we only needed to maintain a single traversal variable. A more complex
example would be the addition of an iterator to the SparseMatrix class imple-
mented as an array of linked lists in the previous chapter or the multi-linked list
version defined in this chapter. Both of those implementations used an array of
linked lists to store the matrix elements. To build an iterator in this case, we must
keep track of the array of linked lists and both the current row within the array
and the current node within the linked list for the given row. Listing 9.10 provides
an implementation of an iterator for the Sparse Matrix ADT implemented using a
multi-linked list.

When the iterator is first created, the constructor must initialize the curRow
and curNode fields to reference the first node in the first non-empty row. Since

Listing 9.10 An iterator for the Sparse Matrix ADT implemented using a multi-linked list.

1 # Defines a Python iterator for the Sparse Matrix ADT implemented using
2 # an array of linked lists.
3
4 class _SparseMatrixIterator :
5 def __init__( self, rowArray ):
6 self._rowArray = rowArray
7 self._curRow = 0
8 self._curNode = None
9 self._findNextElement()

10
11 def __iter__( self ):
12 return self
13
14 def next( self ):
15 if self._curNode is None :
16 raise StopIteration
17 else :
18 value = self._curNode.value
19 self._curNode = self._curNode.next
20 if self._curNode is None :
21 self._findNextElement()
22 return value
23
24 def _findNextElement( self ):
25 i = self._curRow
26 while i < len( self._rowArray ) and
27 self._rowArray[i] is None :
28 i += 1
29
30 self._curRow = i
31 if i < len( self._rowArray ) :
32 self._currNode = self._rowVector[i]
33 else :
34 self._currNode = None
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every row in the sparse matrix does not necessarily contain elements, we must
search for the first node. This same operation will be required when advanc-
ing through the sparse matrix as we reach the end of each row, so we include
the findNextElement() helper method to find the next node in the array of
linked lists.

To find the next node, the helper method starts at the current row and in-
crements a counter until the next non-empty row is found or all rows have been
processed. If the counter references a non-empty row, curNode is set to the first
node in that list. Otherwise, it is set to None, which will signal the end of the
traversal loop.

The next() method of the SparseMatrixIterator class need only examine
the curNode field to determine if the StopIteration exception should be raised
or a value is to be returned. If curNode is not null, we first save the value
from the current node and then advance the reference to the next node in the
list. When reaching the end of the linked list representing the current row, the
findNextElement() must be called to search for the next non-empty row in the

array of linked lists. The operation concludes by returning the value saved before
advancing curNode to the next node.

9.5 Application: Text Editor

If you have used a computer, it’s very likely you have used a text editor. Text
editors allow us to enter text to create documents or to enter information into
form fields like those found on some web pages. Editors can be very complex
like a word processor or rather simple like Microsoft’s Notepad�. No matter the
complexity, all text editors must maintain and manage the text as the user enters,
deletes, and manipulates characters and lines. In this section, we define an Edit
Buffer ADT, which can be used by a simple text editor to store and manage
the text of a document being manipulated by the actual editor. The ADT is
defined independent of the text editor and only contains operations necessary for
the storage and manipulation of plain text. This ADT is not meant to be used by
more complex editors such as those that perform syntax highlighting or even by
word processors, which must also maintain character properties like font style and
size. We conclude with an implementation of our Edit Buffer ADT and discuss
other alternatives.

9.5.1 Typical Editor Operations

While the design and implementation of an actual text editor is beyond the scope
of this textbook, the examination of an edit storage buffer is not. We begin our
discussion by examining the workings of typical text editors that will aide in the
design of our ADT.



264 CHAPTER 9 Advanced Linked Lists

Layout

Text editors typically work with an abstract view of the text document by assuming
it is organized into rows and columns as illustrated in Figure 9.13. The physical
storage of a text document depends on the underlying data structure, though
when stored on disk, the text file is simply a sequential stream of characters, as
illustrated in Figure 9.14. The end of each line in a text document contains a
newline character (\n) resulting in rows of varying sizes of unlimited length. An
empty document is assumed to contain a single blank line where a blank line would
consist of a single newline character. As a visual aid, the illustrations in the two
diagrams use the←↩ symbol to indicate the actual location of the newline character
and a small bullet (·) to indicate blank spaces.

def computeSum( theList ) :
  sum = 0
  for value in theList :
    sum = sum + value

  return·sum

def·computeSum(·theList·)·:
··sum·=·0
··for·value·in·theList·:
····sum·=·sum·+·value

··return·sum

Figure 9.13: The abstract view of a text document as used by most text editors (top) and
the same with special characters inserted for the blank spaces and newlines (bottom).

def·computeSum(·theList·)·:··sum·=·0··for·value·in·theList·:····

Figure 9.14: The file or stream view of the text document from Figure 9.13.

Text Cursor

Text editors also use the concept of a cursor to mark the current position within
the document. The cursor position is identified by row and an offset or character
position within the given row. All basic insertion and deletion operations are
performed relative to the cursor. Note that for this example we consider the cursor
to be the keyboard or text cursor and not the cursor related to the use of the mouse.

The cursor can be moved and positioned anywhere within the document, but
only to a spot currently containing a character. Thus you cannot randomly place
characters within a document as if you were writing on a piece of paper. To position



9.5 Application: Text Editor 265

text within a document, you must fill the document with blank lines and spaces
as necessary. The minimum cursor movements available with most text editors
include:

� Vertical movement in which the cursor is moved one or more lines up or down
from the current line. When the cursor is moved in the vertical direction, it
typically maintains the same character position on the line to which it was
moved. If this line is shorter than the one from which the cursor was moved,
the cursor is typically positioned at the end of the line.

� Horizontal movement along the current line in which the cursor moves either
forward or backward. When the cursor reaches the beginning of the line,
it wraps backward to the end of the previous line; when it reaches the end of the
line, it wraps forward to the beginning of the next line. Thus, the cursor moves
about the text document as if moving within a stream of text like that stored
in a text file.

� Movement to the document and line extremes. The cursor can typically be
moved to the front or back of the current line or to the beginning or end of
the document. In the latter case, the cursor is typically moved to the front of
the last row in the document.

Inserting Text

Most text editors use an entry mode of either “insert,” in which new characters
are inserted into the text, or “overwrite,” in which new characters replace existing
characters. In either mode, characters are inserted into the document at the cursor
position. When using insert mode, all characters on the same line from the cursor
to the end of the line are shifted down and the new character is inserted at the
current position. This differs from overwrite mode, in which new characters simply
replace or overwrite the character at the cursor position. In both cases, the cursor
is then shifted one position to the right on the same line.

The newline characters that are used to indicate the end of a line can be
treated like any other character. If new characters are inserted immediately before
a newline character, the line is automatically extended. When inserting text after
a newline character, you are technically inserting the text at the beginning of the
next line in front of the first character on that line. When a newline character is
inserted, a line break is created at the insertion point, resulting in the current line
being split into two lines. The new line is always inserted immediately following
the line being split.

Deleting Text

Most text editors provide both a delete and a rub-out operation for removing
individual characters from a document. These are typically mapped to the Delete
and Backspace keys, respectively. Both operations delete a character and shift all
following characters on the same line forward one position. The difference between
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the two operations is which character is deleted and what happens to the cursor
afterward. In the delete operation, the character at the cursor position is removed
and the cursor remains at the same position. The rub-out operation, on the other
hand, removes the character preceding the cursor and then moves the cursor one
position to the left.

When a newline character is deleted, the current line and the one immediately
following are merged. The newline character at the end of the last line in the
document cannot be deleted.

Most text editors provide other text manipulation operations such as truncating
a line from the cursor position to the end of the line. This operation typically does
not remove the newline character at the end of the line, but instead simply deletes
the non-newline characters from the cursor position to the end of the line. Some
editors may also provide an operation to delete the entire line on which the cursor
is positioned.

9.5.2 The Edit Buffer ADT
We are now ready to define an Edit Buffer ADT that can be used with a simple
text editor. Our definition is based on the description of text editors presented in
the previous section. In order to keep the example simple, we limit the operations
available with our ADT.

Define EditBuffer ADT

An edit buffer is a text buffer that can be used with a text editor for storing and
manipulating the text as it is being edited. The buffer stores plain text with no spe-
cial formatting or markup codes, other than the common ASCII special characters
like tabs and newlines. Individual lines are terminated with a newline character.
The current cursor position is maintained and all operations are performed relative
to this position. The cursor can only be positioned where a character currently
exists. The cursor can never be moved outside the bounds of the document. The
buffer can insert characters in either insert or overwrite entry mode.

� EditBuffer(): Creates a new and empty edit buffer. An empty buffer always
contains a single blank line and the cursor is placed at the first position of this
blank line. The entry mode is set to insert.

� numLines(): Returns the number of lines in the text buffer.

� numChars(): Returns the length of the current line that includes the newline
character.

� lineIndex(): Returns the line index of the line containing the cursor. The
first line has an index of 0.

� columnIndex(): Returns the column index of the cursor within the current
line. The first position in each line has an index of 0.
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� setEntryMode( insert ): Sets the entry mode to either insert or overwrite
based on the value of the boolean argument insert.

� toggleEntryMode(): Toggles the entry mode to either insert or overwrite
based on the current mode.

� inInsertMode(): Returns true if the current entry mode is set to insert and
false otherwise.

� getChar(): Returns the character at the current cursor position.

� getLine(): Returns the contents of the current line as a string that includes
the newline character.

� moveUp( num ): Moves the cursor up num lines. The cursor is kept at the same
character position unless the new line is shorter, in which case the cursor is
placed at the end of the new line. The num is negative, and the cursor position
is not changed.

� moveDown( num ): The same as moveUp() except the cursor is moved down.

� moveDocHome(): Moves the cursor to the document’s home position, which is
the first line and first character position in that line.

� moveDocEnd(): Moves the cursor to the document’s end position, which is the
last line and first character position in that line.

� moveLeft(): Moves the cursor to the left one position. The cursor is wrapped
to the end of the previous line if it is currently at the front of a line.

� moveRight(): Moves the cursor to the right one position. The cursor is
wrapped to the beginning of the next line if it is currently positioned at the
end of a line.

� moveLineHome(): Moves the cursor to the front of the current line at the first
character position.

� moveLineEnd(): Moves the cursor to the end of the current line.

� breakLine(): Starts a new line at the cursor position. A newline character
is inserted at the current position and all characters following are moved to a
new line. The new line is inserted immediately following the current line and
the cursor is adjusted to be at the first position of the new line.

� deleteLine(): Removes the entire line containing the cursor. The cursor is
then moved to the front of the next line. If the line being deleted is the last
line, the cursor is moved to the front of the previous line.

� truncateLine(): Removes all of the characters at the end of the current line
starting at the cursor position. The newline character is not removed and the
cursor is left at the end of the current line.
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� addChar( char ): Inserts the given character into the buffer at the current
position. If the current entry mode is insert, the character is inserted and
the following characters on that line are shifted down; in overwrite mode,
the character at the current position is replaced. If the cursor is currently
at a newline character and the entry mode is overwrite, the new character is
inserted at the end of the line. The cursor is advanced one position. If char
is the newline character, then a line break occurs, which is the same as calling
breakLine().

� deleteChar(): Removes the character at the current position and leaves the
cursor at the same position.

� ruboutChar(): Removes the character preceding the current position and
moves the cursor left one position. If the cursor is currently at the front
of the line, the newline character on the preceding line is removed and the
current line and the preceding line are merged into a single line.

� deleteAll(): Deletes the entire contents of the buffer and resets it to the
same state as in the constructor.

The definition of the ADT includes the operations sufficient for use with a sim-
ple text editor. All of the information needed by an editor to display or manipulate
the text is available through the defined operations.

9.5.3 Implementation
Many different data structures can be used to implement the Edit Buffer ADT.
The choice can depend on the type of editor with which the buffer will be used.
For example, when editing a field within a dialog box or web page, the editing
capabilities and the buffer size are usually limited. But a full-blown text edit like
JEdit or Notepad� requires a dynamic buffer, which can grow and shrink in size.

For our implementation, we are going to use a doubly linked list of Python lists,
which provides dynamic capabilities in terms of growing and shrinking the buffer
as needed while providing quick line insertions and deletions. The individual lines
of text will be stored in the nodes of the doubly linked list while the individual
characters within the lines will be stored in Python lists. Figure 9.15 illustrates a
sample buffer using this organization.

The use of a linked list provides fast line insertions and deletions as text is
added and removed. The doubly linked version allows for quick movement within
the buffer both forward and backward as the user navigates among the lines of
text. The choice of the vector to store the individual characters allows for quick
modifications as characters are added and deleted. Existing characters can be
directly modified or deleted and new characters inserted without the overhead
required when using strings. Although the Python list does require resizing, it’s
typical for individual lines of text on average to be relatively short.
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Figure 9.15: The doubly linked list of vectors used to implement the Edit Buffer ADT
representing the text document from Figure 9.13.

A partial implementation of the EditBuffer class is provided in Listing 9.11.
The implementation of some operations and helper methods, many of which can be
implemented in a similar fashion to those provided, are left as exercises. Several of
the operations simply provide status information and are straightforward in their
implementation. These are provided in the listing without commentary. Others
are more involved and require a brief discussion, which is provided the following
sections.

Listing 9.11 The editbuffer.py module.

1 # Implements the Edit Buffer ADT using a doubly linked list of vectors.
2 class EditBuffer :
3 # Constructs an edit buffer containing one empty line of text.
4 def __init__( self ):
5 self._firstLine = _EditBufferNode( ['\n'] )
6 self._lastLine = self._firstLine
7 self._curLine = self._firstLine
8 self._curLineNdx = 0
9 self._curColNdx = 0

10 self._numLines = 1
11 self._insertMode = True
12
13 # Returns the number of lines in the buffer.
14 def numLines( self ):
15 return self._numLines

(Listing Continued)
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Listing 9.11 Continued . . .

16
17 # Returns the number of characters in the current line.
18 def numChars( self ):
19 return len( self._curLine.text )
20
21 # Returns the index of the current row (first row has index 0).
22 def lineIndex( self ):
23 return self._curRowNdx
24
25 # Returns the index of the current column (first col has index 0).
26 def columnIndex( self ):
27 return self._curColNdx
28
29 # Sets the entry mode based on the boolean value insert.
30 def setEntryMode( self, insert ):
31 self._insertMode = insert
32
33 # Toggles the entry mode between insert and overwrite.
34 def toggleEntryMode( self ):
35 self._insertMode = not self._insertMode
36
37 # Returns true if the current entry mode is insert.
38 def inInsertMode( self ):
39 return self._insertMode == True
40
41 # Returns the character at the current cursor position.
42 def getChar( self ):
43 return self._curLine.text[ self._curColNdx ]
44
45 # Returns the current line as a string.
46 def getLine( self ):
47 lineStr = ""
48 for char in self._curLine.text :
49 lineStr .= char
50 return lineStr
51
52 # Moves the cursor up num lines.
53 def moveUp( self, nlines ):
54 if nlines <= 0 :
55 return
56 elif self._curLineNdx - nlines < 0 :
57 nlines = _curLineNdx
58
59 for i in range( nlines ) :
60 self._curLine = self._curLine.prev
61
62 self._curLineNdx -= nlines
63 if self._curColNdx >= self.numChars() :
64 self.moveLineEnd()
65
66 # Moves the cursor left one position.
67 def moveLeft( self ):
68 if self._curColNdx == 0 :
69 if self._curRowNdx > 0 :
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70 self.moveUp( 1 )
71 self.moveLineEnd()
72 else :
73 self._curColNdx -= 1
74
75 # Moves the cursor to the front of the current line.
76 def moveLineHome( self ) :
77 self._curColNdx = 0
78
79 # Moves the cursor to the end of the current line.
80 def moveLineEnd( self ):
81 self._curColNdx = self.numChars() - 1
82
83 # Starts a new line at the cursor position.
84 def breakLine( self ):
85 # Save the text following the cursor position.
86 nlContents = self._curLine.text[self._curColNdx:]
87 # Insert newline character and truncate the line.
88 del self._curLine.text[self.__curColNdx:]
89 self._curLine.text.append( '\n' )
90 # Insert the new line and increment the line counter.
91 self._insertNode( self._curLine, nlContents )
92 # Move the cursor.
93 self._curLine = newLine
94 self._curLineNdx += 1
95 self._curColNdx = 0
96
97 # Inserts the given character at the current cursor position.
98 def addChar( self, char ):
99 if char == '\n' :

100 self.breakLine()
101 else :
102 ndx = self._curColNdx
103 if self.inInsertMode() :
104 self._curLine.text.insert( ndx, char )
105 else :
106 if self.getChar() == '\n' :
107 self._curLine.text.insert( ndx, char )
108 else :
109 self._curLine.text[ ndx ] = char
110 self._curColNdx += 1
111
112 # Removes the character preceding the cursor; cursor remains fixed.
113 def deleteChar( self ):
114 if self.getChar() != '\n' :
115 self._curLine.text.pop( self._curColNdx )
116 else :
117 if self._curLine is self._lastLine :
118 return
119 else :
120 nextLine = self._curLine.next
121 self._curLine.text.pop()
122 self._curLine.text.extend( nextLine.text )
123 self._removeNode( nextLine )
124

(Listing Continued)
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Listing 9.11 Continued . . .

125 # Defines a private storage class for creating the list nodes.
126 class _EditBufferNode :
127 def __init__( self, text ):
128 self.text = text
129 self.prev = None
130 self.next = None

Constructor

The constructor is defined in lines 5–11 of Listing 9.11. The firstLine and
lastLine reference variables act as the head and tail pointers for the doubly

linked list. The number of lines in the buffer is maintained using numLines and
the current entry mode is specified by the boolean insertMode. The current
cursor position within the buffer must be tracked, which is done using curLine
and curColNdx. The former is a linked list external reference since it points to
a node in the doubly linked list and the latter is an index value referencing a
position within the vector for the current line. The line number on which the
cursor is currently positioned is also maintained since it will be needed by the
getLine() method.

The ADT definition calls for a newly created buffer to be initially set to empty.
While an empty buffer contains no visible characters, it will contain a single blank
line that consists of a lone newline character. A node is created and initialized with
a vector containing a single newline character. The nodes in the doubly linked list
will be instances of the EditBufferNode class, the definition of which is provided
in lines 126–130. The cursor is initially placed at the home position, which in an
empty document corresponds to the newline character in the newly created blank
line. Finally, the initial entry mode is set to insert mode.

Cursor Movement

A number of operations in the Edit Buffer ADT handle movement of the cursor,
which allows for character manipulation at different points in the buffer. These rou-
tines modify the current cursor position by appropriately adjusting the curLine,
curLineNdx, and curColNdx fields.

Vertical movement of the cursor is handled by four methods: moveDocHome(),
moveDocEnd(), moveDown(), and moveUp(). The cursor can be moved up or down
one line or multiple lines at a time but it can never be moved outside the valid range.
Implementation of the moveUp() method is provided in lines 53–64 of Listing 9.11.
By definition, the number of lines the cursor is to be moved must be positive,
otherwise the cursor is not moved. In addition, the cursor cannot be moved further
up than the first line in the document. These conditions are evaluated by the first
two logical expressions. If nlines would result in the cursor being moved beyond
the first line, nlines has to be adjusted to limit the movement to the first line.
Next, a for loop is used to move the curLine reference up the indicated number of
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lines followed by curLineNdx being adjusted appropriately. Finally, we determine
if the horizontal position of the cursor must be adjusted. If the line to which the
cursor has been moved is shorter than the previous line, then the cursor must be
positioned at the end of the new line.

Horizontal movement of the cursor is managed by four methods: moveLeft(),
moveRight(), moveLineHome(), and moveLineEnd(). Moving the cursor to the
beginning or end of a line simply requires modifying the value of curColNdx.
Moving the cursor horizontally one space can be as simple as adjusting curColNdx
by one, except when the cursor is at the beginning or ending of the line when moving
left or right, respectively.

Implementation of the moveLeft() method is provided in lines 67–73. When
moving left one space and the cursor is at the beginning of the line, the cursor must
be moved to the end of the previous line. This can be accomplished by moving
the cursor up one line and then to the end of that line. Of course this is only done
if the current line is not the first line in the buffer. Moving right one space can
be implemented in a similar fashion. The implementation of the remaining cursor
movement methods is left as an exercise.

Modifying the Buffer

Moving the cursor is somewhat easier than modifying the contents of the buffer.
Most modifications must consider the newline character, which may require split-
ting a line or merging two lines depending on the specific operation. We begin our
look at buffer modifications with the operation of adding a single character.

The action taken when adding a character in the addChar() method, shown
in lines 98–110 of Listing 9.11, depends on the entry mode and what character is
being added. In either mode, when adding a newline character, the result is the
same as breaking a line at the current position and thus this can be done with the
breakLine() method.

When the current entry mode is set to insert, the character is always inserted
into the vector at the current cursor position, which causes the following characters
on the same line to shift down one place. When inserting a character at the end of
the line, we are actually inserting it immediately preceding the newline character.
Thus, the newline character will always be the last character in the vector. The
action taken when adding a character in overwrite mode depends on the position of
the cursor. When the cursor is at the end of line, characters are inserted in the same
fashion as if the entry mode was set to insert. The newline character is never
overwritten. Otherwise, the new character simply replaces the character at the
cursor position. After adding a new character, the cursor is always moved to the
right one place. This can be done by simply adding one to curColNdx since
the cursor never moves to the next line during an add operation unless a newline
character is being added. The latter case is handled by the breakLine() method.

Deleting a character from the buffer is straightforward if the character is not the
newline character. It only requires removing or popping the character at the current
cursor position within the vector containing the current line. The implementation
of the deleteChar() method is provided in lines 113–123 of Listing 9.11.
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Deleting a newline character requires the merging of two lines, the current line
with the following one. Of course the newline character of the last line in the buffer
cannot be deleted. Thus, this condition must first be checked before merging the
two lines. Merging the two lines requires several steps. First, the newline character
on the current line must be removed and the current line extended by appending
to it the contents of the next line. Then, the node and buffer entry for the next
line must be removed from the doubly linked list. This step is performed using the
removeNode() helper method, the implementation of which is left as an exercise.

The helper method also handles the final step in merging the two lines, which is
to decrement the line count by one.

Splitting a Line

We conclude our discussion with the breakLine() method, the implementation of
which is provided in lines 84–95 of Listing 9.11. This operation splits a line into
two lines at the current cursor position with the character at the cursor position
becoming part of the new line. Figure 9.16 illustrates the sample buffer after
splitting the third line at the letter “i” of the word “in.”
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3737  

3737  

· · s u m · = · 0 

· · f o r · v a l u e · i n · t h e L i s t · : 

· · · · s u m · = · s u m · + · v a l u e 

3737  


curLine

(b)

3737  

3737  

· · s u m · = · 0 

· · f o r · v a l u e · 

i n · t h e L i s t · : 

3737  


curLine

3737   · · · · s u m · = · s u m · + · v a l u e 

Figure 9.16: Breaking a line of text at the cursor position: (a) the sample buffer before
the split and (b) the result after the split with the cursor position adjusted.
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The contents at the end of the current line vector starting at the cursor position
will form the new line. We first extract and save this text by creating a slice from
the current line. The part of the vector from which we created the slice is then
deleted and a newline character is appended. We use the insertNode() helper
method to then insert a new line into the buffer. The helper method inserts a
new node following the one pointed to by curLine and containing the supplied
contents. The last step required in breaking the current line is to move the cursor
to the front of the new line.

Exercises
9.1 Evaluate the four basic linked list operations for a sorted doubly linked list

and indicate the worst case time-complexities of each.

9.2 Evaluate the worst case time-complexity for the search operation on a doubly
linked list using a probe pointer.

9.3 Evaluate the worst case time-complexity of the Sparse Matrix ADT imple-
mented in Programming Project 9.7.

9.4 Provide the code to implement the four basic operations — traversal, search,
insertion, deletion — for an unsorted doubly linked list.

9.5 Provide the code to delete a node from a sorted doubly linked list.

9.6 Provide the code to delete a node from a sorted singly linked circular list.

Programming Projects
9.1 Complete the implementation of the EditBuffer class from Section 9.5.

9.2 Modify the moveLeft() and moveRight() methods to accept an integer to
indicate the number of spaces to move in the respective direction.

9.3 Modify the EditBuffer class to include the following operations:

� getPage( first, last ): Returns a vector of strings consisting of the
rows [first...last], which can be used for displaying a page of text.

� insertString( str ): Inserts a string of text within the current line start-
ing at the current cursor position.

� moveTo( lineNdx, colNdx ): Moves the cursor to the indicated position
within the buffer. If lineNdx is out of range, no action is taken. If colNdx
is larger than the current line, then the cursor is positioned at the end of
that line.
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� searchFor( str ): Searches the buffer and returns a tuple containing the
(line, col) position of the first occurrence of the given search string. None
is returned if the buffer does not contain the search string.

� searchForAll( str ): The same as searchFor() but returns a vector of
tuples indicating all occurrences of the given search string.

9.4 Modify the EditBuffer class to include the following file I/O operations for
saving and loading the buffer:

� save( filename ): Saves the text in the buffer to the text file filename.

� load( filename ): Loads the text file named filename into the buffer. If
the buffer is not empty, the original contents are deleted before the file is
loaded. The given filename must refer to an existing and valid text file.

9.5 Create a line editor application that uses the EditBuffer class and allows a
user to edit a text document in the old “line editing” style.

9.6 Define and implement a MultiChain ADT for storing and accessing student
records as described in Section 9.3.1.

9.7 Implement the Sparse Matrix ADT using the multi-linked lists as described
in Section 9.3.2.

9.8 Consider the Vector ADT from Programming Project 2.1:

(a) Provide a new implementation that uses a doubly linked list and a probe
reference for locating a specific element.

(b) Evaluate your new implementation to determine the worst case run time
of each operation.

(c) What are the advantages and disadvantages of using a doubly linked list
to implement the Vector ADT? Compare this implementation to that of
using a singly linked list.

9.9 Consider the Map ADT from Section 3.2:

(a) Provide a new implementation that uses a sorted doubly linked list and
includes a probe reference for the search operations.

(b) Modify your Map class to include an iterator for use with a for loop.

9.10 A MultiMap ADT is similar to the Map ADT but it uses two keys that map to
a single data item instead of a single key as used with the Map ADT. Define
and implement a MultiMap ADT.



CHAPTER 10
Recursion

Recursion is a process for solving problems by subdividing a larger problem
into smaller cases of the problem itself and then solving the smaller, more trivial
parts. Recursion is a powerful programming and problem-solving tool. It can
be used with a wide range of problems from basic traditional iterations to the
more advanced backtracking problems. While recursion is very powerful, recursive
solutions are not always the most efficient. In some instances, however, recursion
is the implementation of choice as it allows us to easily develop a solution for a
complicated problem that may otherwise be difficult to solve.

10.1 Recursive Functions
A function (or method) can call any other function (or method), including itself.
A function that calls itself is known as a recursive function . The result is a
virtual loop or repetition used in a fashion similar to a while loop.

Consider the simple problem of printing the integer values from 1 to n in reverse
order. The iterative solution for this problem is rather simple when using a loop
construct. But it can also be solved recursively, that is, using a recursive function.
Suppose we have implemented the following recursive function:

def printRev( n ):
if n > 0 :
print( n )
printReverse( n-1 )

and we call the function with an argument of 4:

printRev( 4 )

277
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The current sequential flow of execution is interrupted and control is transferred
to the printRev() function with a value of 4 being assigned to argument n. The
body of printRev() begins execution at the first statement. Since 4 is greater
than 0, the body of the if statement is executed. When the flow of execution
reaches the printRev(3) function call, the sequential flow is once again interrupted
as control is transferred to another instance of the printRev() function. The body
of this instance begins execution at the first statement, but this time with n = 3.
Figure 10.1(a) illustrates the execution of the recursive function as a group of
boxes with each box representing a single invocation of the printRev() function.
The boxes contain the contents of local variables and only the statements of the
function actually executed. Each recursive call to printRev() is shown inside its
own box with the boxes positioned at the point where the function was invoked.

44n:
printRev( 4 ):

33n:
printRev( 3 ):

22n:
printRev( 2 ):

11n:
printRev( 1 ):

00n:
printRev( 0 ):

if n > 0 :
  print( n )
  printRev( n­1 )

if n > 0 :
  print( n )
  printRev( n­1 )

if n > 0 :
  print( n )
  printRev( n­1 )

if n > 0 :
  print( n )
  printRev( n­1 )

if n > 0 :

(a) (b)

44n:
printInc( 4 ):

if n > 0 :
  printInc( n­1 )

33n:
printInc( 3 ):

22n:
printInc( 2 ):

11n:
printInc( 1 ):

00n:
printInc( 0 ):

if n > 0 :

if n > 0 :
  printInc( n­1 )

print( n )

if n > 0 :
  printInc( n­1 )

print( n )

if n > 0 :
  printInc( n­1 )

print( n )

print( n )

Figure 10.1: Recursive flow of execution: (a) printRev() and (b) printInc().

These recursive calls continue until a value of zero is passed to the function, at
which time the body of the if statement is skipped and execution reaches the end
of the function. As with any function call, when execution reaches the end of the
function or the return statement is encountered, execution returns to the location
where the function was originally called. In this case, the call to printRev(0)
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N
O

TE i Local Variables. Like any other function, each call to a recursive
function creates new instances of all local reference variables used

within that function. Changing the contents of a local reference variable does
not affect the contents of other instances of that variable.

was made from within the printRev(1) instance. Thus, execution returns to the
first statement after that invocation. After execution returns to the printRev(1)

instance, the end of that function is reached and again execution is returned to
the location where that instance was invoked. The result is a chain of recursive
returns or recursive unwinding back to the original printRev(4) function call.

What changes would be needed to create a recursive function to print the
same integer values in increasing order instead of reverse order? We can change
the location of the recursive call to change the behavior of the recursive solution.
Consider a new recursive print function:

def printInc( n ):
if n > 0 :
printInc( n-1 )
print( n )

In this version, the recursive call is made before the value of n is printed. The
result is a series of recursive calls before any other action is performed. The actual
printing of the values is performed after each instance of the function returns, as
illustrated in Figure 10.1(b).

10.2 Properties of Recursion
All recursive solutions must satisfy three rules or properties:

1. A recursive solution must contain a base case .

2. A recursive solution must contain a recursive case .

3. A recursive solution must make progress toward the base case.

A recursive solution subdivides a problem into smaller versions of itself. For a
problem to be subdivided, it typically must consist of a data set or a term that
can be divided into smaller sets or a smaller term. This subdivision is handled by
the recursive case when the function calls itself. In the printRev() function, the
recursive case is performed for all values of n > 0.

The base case is the terminating case and represents the smallest subdivision of
the problem. It signals the end of the virtual loop or recursive calls. In printRev(),
the base case occurred when n = 0 and the function simply returned without
performing any additional operations.

Finally, a recursive solution must make progress toward the base case or the
recursion will never stop resulting in an infinite virtual loop. This progression
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typically occurs in each recursive call when the larger problem is divided into
smaller parts. The larger data set is subdivided into smaller sets or the larger
term is reduced to a smaller value by each recursive call. In our recursive printing
solution, this progression is accomplished by subtracting one from the current value
of n in each recursive function call.

10.2.1 Factorials
The factorial of a positive integer n can be used to calculate the number of per-
mutations of n elements. The function is defined as:

n! = n ∗ (n− 1) ∗ (n− 2) ∗ . . . ∗ 1

with the special case of 0! = 1. This problem can be solved easily using an iterative
implementation that loops through the individual values [1 . . . n] and computes a
product of those values. But it can also be solved with a recursive solution and
provides a simple example of recursion. Consider the factorial function on different
integer values:

0! = 1
1! = 1
2! = 2 ∗ 1
3! = 3 ∗ 2 ∗ 1
4! = 4 ∗ 3 ∗ 2 ∗ 1
5! = 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1

After careful inspection of these equations, it becomes obvious each of the
successive equations, for n > 1, can be rewritten in terms of the previous equation:

0! = 1
1! = 1 ∗ (1 − 1)!
2! = 2 ∗ (2 − 1)!
3! = 3 ∗ (3 − 1)!
4! = 4 ∗ (4 − 1)!
5! = 5 ∗ (5 − 1)!

Since the function is defined in terms of itself and contains a base case, a recursive
definition can be produced for the factorial function as shown here. Listing 10.1
provides a recursive implementation of the factorial function.

n! =

{
1, if n = 0
n ∗ (n− 1)!, if n > 0
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Listing 10.1 The fact() recursive function.

1 # Compute n!
2 def fact( n ):
3 assert n >= 0, "Factorial not defined for negative values."
4 if n < 2 :
5 return 1
6 else :
7 return n * fact(n - 1)

10.2.2 Recursive Call Trees
Figure 10.1 used boxes to represent function invocations and to illustrate the flow
of execution for two recursive functions. The specific placement of the boxes il-
lustrated the different results that were achieved depending on the location of the
recursive call within the function. This type of illustration can be very helpful to
visualize the flow of execution within and between various functions, but it’s not
as useful in developing and understanding recursive functions.

When developing or evaluating a recursive function, we typically use a recur-
sive call tree such as the one for the factorial function illustrated in Figure 10.2.
The diagram consists of small boxes and directed edges between the boxes. Each
box represents a function call and is labeled with the name of the function and
the actual arguments passed to the function when it was invoked. The directed
edges between the boxes indicate the flow of execution. The solid edges indicate
the function from which a call originated. For example, in Figure 10.2, we see
the call to fact(5) was made from the main() function while the call to fact(4)
was made during the execution of fact(5). The dashed edges indicate function
returns and are labeled with the return value if a value is returned to the caller.

main()

6
fact(3)

fact(4)
24

120 fact(5)

2
fact(3)

1
fact(1)

Figure 10.2: Recursive call tree for fact(5).
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If a function makes multiple calls to other functions, each function call is in-
dicated in the tree by a box and directed edge. The edges are listed left to right
in the order the calls are made. For example, suppose we execute the following
simple program that consists of three functions. The resulting call tree is shown
in Figure 10.3.

# A sample program containing three functions.
def main():
y = foo( 3 )
bar( 2 )

def foo( x ):
if x % 2 != 0 :
return 0

else :
return x + foo( x-1 )

def bar( n ):
if n > 0 :
print( n )
bar( n-1 )

main()

Since the main routine makes two function calls, both are indicated as directed
edges originating from the main() box. You will also notice the foo() function
makes a recursive call to itself, but the second call is not indicated in the call tree.
The reason is during this execution of the program, with the given arguments to
foo(), the logical condition in the if statement evaluates to true and, thus, the
recursive call is never made. The call tree only shows the functions actually called
during a single execution, which is based on a given set of data, a specific function
argument value, or specific user input.

To follow the flow of execution in Figure 10.3, we start with the top box, the
one to which no solid directed edges flow into. In this case, that box is the main()
function. From the main routine, we take the path along the leftmost solid edge

0

bar(1)print(2)

bar(2)foo(3)

main()

bar(0)print(1)

Figure 10.3: Sample call tree with multiple calls from each function.
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leading to the foo(3) box. Since that function executes the return statement, we
follow the dashed edge back to the main routine. Execution continues by following
the next edge out of the main routine box, which leads us to the bar(2) function
box. From there, we continue to follow the directed edges between the boxes and
eventually return to the main() routine box with no further edges to follow. At
that point, execution terminates.

10.2.3 The Fibonacci Sequence
The Fibonacci sequence is a sequence of integer values in which the first two
values are both 1 and each subsequent value is the sum of the two previous values.
The first 11 terms of the sequence are:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

The nth Fibonacci number can be computed by the recurrence relation (for n > 0):

fib(n) =

{
fib(n− 1) + fib(n− 2), if n > 1
n, if n = 1 or n = 0

A recursive function for the computing the nth Fibonacci number is shown in
Listing 10.2. This function illustrates the use of multiple recursive calls from
within the body of the function. The call tree corresponding to the function call
fib(6) is illustrated in Figure 10.4.

Listing 10.2 The fib() recursive function.

1 # Compute the nth number in the Fibonacci sequence.
2 def fib( n ):
3 assert n >= 1, "Fibonacci not defined for n < 1."
4 if n == 1 :
5 return 1
6 else :
7 return fib(n - 1) + fib(n - 2)

10.3 How Recursion Works
When a function is called, the sequential flow of execution is interrupted and
execution jumps to the body of that function. When the function terminates,
execution returns to the point where it was interrupted before the function was
invoked. But how does it know where to return? We know for sure, it’s not magic.
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main()

fib(2)
1 1

2 1 1 1

3 2

fib(1)

fib(2)fib(3) fib(1)fib(2)

fib(3)fib(4)

fib(5)

fib(2)
1 1

2 1

fib(1)

fib(2)fib(3)

fib(4)
5

fib(6)

3

8

Figure 10.4: Recursive call tree for fib(6).

10.3.1 The Run Time Stack
Each time a function is called, an activation record is automatically created in
order to maintain information related to the function. One piece of information is
the return address. This is the location of the next instruction to be executed
when the function terminates. Thus, when a function returns, the address is ob-
tained from the activation record and the flow execution can return to where it left
off before the function was called.

The activation records also include storage space for the allocation of local
variables. Remember, a variable created within a function is local to that function
and is said to have local scope. Local variables are created when a function begins
execution and are destroyed when the function terminates. The lifetime of a local
variable is the duration of the function in which it was created.

An activation record is created per function call, not on a per function ba-
sis. When a function is called, an activation record is created for that call and
when it terminates the activation record is destroyed. The system must manage
the collection of activation records and remember the order in which they were
created. The latter is necessary to allow the system to backtrack or return to the
next statement in the previous function when an invoked function terminates. It
does this by storing the activation records on a run time stack . The run time
stack is just like the stack structure presented in Chapter 7 but it’s hidden from
the programmer and is automatically maintained. Consider the execution of the
following code segment, which uses the factorial function defined earlier:

def main():
y = fact( 5 )

main()
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When the main routine is executed, the first activation record is created and
pushed onto the run time stack, as illustrated in Figure 10.5(a). When the factorial
function is called, the second activation record is created and pushed onto the
stack, as illustrated in Figure 10.5(b), and the flow of execution is changed to that
function.

       push           record

main():

y:

return address

fact(2):

22n:

return to main()

main():

y:

return address

       push           record

(a) (b)

Figure 10.5: The initial run time stack for the sample code segment.

The factorial function is recursively called until the base case is reached with a
value of n = 0. At this point, the run time stack contains four activation records, as
illustrated Figure 10.6(a). When the base case statement at line 5 of Listing 10.1
is executed, the activation record for the function call fact(0) is popped from
the stack, as illustrated in Figure 10.6(b), and execution returns to the function
instance fact(1). This process continues until all of the activation records have
been popped from the stack and the program terminates.

fact(2):

22n:

return to main()

main():

y:

return address

(a) (b)

fact(1):

11n:

return to fact(2)

fact(0):

00n:

return to fact(1)

fact(2):

22n:

return to main()

main():

y:

return address

fact(1):

11n:

return to fact(2)

fact(0): 00n:
return to fact(1)

pop record

Figure 10.6: The run time stack for the sample program when the base case is reached.
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10.3.2 Using a Software Stack
Using recursion in solving problems is very similar to using the software imple-
mented stack structure. In fact, any solution that can be implemented using a
stack structure can be implemented with recursion, and vice versa. Consider the
problem of printing in reverse order the items stored in a singly linked list such as
the one shown in Figure 10.7.

   22 5252 1818 3636 1313

head



Figure 10.7: A sample singly linked list.

Since the links are in one direction, we cannot easily access the nodes in reverse
order. A brute-force approach to solving this problem would be to use nested loops
to iterate over the linked list multiple times with each iteration of the inner loop
ending one node shorter than previous iteration. This approach is implemented by
the function in Listing 10.3, but it has a run time of O(n2).

Listing 10.3 A brute-force approach for printing a singly linked list in reverse order.

1 # Print the contents of a singly linked list in reverse order.
2
3 def printListBF( head ):
4 # Count the number of nodes in the list.
5 numNodes = 0
6 curNode = head
7 while curNode is not None :
8 curNode = curNode.next
9 numNodes += 1

10
11 # Iterate over the linked list multiple times. The first iteration
12 # prints the last item, the second iteration prints the next to last
13 # item, and so on.
14 for i in range( numNodes ):
15 # The temporary pointer starts from the first node each time.
16 curNode = head
17
18 # Iterate one less time for iteration of the outer loop.
19 for j in range( numNodes - 1 ):
20 curNode = curNode.next
21
22 # Print the data in the node referenced by curNode.
23 print( curNode.data )
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To provide a more efficient solution to the problem, a stack structure can be
used to push the data values onto the stack, one at a time, as we traverse through
the linked list. Then, the items can be popped and printed resulting in the reverse
order listing. This solution is provided in Listing 10.4 and the resulting stack after
the iteration over the list and before the items are popped is shown in Figure 10.8.
Assuming the use of the linked list version of the stack, printListStack() has a
run time of O(n), the proof of which is left as an exercise.

Listing 10.4 Using a stack to print a linked list in reverse order.

1 # Print the contents of a linked list in reverse order using a stack.
2
3 from lliststack import Stack
4
5 def printListStack( head ):
6 # Create a stack to store the items.
7 s = Stack()
8
9 # Iterate through the list and push each item onto the stack.

10 curNode = head
11 while curNode is not None :
12 s.push( curNode.data )
13 curNode = curNode.next
14
15 # Repeatedly pop the items from the stack and print them until the
16 # stack is empty.
17 while not s.isEmpty() :
18 item = s.pop()
19 print item

A recursive solution for this problem is also possible. To design the solution, we
use the divide and conquer strategy introduced in Chapter 4. With this strategy,
you solve the larger problem by dividing it into smaller problems of itself and
solving the smaller parts individually. A linked list is by definition a recursive
structure. That is, the list can be thought of as a node linked to a sublist of nodes

1313

3636

1818

5252

22

Figure 10.8: The resulting stack after iterating over the linked list from Figure 10.7.
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as illustrated in Figure 10.9(a). If we carry this idea further, then each link in the
list can be thought of as linking the node to a sublist of nodes, as illustrated in
Figure 10.9(b). With this view of the list, we can print the list in reverse order
by recursively printing the sublist pointed to by the node and then printing the
contents of the node itself.

   22 5252 1818 3636 1313

head



   22 5252 1818 3636 1313

head



(a)

(b)

Figure 10.9: Abstract view of the linked list as a node linked to a sublist of nodes.

The solution subdivides the problem into smaller parts of itself and contains a
recursive case. But what about the base case, which ends the subdivision and in
turn stops the recursive calls? The recursion should stop when the next sublist is
empty, which occurs when the link field of the last node is null. A simple and ele-
gant Python implementation for the recursive solution is provided in Listing 10.5.

Listing 10.5 The printList() recursive function.

1 # Print the contents of a linked list using recursion.
2 def printList( node ):
3 if node is not None :
4 printList( node.next )
5 print( node.data )

To help visualize how the printList() function works, the call stack and the
linked list are illustrated in Figure 10.10. It assumes the main routine is defined
as follows:

def main():
head = buildLinkedList()
printList( head )
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printList( head )

node:

main():

head:    22 5252 1818 3636 1313



printList( node.next )

node: 

printList( node.next )

node: 

printList( node.next )

node: 

printList( node.next )

node: 

run time stack

printList( node.next )

node: 

Figure 10.10: The run time stack for the printList() function when the base case is
reached while processing the linked list from Figure 10.7.

As the recursion progresses and more activation records are pushed onto the
run time stack, the corresponding node argument is assigned to point to the next
node in the list. When the base case is reached, the node argument of each of
the preceding function calls will point to a different node in the list. Thus, as the
recursion unwinds, the contents of each node can be printed, resulting in a listing
of the values in reverse order.

Both the printListStack() and printList() functions provide an implemen-
tation to the problem of printing a linked list in reverse order. The former requires
the use of an explicit loop for iterating through the list and a stack to store the
data for later printing. In the recursive version the loop and stack are implicit.
The loop is replaced by the recursive calls while the user-specified stack is replaced
by the run time stack on which activation records are pushed for each call to the
function.

10.3.3 Tail Recursion
Sometimes an algorithm is easy to visualize as a recursive operation, but when
implemented as a recursive function, the solution proves to be inefficient. In these
cases, it can be beneficial to use a non-recursive implementation that makes use of
a basic iterative loop or the software Stack ADT from Chapter 7.

The main reason for using recursion is to push values onto the run time stack
that need to be saved until the recursive operation used to solve the smaller sub-
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problem returns. For example, consider the function in Listing 10.5, which printed
the contents of a linked list in reverse order. We had to save a reference to each
node until the recursive process began unwinding, at which time the node values
could be printed. By using recursion, these references were automatically pushed
onto the run time stack as part of the activation record each time the function
was called. Now suppose we implement a recursive function to print the items of a
linked list in order from beginning to end instead of using a simple loop structure:

def printInorder( node ):
if node is not None :
print( node.data )
printInorder( node.next )

This function eliminates the need for a loop to iterate through the list, but do
we have anything to save on the stack until the recursive call returns? The answer
is no. When the recursive call returns, the function is finished and it simply returns.
This is an example of tail recursion , which occurs when a function includes a
single recursive call as the last statement of the function. In this case, a stack is
not needed to store values to be used upon the return of the recursive call and thus
a solution can be implemented using an iterative loop instead.

10.4 Recursive Applications
There are many applications that can be solved using recursion. Some in fact, can
only be solved using recursion. In this section, we introduce some of the classic
problems that require the use of recursion or can benefit from a recursive solution.

10.4.1 Recursive Binary Search
The binary search algorithm, which we introduced in Chapter 4, improves the
search time required to locate an item in a sorted sequence. We provided an itera-
tive implementation of the binary search algorithm in Chapter 4, but the algorithm
can also be implemented recursively since it can be expressed in smaller versions
of itself. In searching for a target within the sorted sequence, the middle value
is examined to determine if it is the target. If not, the sequence is split in half
and either the lower half or the upper half of the sequence is examined depending
on the logical ordering of the target value in relation to the middle item. In ex-
amining the smaller sequence, the same process is repeated until either the target
value is found or there are no additional values to be examined. A recursive im-
plementation of the binary search algorithm is provided in Listing 10.6. As with
the earlier version, this version also works with virtual subsequences instead of
physically splitting the original sequence. The two arguments, first and last,
indicate the range of elements within the current virtual subsequence. On the first
call to the function, these values are set to the full range of the original sequence.
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Listing 10.6 A recursive implementation of the binary search algorithm.

1 # Performs a recursive binary search on a sorted sequence.
2 def recBinarySearch( target, theSeq, first, last ):
3 # If the sequence cannot be subdivided further, we are done.
4 if first > last : # base case #1
5 return False
6 else :
7 # Find the midpoint of the sequence.
8 mid = (last + first) // 2
9 # Does the element at the midpoint contain the target?

10 if theSeq[mid] == target :
11 return True # base case #2
12
13 # or does the target precede the element at the midpoint?
14 elif target < theSeq[mid] :
15 return recBinarySearch( target, theSeq, first, mid - 1 )
16
17 # or does it follow the element at the midpoint?
18 else :
19 return recBinarySearch( target, theSeq, mid + 1, last )

We evaluated the binary search algorithm in Chapter 4 and found it required
O(log n) time in the worst case. To determine the run time of a recursive imple-
mentation, we must consider the time required to execute a single invocation of
the function and the number of times the function is called. In evaluating the time
of a single function invocation, we use the same technique as we applied in previ-
ous chapters and sum the times of the individual statements. The recursive calls,
however, are not included since their times will be computed separately. For the
recBinarySearch() function, we can quickly determine that each non-recursive
function call statement only requires O(1) time.

To help determine the number of times the recursive function is called, we can
use its recursive call tree. Consider the recursive call tree for the binary search
algorithm, as shown at the top of Figure 10.11, which results when searching for
value 8 in the sequence shown at the bottom of the figure. The number of function
call boxes in the tree for a given sequence of length n will indicate the total number
of times the function is called. There are two recursive calls to recBinarySearch()
within the function body, but only one will be executed for each invocation. Thus,
there will be a single function call box at each level in the call tree and we only have
to determine how many levels there are in the call tree when searching a sequence
of n items.

The worst case occurs when the target value is not in the sequence, which can be
determined when the first and last markers cross each other with first > last.
As with the iterative version of the algorithm, the number of elements in the sorted
sequence that must be searched is reduced by half each time the function is called.
We know from Chapter 4 that repeatedly reducing the input size by half requires
log n reductions in order to reach the case where there are no additional elements
to be searched. Thus, the recursive version of the binary search requires O(log n)
time in the worst case.
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recBinarySearch(values,0,4)

recBinarySearch(values,0,10)

recBinarySearch(values,3,4)

recBinarySearch(values,3,2)
False

False

22 44 55 1010 1313 1818 2323 2929 3131 5151 6464

0 1 2 3 4 5 6 7 8 9 10

Middle item = 18

Middle item = 5

Middle item = 10

log n
levels

Figure 10.11: The recursive call tree for the binary search algorithm (top) when searching
for value 8 in the given sequence (bottom).

10.4.2 Towers of Hanoi
The Towers of Hanoi puzzle, invented by the French mathematician Edouard
Lucas in 1883, consists of a board with three vertical poles and a stack of disks. The
diameter of the disks increases as we progress from the top to bottom, creating a
tower structure. The illustration in Figure 10.12 shows the board, the three towers,
and five disks. Any number of disks can be used with the puzzle, but we use five
for ease of illustration.

pole 1 pole 2 pole 3

Figure 10.12: The Towers of Hanoi puzzle with five disks.

The objective is to move all of the disks from the starting pole to one of the other
two poles to create a new tower. There are, however, two restrictions: (1) only one
disk can be moved at a time, and (2) a larger disk can never be placed on top of
a smaller disk.
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How would you go about solving this problem recursively? Of course you need
to think about the base case, the recursive case, and how each recursive call reduces
the size of the problem. We will derive all of these in time, but the easiest way to
solve this problem is to think about the problem from the bottom up. Instead of
thinking about the easiest step, moving the top disk, let’s start with the hardest
step of moving the bottom disk.

Suppose we already know how to move the top four disks from pole A to pole B,
resulting in the board shown in Figure 10.13. Moving the disk from pole A to pole C
is now rather easy since it’s the only disk left on pole A and there are no disks
on pole C. After moving the largest disk, we then move the other four disks from
pole B to pole C.

pole 1 pole 2 pole 3

Figure 10.13: The Towers of Hanoi puzzle with four disks moved to pole 2.

Of course, we still have to figure out how to move the top four disks. There
is no reason we cannot use the same technique to move the top four disks and in
fact we must use the same technique, which leads to a recursive solution. Given n
disks and three poles labeled source (S), destination (D), and intermediate (I), we
can define the recursive operation as:

� Move the top n− 1 disks from pole S to pole I using pole D.

� Move the remaining disk from pole S to pole D.

� Move the n− 1 disks from pole I to pole D using pole S.

The first and last steps are recursive calls to the same operation but using
different poles as the source, destination, and intermediate designations. The base
case, which is implicit in this description, occurs when there is a single disk to
move, requiring that we skip the first and last step. Finally, the solution makes
progress toward the base case since the recursive calls move one less disk than the
current invocation. Eventually, we will end up with a single disk to move.

The high-level solution given above for solving the Towers of Hanoi puzzle can
be easily converted to a Python function, as shown in Listing 10.7. For the second
step of the process where we actually move a disk, we simply print a message
indicating which disk was moved and the two poles it was moved between.
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Listing 10.7 Recursive solution for the Towers of Hanoi puzzle.

1 # Print the moves required to solve the Towers of Hanoi puzzle.
2 def move( n, src, dest, temp ):
3 if n >= 1 :
4 move( n - 1, src, temp, dest )
5 print( "Move %d -> %d" % (src, dest))
6 move( n - 1, temp, dest, src )

To see how this recursive solution works, consider the puzzle using three disks
and the execution of the function call:

move( 3, 1, 3, 2 )

The output produced from the execution is shown here while the first four moves
of the disks are illustrated graphically in Figure 10.14.

Move 1 -> 3
Move 1 -> 2
Move 3 -> 2
Move 1 -> 3
Move 2 -> 1
Move 2 -> 3
Move 1 -> 3

To evaluate the time-complexity of the move() function, we need to determine
the cost of each invocation and the number of times the function is called for any
value of n. Each function invocation only requires O(1) time since there are only
two non-recursive function call steps performed by the function, both of which
require constant time.

Next, we need to determine how many times the function is called. Consider
the recursive call tree in Figure 10.15, which results from the function invocation
move(n, 1, 3, 2). The first invocation of move() results in two recursive calls,
both of which move n−1 disks. Both of these invocations each make two recursive
calls to move n− 2 disks. Those four invocations each make two recursive calls to
move n− 3 disks and so on until there is a single disk to be moved.

To determine the total number of times the function is called, we need to
calculate the number of times the function executes at each level of the call tree
and then sum those values to obtain the final result. The number of function calls
at each level is double the number of calls at the previous level. If we label each
level of the call tree starting with 0 at the top and going down to n − 1 at the
bottom, then the number of function calls at each level i is equal to 2i. Summing
the number of calls at each level results in the summation:

20 + 21 + 22 + · · · + 2n−1 =
n−1∑
i=0

2i

or a total of 2n − 1 function calls. Thus, the recursive solution for solving the
Towers of Hanoi problem requires exponential time of O(2n) in the worst case.
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Start position

pole 1 pole 2 pole 3

Move from pole 1 to pole 3

Move from pole 1 to pole 2

Move from pole 3 to pole 2

Move from pole 1 to pole 3

Figure 10.14: The first four moves in solving the Towers of Hanoi puzzle with three disks.
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Figure 10.15: The recursive call tree for the Towers of Hanoi puzzle with n disks.

10.4.3 Exponential Operation
Some of the recursive examples we have seen are actually slower than an equivalent
iterative version such as computing a Fibonacci number. Those were introduced to
provide simple examples of recursion. Other problems such as solving the Towers
of Hanoi puzzle can only be done using a recursive algorithm. There are some
problems, however, in which the recursive version is more efficient than the iterative
version. One such example is the exponential operation, which raises a number to
a power.

By definition, the exponential operation xn can be expressed as x multiplied
by itself n times (x ∗ x ∗ x · · ·x). For example, y = 28 would be computed as:

2 * 2 * 2 * 2 * 2 * 2 * 2 * 2

Of course, in Python this can be done using the exponential operator:

y = 2 ** 8

But how is this operation actually performed in Python? A basic implementation
would use an iterative loop:

def exp1( x, n ):
y = 1
for i in range( n ):
y *= x

return y

This implementation requires linear time, which is relatively slow if we are
raising a value to a large power. For example, suppose we want to compute 231285.
The basic implementation requires 31,285 iterations to compute this value, but each
iteration performs a multiplication, which itself is time consuming when compared
to other operations. Fortunately, there is a faster way to raise a value to an integer
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power. Instead of computing 28 as 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2, we can reduce
the number of multiplications if we computed (2 ∗ 2)4 instead. Better yet, what if
we just computed 16 ∗ 16? This is the idea behind a recursive definition for raising
a value to an integer power. (The expression n/2 is integer division in which the
real result is truncated.)

xn =


1, if n = 0
(x ∗ x)n/2, if n is even
x ∗ (x ∗ x)n/2, if n is odd

Listing 10.8 provides a recursive function for raising x to the integer value of
n. Since two of the expressions compute (x ∗ x)n/2, we go ahead and compute this
value as the result on line 5 and then determine if n is even or odd. If n is even,
then the result is returned; otherwise, we have to first multiply the result by x to
include the odd factor. The run time analysis of exp() is left as an exercise.

Listing 10.8 The recursive implementation of exp().

1 # A recursive implementation for computing x ** n where n is an integer.
2 def exp( x, n ):
3 if n == 0 :
4 return 1
5 result = exp( x * x, n // 2 )
6 if n % 2 == 0 :
7 return result
8 else :
9 return x * result

10.4.4 Playing Tic-Tac-Toe
In this technological age, it’s very likely you have played a computer game in which
you are competing against the computer. For example, you may have played the
game of checkers, chess, or something as simple as tic-tac-toe. In any such game,
when it’s the computer’s turn to play, the computer must make a decision as to
what play to make. Depending on the game and your level of expertise, you may
sometimes think the computer is a genius or that there is some kind of magic going
on behind the scenes.

So, how does the computer make its decision? One simple technique the game
programmer can apply is the use of a game tree . A game tree provides the
sequence of all possible moves that can be made in the game for both the computer
and the human opponent. When the computer has to make a move, it can evaluate
the game tree and determine its best move. The best move in this case is one
that allows the computer to win before its human opponent in the fewest possible
moves. Thus, when playing against a computer, it’s not that the computer is
highly intelligent, but that the computer can evaluate every possible move from
the current point to the end of the game and choose the best move. Humans simply
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cannot visualize or evaluate this amount of information and instead must rely on
experience in attempting to make the best moves.

Consider the game of tic-tac-toe in which two players use a board containing
nine squares organized into three rows of three columns:

The two players take turns placing tokens of Xs and Os in the squares. One
player is assigned the Xs while the other is assigned the Os. Play continues until
all of the squares are filled, resulting in a draw, or one of the players wins by
aligning three identical pieces vertically, diagonally, or horizontally. The following
diagrams show three different game boards, two resulting in wins and one resulting
in a draw:

XO

XO

X

XO

X

O

XO

X X

O

O

X O

X

O

X

Suppose you are playing a game of tic-tac-toe in which four moves have been
played as follows:

XO

X

O

and now it’s X’s turn to play, which happens to be the computer. The computer
needs to evaluate all of its possible moves to determine the best move to make,
which it can do by evaluating the game tree starting from this point in the game.
It can use recursion and build a recursive call tree to represent all possible moves
in the game for both itself and its opponent. During the recursion, the tokens
are placed on the board for both the computer and its opponent as if they were
both actually playing. As the recursion unwinds, the tokens are picked to return
the game to its current state. This game tree shows the five possible moves the
computer can make at this point:

XO
X

O

XO
X

O X
XO
X

O

XXO
X

O X
XO
X

O

X
XO
X

O

X



10.5 Application: The Eight-Queens Problem 299

The computer would need to evaluate all of these moves to determine which
would be the best. The decision would be based on which move would allow it to
win before its opponent. The next figure shows the part of the game tree that is
constructed while evaluating the placement of an X in the upper-right square.

XO
X

O X

XO
X

O X
O

XO
X

O X
O

X

XO
X

O XO

XO
X

O XO

X

XO
X

O X

O

XO
X

O X
O

X

O

Upon evaluating this portion of the tree, the computer would soon learn it
could win in two additional moves if its opponent placed their token in the upper-
middle square. Following the middle branch from the top, the computer would
learn that if its opponent placed their token in the middle-right square instead, it
could not win in two more moves. But the opponent could win in three moves in
this situation. Finally, it would be determined that the opponent could win in the
next move by playing in the lower-left square if the computer made this play. While
that’s bad, this is only one possible move the computer could make. It still has
to evaluate the other possible moves to determine if one is better. Eventually, the
computer would determine that the best move would be to play in the lower-left
square. This would be based on the fact it could win on the next move by playing
in either of two different places before its opponent could win.

Using recursion to build a game tree can make for very interesting games in
which a human competes against the computer. We leave as an exercise the im-
plementation of a function to find the best move for the computer in playing
tic-tac-toe.

10.5 Application: The Eight-Queens Problem
In Chapter 7, we explored the concept of backtracking and its use in solving certain
problems such as that of finding a path through a maze. In that problem, we saw
that backtracking allows us to move forward searching for a solution and, when
necessary, to back up one or more steps in order to try other options. Backtracking
solutions require the use of a stack in order to remember the current solution and
to remove the latter parts of that solution when it’s necessary to back up and try
other options.
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In this chapter, we have discovered that function calls and recursion are imple-
mented internally using a run time stack. Thus, the solution to any problem that
requires the use of a stack can be implemented using recursion. In this section, we
explore the well-known puzzle and classic recursion example known as the Eight-
Queens problem. The task is to place eight queens onto a chessboard such that no
queen can attack another queen.

In the game of chess, a square board is used consisting of 64 squares arranged
in eight rows of eight columns. Each player has a collection of playing pieces
that move and attack in fixed ways. The queen can move and attack any playing
piece of the opponent by moving any number of spaces horizontally, vertically, or
diagonally, as illustrated in Figure 10.16.

♛

Figure 10.16: Legal moves of the queen in the game of chess.

For the eight-queens problem, we use a standard chessboard and eight queens.
The objective is to place the eight queens onto the chessboard in such a way that
each queen is safe from attack by the other queens. There are 92 solutions to this
problem, two of which are shown in Figure 10.17.

♛

♛

♛
♛

♛

♛

♛
♛

♛
♛

♛
♛

♛
♛

♛
♛

Figure 10.17: Two solutions for the eight-queens problem.
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10.5.1 Solving for Four-Queens
To develop an algorithm for this problem, we can first study a smaller instance of
the problem by using just four queens and a 4×4 board. How would you go about
solving this smaller problem? You may attempt to randomly place the queens
on the board until you find a solution that may work for this smaller case. But
when attempting to solve the original eight-queens problem, this approach may
lead to chaos.

Consider a more organized approach to solving this problem. Since no two
queens can occupy the same column, we can proceed one column at a time and
attempt to position a queen in each column. We start by placing a queen in the
upper-left square or position (0, 0) using the 2-D array notation:

♛

With this move, we now eliminate all squares horizontally, vertically, and diagonally
from this position for the placement of additional queens since these positions are
guarded by the queen we just placed.

♛ x x x

x

x

x

x

x

x

With the first queen placed in the first column, we now move to the second
column. The first open position in this column where a queen can be placed without
being attacked by the first queen we placed is at position (2, 1). We can place a
queen in this position and mark those squares that this queen guards, removing
yet more positions for the placement of additional queens.

♛ x x x

x

x

x

x

x

x
♛
x x

x

We are now ready to position a queen in the third column. But you may notice
there are no open positions in the third column. Thus, the placement of the first
two queens will not result in a valid solution. At this point, you may be tempted to
remove all of the existing queens and start over. But that would be a drastic move.
Instead, we can employ the backtracking strategy as introduced in Chapter 7, in
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which we first return to the second column and try alternate positions for that
queen before possibly having to return all the way back to the first column.

The next step is to return to the second column and pick up the queen we
placed at position (2, 1) and remove the markers that were used to indicate the
squares that queen was guarding.

♛ x x x

x

x

x

x

x

x

We then place the queen at the next available square within the same column (3, 1)
and mark the appropriate squares guarded from this position, as shown here:

♛ x x x

x

x

x

x

x

x ♛
x

x

Now we can return to the third column and try again. This time, we place a
queen at position (1, 2), but this results in no open squares in the fourth column.

♛ x x x

x

x

x

x

x

x ♛
x

x

♛ x

x

We could try other squares in the same column, but none are open. Thus, we
must pick up the queen from the third column and again backtrack to try other
combinations. We return to the second column and pick up the queen we placed
earlier at position (3, 1) so we can try other squares within this column.

♛ x x x

x

x

x

x

x

x ♛
x

x

♛ x x x

x

x

x

x

x

x

But there are no more open squares in the second column to try, so we must back
up even further, returning to the first column. When returning to a column, the
first step is always to pick up the queen previously placed in that column.
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After picking up the queen in the first column, we place it in the next position
(1, 0) within that column.

♛
x

xx

x

x

x

x

x

x

We can now repeat the process and attempt to find open positions in each of
the remaining columns. These final steps, which are illustrated here, results in a
solution to the four-queens problem.

♛
x

xx
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x

x

x

x

x

♛ x

x
♛

x

xx

x

x

x

x

x

x

♛ x

x
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♛
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♛
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Having found a solution for the four-queens problem, we can use the same
approach to solve the eight-queens problem. The only difference between the two is
that there is likely to be more backtracking required to find a solution. In addition,
while the four-queens problem has two solutions, the eight-queens problem has 92
solutions.

The original problem definition only considered finding a solution for a normal
8 × 8 chessboard. A more general problem, however, is known as the n-queens
problem, which allows for the placement of n queens on a board of size n×n where
n > 3. The same backtracking technique described earlier can be used with the
n-queens problem, although finding a solution to larger-sized boards can be quite
time consuming. We leave the analysis of the time-complexity as an exercise.

10.5.2 Designing a Solution
Given the description of the eight-queens problem and the high-level overview of
how to find a solution to the four-queens problem, we now consider an implemen-
tation for solving this classic example of recursion and backtracking.

The Board Definition

The implementation will consist of two parts: a game board for placing the queens
and a recursive function for finding a solution. We begin with the definition of the
NQueens Board ADT to represent the board and the placement of the queens.
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Define NQueens Board ADT

The n-queens board is used for positioning queens on a square board for use in
solving the n-queens problem. The board consists of n × n squares arranged in
rows and columns, with each square identified by indices in the range [0 . . . n).

� QueensBoard( n ): Creates an n× n empty board.

� size(): Returns the size of the board.

� numQueens(): Returns the number of queens currently positioned on the board.

� unguarded( row, col ): Returns a boolean value indicating if the given square
is currently unguarded.

� placeQueen( row,col ): Places a queen on the board at position (row, col).

� removeQueen( row,col ): Removes the queen from position (row, col).

� reset(): Resets the board to its original state by removing all queens cur-
rently placed on the board.

� draw(): Prints the board in a readable format using characters to represent
the squares containing the queens and the empty squares.

Using the ADT

Given the ADT definition, we can now design a recursive function for solving the
n-queens problem. The function in Listing 10.9 takes an instance of the NQueens
Board ADT and the current column in which we are attempting to place a queen.
When called for the first time, an index value of 0 should be passed to the function.

The function begins by testing if a solution has been found that is one of
three base cases. If no solution has been found, then we must loop through the rows
in the current column to find an unguarded square. If one is found, a queen is placed
at that position (line 10) and a recursive call is made in an attempt to place a queen
in the next column. Upon return of the recursive call, we must check to see if a
solution was found with the queen placed in the square at position (row,col).
If a solution was found, another base case is reached and the function returns
True. If no solution was found, then the queen in the current column must be
picked up (line 18) and another attempt made to place the queen within this
column. If all unguarded squares within the current column have been exhausted,
then there is no solution to the problem using the configuration of the queens
from the previous columns. In this case, which represents the last base case, we
must backtrack and allow the previous instance of the recursive function to try
other squares within the previous column.
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Listing 10.9 The recursive function for solving the n-queens problem.

1 def solveNQueens( board, col ):
2 # A solution was found if n-queens have been placed on the board.
3 if board.numQueens() == board.size() :
4 return True
5 else :
6 # Find the next unguarded square within this column.
7 for row in range( board.size() ):
8 if board.unguarded( row, col ):
9 # Place a queen in that square.

10 board.placeQueen( row, col )
11 # Continue placing queens in the following columns.
12 if board.solveNQueens( board, col+1 ) :
13 # We are finished if a solution was found.
14 return True
15 else :
16 # No solution was found with the queen in this square, so it
17 # has to be removed from the board.
18 board.removeQueen( row, col )
19
20 # If the loop terminates, no queen can be placed within this column.
21 return False

Implementing the ADT

Having provided the recursive function for solving the n-queens problem, we leave
the implementation of the NQueens Board ADT as an exercise. In this section,
however, we discuss possible data structures for representing the actual board.

The most obvious choice is a 2-D array of size n×n. The elements of the array
can contain boolean values with True indicating the placement of the queens. To
determine if a given square is unguarded, loops can be used to iterate over all of
the squares to which a queen can move from that position. If a queen is found in
any of the squares searched during the loop iterations, then we know the square is
currently guarded by at least one queen. The placement and removal of the queens
is also quite easy to implement using the 2-D array structure.

As an alternative, we can actually use a 1-D array consisting of n elements.
Consider the illustration in Figure 10.18 on the next page, which shows the abstract
view of an 8 × 8 board at the top and a 1-D array at the bottom used to repre-
sent the board. Each element of the 1-D array corresponds to one column on the
board. The elements of the 1-D array will contain row indices indicating the po-
sitions of the queens on the board. Since only one queen can be placed within
a given column, we need only keep track of the row containing the queen in the
column. When determining if a square is unguarded, we can iterate through the row
and column indices for the preceding columns on the board from which the given
square can be attacked by a queen. Instead of searching for a True value within
the elements of a 2-D array, we need only determine if the elements of the 1-D
array contain one of the row indices being examined. Consider the illustration in
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Figure 10.18: Representing an 8 × 8 board using a 1-D array.

Figure 10.19, in which three queens have been placed and we need to determine if
the square at position (1, 3) is unguarded.

When searching horizontally backward, we examine the elements of the 1-D
array looking for an index equal to that of the current row. If one is found,
then there is a queen already positioned on the current row as is the case in this
example. If a queen was not found on the current row, then we would have to
search diagonally to the upper left and to the lower left. In these two cases, we
search the squares indicated by the arrows and examine the row indices of each
and compare them to the entries in the 1-D array. If any of the indices match,
then a queen is currently guarding the position and it is not a legal move.
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3 5

?♛
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Figure 10.19: Determining if a square is unguarded using a 1-D array.
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Exercises
10.1 Draw the recursive call tree for the printRev() function from Section 10.1

when called with a value of 5.

10.2 Determine the worst case run time of the recursive factorial function.

10.3 Determine the worst case run time of the recursive Fibonacci function.

10.4 Show or prove that the printList() function requires linear time.

10.5 Does the recursive implementation of the binary search algorithm from List-
ing 10.6 exhibit tail recursion? If not, why not?

10.6 Determine the worst case run time of the recursive exponential function exp().

10.7 Determine the worst case run time of the backtracking solution for the n-queens
problem.

10.8 Design and implement an iterative version of the factorial function.

10.9 Design and implement a recursive function for determining whether a string
is a palindrome. A palindrome is a string of characters that is the same as
the string of characters in reverse.

10.10 Design and implement a recursive function for computing the greatest common
divisor of two integer values.

10.11 Design and implement a program that prints Pascal’s triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

using a recursive implementation of the binomial coefficients function:

a(n, r) =
n!

r!(n− r)!

10.12 Implement the NQueens Board ADT using the indicated data structure to repre-
sent the chess board.

(a) 2-D array (b) 1-D array
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Programming Projects
10.1 Design and implement a program to solve the n-queens problem. Your pro-

gram should prompt the user for the size of the board, search for a solution,
and print the resulting board if a solution was found.

10.2 Instead of finding a single solution to the n-queens problem, we can compute
the total number of solutions for a given value of n. Modify the solveNQueens()
function from Listing 10.9 to count the number of solutions for a given value
of n instead of simply determining if a solution exists. Test your program on
the following values of n (the number of solutions for the given board size is
indicated in parentheses).

(a) 4 (2)

(b) 8 (92)

(c) 9 (352)

(d) 10 (724)

(e) 11 (2680)

(f) 12 (14200)

10.3 Implement a new version of the maze solving program from Chapter 7 to use
recursion instead of a software stack.

10.4 Design and implement a program to play tic-tac-toe against the computer
using a recursive function to build a game tree for deciding the computer’s
next move.

10.5 The Knight’s tour problem is another chessboard puzzle in which the ob-
jective is to find a sequence of moves by the knight in which it visits every
square on
the board exactly once. The legal moves of a knight
are shown in the diagram to the right. Design and
implement a program that uses a recursive backtrack-
ing algorithm to solve the knight’s tour. Your pro-
gram should extract from the user a starting position
for the knight and produce a list of moves that solves
the knight’s tour.

●

●●

●●

● ●

♞

●

10.6 The knapsack problem is a classic problem in computer science. You are
given a knapsack and a collection of items of different weights and your job
is to try to fit some combination of the items into the knapsack to obtain a
target weight. All of the items do not have to fit in the knapsack, but the
total weight cannot exceed the target weight. For example, suppose we want
to fill the knapsack to a maximum weight of 30 pounds from a collection of
seven items where the weights of the seven items are 2, 5, 6, 9, 12, 14, and 20.
For a small number of items, it’s rather easy to solve this problem. One such
solution, for example, would be to include the items that have weights 2, 5,
9, and 14. But what if we had several thousand items of varying weights and
need to fit them within a large knapsack? Design and implement a recursive
algorithm for solving this problem.
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Hash Tables

The search problem, which was introduced in Chapter 4, attempts to locate an item
in a collection based on its associated search key. Searching is the most common
operation applied to collections of data. It’s not only used to determine if an item
is in the collection, but can also be used in adding new items to the collection and
removing existing items. Given the importance of searching, we need to be able to
accomplish this operation fast and efficiently.

If the collection is stored in a sequence, we can use a linear search to locate an
item. The linear search is simple to implement but not very efficient as it requires
O(n) time in the worst case. We saw that the search time could be improved using
the binary search algorithm as it only requires O(log n) time in the worst case.
But the binary search can only be applied to a sequence in which the keys are in
sorted order.

The question becomes, can we improve the search operation to achieve better
thanO(log n) time? The linear and binary search algorithms are both comparison-
based searches. That is, in order to locate an item, the target search key has
to be compared against the other keys in the collection. Unfortunately, it can be
shown that O(log n) is the best we can achieve for a comparison-based search. To
improve on this time, we would have to use a technique other than comparing the
target key against other keys in the collection. In this chapter, we explore the
use of a non-comparison-based algorithm to provide a more efficient search opera-
tion. This is the same technique used in the implementation of Python’s dictionary
structure.

11.1 Introduction
Suppose you have a collection of products for which you need to maintain infor-
mation and allow for numerous searches on that information. At the present time,
you only have a small collection of products but you can envision having up to

309
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a hundred products in the future. So, you decide to assign a unique identifier or
code to each product using the integer values in the range 100 . . . 199. To manage
the data and allow for searches, you decide to store the product codes in an array
of sufficient size for the number of products available.

Figure 11.1 illustrates the contents of the array for a collection of nine product
codes. Depending on the number of searches, we can choose whether to perform a
simple linear search on the array or first sort the keys and then use a binary search.
Even though this example uses a small collection, in either case the searches still
require at least logarithmic time and possibly even linear time in the worst case.

103103 116116 133133 107107 101101 155155 105105 118118 134134

0 1 2 3 4 5 6 7 8

Figure 11.1: A collection of product codes stored in an array.

Given the small range of key values, this problem is a special case. The searches
can actually be performed in constant time. Instead of creating an array that is
only large enough to hold the products on hand, suppose we create an array with
100 elements, the size needed to store all possible product codes. We can then
assign each key a specific element in the array. If the product code exists, the
key and its associated data will be stored in its assigned element. Otherwise,
the element will be set to None to flag the absence of that product. The search
operation is reduced to simply examining the array element associated with a given
search key to determine if it contains a valid key or a null reference.

To determine the element assigned to a given key, we note that the product
codes are in the range [100 . . . 199] while the array indices are in the range [0 . . . 99].
There is a natural mapping between the two. Key 100 can be assigned to element 0,
key 101 to element 1, key 102 to element 2, and so on. This mapping can be
computed easily by subtracting 100 from the key value or with the use of the
modulus operator (key % 100). Figure 11.2 illustrates the storage of our sample
product collection using this approach.

This technique provides direct access to the search keys. When searching for
a key, we apply the same mapping operation to determine the array element that
contains the given target. For example, suppose we want to search for product 107.
We compute 107 % 100 to determine the key will be in element 7 if it exists. Since

N
O

TE

i Search Keys. Throughout the text, we have focused on the storage
and use of search keys when discussing the search problem. But

remember, the search keys are commonly associated with a data record
and are used as the unique identifier for that record. While our examples
have only illustrated the keys, we assume the associated data is also stored
along with the search key.
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101101 103103 105105 107107

0 1 2 3 4 5 6 7 16 17 18 32 33 34

● ● ●● ● ● ● ● ●116116 133133118118 134134 

Figure 11.2: Storing a collection of product codes by direct mapping.

there is a product with code 107 and it can be directly accessed at array element 7.
If the target key is not in the collection, as is the case for product code 102,
the corresponding element (102 % 100 = 2) will contain a null reference. This
results in a constant time search since we can directly examine a specific element
of the array and not have to compare the target key against the other keys in the
collection.

11.2 Hashing
We can use the direct access technique for small sets of keys that are composed of
consecutive integer values. But what if the key can be any integer value? Even
with a small collection of keys, we cannot create an array large enough to store all
possible integer values. That’s where hashing comes into play.

Hashing is the process of mapping a search key to a limited range of array
indices with the goal of providing direct access to the keys. The keys are stored in
an array called a hash table and a hash function is associated with the table.
The function converts or maps the search keys to specific entries in the table. For
example, suppose we have the following set of keys:

765, 431, 96, 142, 579, 226, 903, 388

and a hash table, T , containing M = 13 elements. We can define a simple hash
function h(·) that maps the keys to entries in the hash table:

h(key) = key % M

You will notice this is the same operation we used with the product codes in
our earlier example. Dividing the integer key by the size of the table and taking
the remainder ensures the value returned by the function will be within the valid
range of indices for the given table.

To add keys to the hash table, we apply the hash function to determine the
entry in which the given key should be stored. Applying the hash function to key
765 yields a result of 11, which indicates 765 should be stored in element 11 of the
hash table. Likewise, if we apply the hash function to the next four keys in the
list, we find:

h(431) => 2 h(96) => 5 h(142) => 12 h(579) => 7

all of which are unique index values. Figure 11.3 illustrates the insertion of the
first five keys into the hash table.
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431431
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Figure 11.3: Storing the first five keys in the hash table.

11.2.1 Linear Probing
The first five keys were easily added to the table. The resulting index values
were unique and the corresponding table entries contained null references, which
indicated empty slots. But that’s not always the case. Consider what happens
when we attempt to add key 226 to the hash table. The hash function maps this
key to entry 5, but that entry already contains key 96, as illustrated in Figure 11.4.
The result is a collision , which occurs when two or more keys map to the same
hash location. We mentioned earlier that the goal of hashing is to provide direct
access to a collection of search keys. When the key value can be one of a wide range
of values, it’s impossible to provide a unique entry for all possible key values.

431431

0 1 2 3 4 5 6 7 8 9 10

● ● ● ●

11 12

765765 1421429696 579579

226226

     

Figure 11.4: A collision occurs when adding key 226.

If two keys map to the same table entry, we must resolve the collision by
probing the table to find another available slot. The simplest approach is to use
a linear probe , which examines the table entries in sequential order starting with
the first entry immediately following the original hash location. For key value 226,
the linear probe finds slot 6 available, so the key can be stored at that position, as
illustrated in Figure 11.5.

226

431431

0 1 2 3 4 5 6 7 8 9 10

● ● ● ●

11 12

765765 1421429696 579579

431431

0 1 2 3 4 5 6 7 8 9 10

● ● ● ●

11 12

765765 1421429696 579579●226226    

     (a)

(b)

903903

Figure 11.5: Resolving a collision for key 226 requires adding the key to the next slot.
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When key 903 is added, the hash function maps the key to index 6, but we just
added key 226 to this entry. Your first instinct may be to remove key 226 from this
location, since 226 did not map directly to this entry, and store 903 here instead.
Once a key is stored in the hash table, however, it’s only removed when a delete
operation is performed. This collision has to be resolved just like any other, by
probing to find another slot. In the case of key 903, the linear probe leads us to
slot 8, as illustrated in Figure 11.6.

431431

0 1 2 3 4 5 6 7 8 9 10

● ●

11 12

765765 1421429696 579579226226

903903903

431431
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765765 1421429696 579579226226 903903

    

    

(a)

(b)

Figure 11.6: Adding key 903 to the hash table: (a) performing a linear probe; and (b) the
result after adding the key.

If the end of the array is reached during the probe, we have to wrap around
to the first entry and continue until either an available slot is found or all entries
have been examined. For example, if we add key 388 to the hash table, the hash
function maps the key to slot 11, which contains key 765. The linear probe, as
illustrated in Figure 11.7, requires wrapping around to the beginning of the array.

Searching

Searching a hash table for a specific key is very similar to the add operation. The
target key is mapped to an initial slot in the table and then it is determined if
that entry contains the key. If the key is not at that location, the same probe used
to add the keys to the table must be used to locate the target. In this case, the

431431

0 1 2 3 4 5 6 7 8 9 10

● ●

11 12

765765 1421429696 579579226226

388388

903903

431431

0 1 2 3 4 5 6 7 8 9 10

● ●

11 12

765765 1421429696 579579226226 903903388388

388

   

    (a)

(b)

Figure 11.7: Adding key 388 to the hash table: (a) performing a linear probe; and (b) the
result after adding the key.
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probe continues until the target is located, a null reference is encountered, or all
slots have been examined. When either of the latter two situations occurs, this
indicates the target key is not in the table. Figure 11.8 illustrates the searches for
key 903, which is in the table, and key 561, which is not in the table.
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Figure 11.8: Searching the hash table: (a) a successful search for key 903 and (b) an
unsuccessful search for key 561.

Deletions

We’ve seen how keys are added to the table with the use of the hash function and
a linear probe for resolving collisions. But how are deletions handled? Deleting
from a hash table is a bit more complicated than an insertion. A search can
be performed to locate the key in a similar fashion as the basic search operation
described earlier. But after finding the key, we cannot simply remove it by setting
the corresponding table entry to None.

Suppose we remove key 226 from our hash table and set the entry at element 6
to None. What happens if we then perform a search for key 903? The htSearch()
function will return False, indicating the key is not in the table, even though it’s
located at element 8. The reason for the unsuccessful search is due to element
6 containing a null reference from that key having been previously removed, as
illustrated in Figure 11.9. Remember, key 903 maps to element 6 but when it was
added, a new slot had to be found via a probe since key 226 already occupied that
slot. If we simply remove key 226, there is no way to indicate we have to probe
past this point when searching for other keys.

Instead of simply setting the corresponding table entry to None, we can use a
special flag to indicate the entry is now empty but it had been previously occupied.
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Figure 11.9: Incorrect deletion from the hash table.
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Thus, when probing to add a new key or in searching for an existing key, we know
the search must continue past the slot since the target may be stored beyond this
point. Figure 11.10 illustrates the correct way to delete a key from the hash table.
The delta ∆ symbol is used to indicate a deleted entry.
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Figure 11.10: The correct way to delete a key from the hash table.

11.2.2 Clustering
As more keys are added to the hash table, more collisions are likely to occur. Since
each collision requires a linear probe to find the next available slot, the keys begin
to form clusters. As the clusters grow larger, so too does the probability that the
next key added to the table will result in a collision. If our table were empty, the
probability of a key being added to any of the 13 empty slots is 1 out of 13, since
it is equally likely the key can hash to any of the slots. Now consider the hash
table in Figure 11.8. What is the probability the next key will occupy the empty
slot at position 4? If the next key hashes to this position, it can be stored directly
into the slot without the need to probe. This also results in a probability of 1 out
of 13. But the probability the next key will occupy slot 9 is 5 out of 13. If the
next key hashes to any of the slots between 5 and 9, it will be stored in slot 9 due
to the linear probe required to find the first position beyond the cluster of keys.
Thus, the key is five times more likely to occupy slot 9 than slot 4.

This type of clustering is known as primary clustering since it occurs near
the original hash position. As the clusters grow larger, so too does the length of
the search needed to find the next available slot. We can reduce the amount of
primary clustering by changing the technique used in the probing. In this section,
we examine several different probing techniques that can be employed to reduce
primary clustering.

Modified Linear Probe

When probing to find the next available slot, a loop is used to iterate through the
table entries. The order in which the entries are visited form a probe sequence .
The linear probe searches for the next available slot by stepping through the hash
table entries in sequential order. The next array slot in the probe sequence can be
represented as an equation:

slot = (home + i) % M
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where i is the ith probe in the sequence, i = 1, 2, . . .M − 1. home is the home
position , which is the index to which the key was originally mapped by the hash
function. The modulus operator is used to wrap back around to the front of the
array after reaching the end. The use of the linear probe resulted in six collisions
in our hash table of size M = 13:

h(765) => 11 h(579) => 7
h(431) => 2 h(226) => 5 => 6
h(96) => 5 h(903) => 6 => 7 => 8 => 9
h(142) => 12 h(388) => 11 => 12 => 0

when the keys are inserted in the order:

765, 431, 96, 142, 579, 226, 903, 388

We can improve the linear probe by skipping over multiple elements instead of
probing the immediate successor of each element. This can be done by changing
the step size in the probe equation to some fixed constant c:

slot = (home + i ∗ c) % M

Suppose we use a linear probe with c = 3 to build the hash table using the
same set of keys. This results in only two collisions as compared to six when c = 1
(the resulting hash table is illustrated in Figure 11.11):

h(765) => 11 h(579) => 7
h(431) => 2 h(226) => 5 => 8
h(96) => 5 h(903) => 6
h(142) => 12 h(388) => 11 => 1
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Figure 11.11: The hash table using a linear probe with c = 3.

Any value can be used for the constant factor, but to ensure the probe sequence
includes all table entries, the constant factor c and the table size must be relatively
prime. With a hash table of size M = 13, the linear probe with a constant factor
c = 2 will visit every element. For example, if the key hashes to position 2, the
table entries will be visited in the following order:

4, 6, 8, 10, 12, 1, 3, 5, 7, 9, 11, 0

If we use a value of c = 3, the probe sequence will be:

5, 8, 11, 1, 4, 7, 10, 0, 3, 6, 9, 12



11.2 Hashing 317

Now, consider the case where the table size is M = 10 and the constant factor
is c = 2. The probe sequence will only include the even numbered entries and will
repeat the same sequence without possibly finding the key or an available entry to
store a new key:

4, 6, 8, 0, 2, 4, 6, 8, 0

Quadratic Probing

The linear probe with a constant factor larger than 1 spreads the keys out from
the initial hash position, but it can still result in clustering. The clusters simply
move equal distance from the initial hash positions. A better approach for reducing
primary clustering is with the use of quadratic probing , which is specified by the
equation:

slot = (home + i2) % M

Quadratic probing eliminates primary clustering by increasing the distance be-
tween each probe in the sequence. When used to build the hash table using the
sample set of keys, we get seven collisions (the resulting hash table is illustrated in
Figure 11.12):

h(765) => 11 h(579) => 7
h(431) => 2 h(226) => 5 => 6
h(96) => 5 h(903) => 6 => 7 => 10
h(142) => 12 h(388) => 11 => 12 => 2 => 7 => 1

While the number of collisions has increased, the primary clustering has been
reduced. In practice, quadratic probing typically reduces the number of collisions
but introduces the problem of secondary clustering . Secondary clustering oc-
curs when two keys map to the same table entry and have the same probe sequence.
For example, if we were to add key 648 to our table, it would hash to slot 11 and
follow the same probe sequence as key 388. Finally, there is no guarantee the
quadratic probe will visit every entry in the table. But if the table size is a prime
number, at least half of the entries will be visited.
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Figure 11.12: The hash table using a quadratic probe.

Double Hashing

The quadratic probe distributes the keys by increasing steps in the probe sequence.
But the same sequence is followed by multiple keys that map to the same table
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entry, which results in the secondary clustering. This occurs because the probe
equation is based solely on the original hash slot. A better approach for reducing
secondary clustering is to base the probe sequence on the key itself. In double
hashing , when a collision occurs, the key is hashed by a second function and the
result is used as the constant factor in the linear probe:

slot = (home + i ∗ hp(key)) % M

While the step size remains constant throughout the probe, multiple keys that
map to the same table entry will have different probe sequences. To reduce clus-
tering, the second hash function should not be the same as the main hash function
and it should produce a valid index in the range 0 < c < M . A simple choice for
the second hash function takes the form:

hp(key) = 1 + key % P

where P is some constant less than M . For example, suppose we define a second
hash function:

hp(key) = 1 + key % 8

and use it with double hashing to build a hash table from our sample keys. This
results in only two collisions:

h(765) => 11 h(579) => 7
h(431) => 2 h(226) => 5 => 8
h(96) => 5 h(903) => 6
h(142) => 12 h(388) => 11 => 3

The hash table resulting from the use of double hashing is illustrated in Fig-
ure 11.13. The double hashing technique is most commonly used to resolve col-
lisions since it reduces both primary and secondary clustering. To ensure every
table entry is visited during the probing, the table size must be a prime number.
We leave it as an exercise to show why this is necessary.
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Figure 11.13: The hash table using double hashing.

11.2.3 Rehashing
We have looked at how to use and manage a hash table, but how do we decide
how big the hash table should be? If we know the number of entries that will be
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stored in the table, we can easily create a table large enough to hold the entire
collection. In many instances, however, there is no way to know up front how many
keys will be stored in the hash table. In this case, we can start with a table of
some given size and then grow or expand the table as needed to make room for
more entries. We used a similar approach with a vector. When all available slots
in the underlying array had been consumed, a new larger array was created and
the contents of the vector copied to the new array.

With a hash table, we create a new array larger than the original, but we cannot
simply copy the contents from the old array to the new one. Instead, we have to
rebuild or rehash the entire table by adding each key to the new array as if it were
a new key being added for the first time. Remember, the search keys were added
to the hash table based on the result of the hash function and the result of the
function is based on the size of the table. If we increase the size of the table, the
function will return different hash values and the keys may be stored in different
entries than in the original table. For example, suppose we create a hash table of
size M = 17 and insert our set of sample keys using a simple linear probe with
c = 1. Applying the hash function to the keys yields the following results, which
includes a single collision:

h(765) => 0 h(579) => 1
h(431) => 6 h(226) => 5
h(96) => 11 h(903) => 2
h(142) => 6 => 7 h(388) => 14

The original hash table using a linear probe is shown in Figure 11.14(a) and
the new larger hash table is shown in Figure 11.14(b). You will notice the keys are
stored in different locations due to the larger table size.
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Figure 11.14: The result of enlarging the hash table from 13 elements to 17.

As the table becomes more full, the more likely it is that collisions will occur.
Experience has shown that hashing works best when the table is no more than
approximately three quarters full. Thus, if the hash table is to be expanded, it
should be done before the table becomes full. The ratio between the number of
keys in the hash table and the size of the table is called the load factor . In
practice, a hash table should be expanded before the load factor reaches 80%.

The amount by which the table should be expanded can depend on the applica-
tion, but a good rule of thumb is to at least double its size. As we indicated earlier,



320 CHAPTER 11 Hash Tables

most of the probing techniques can benefit from a table size that is a prime num-
ber. To determine the actual size of the new table, we can first double the original
size, 2m and then search for the first prime number greater than 2m. Depending
on the application and the type of probing used, you may be able to simply double
the size and add one, 2m + 1. Note that by adding one, the resulting size will be
an odd number, which results in fewer divisors for the given table size.

11.2.4 Efficiency Analysis
The ultimate goal of hashing is to provide direct access to data items based on
the search keys in the hash table. But, as we’ve seen, collisions routinely occur
due to multiple keys mapping to the same table entry. The efficiency of the hash
operations depends on the hash function, the size of the table, and the type of
probe used to resolve collisions. The insertion and deletion operations both require
a search to locate the slot into which a new key can be inserted or the slot containing
the key to be deleted. Once the slot has been located, the insertion and deletion
operations are simple and only require constant time. The time required to perform
the search is the main contributor to the overall time of the three hash table
operations: searching, insertions, and deletions.

To evaluate the search performed in hashing, assume there are n elements
currently stored in the table of size m. In the best case, which only requires
constant time, the key maps directly to the table entry containing the target and
no collision occurs. When a collision occurs, however, a probe is required to find
the target key. In the worst case, the probe has to visit every entry in the table,
which requires O(m) time.

From this analysis, it appears as if hashing is no better than a basic linear
search, which also requires linear time. The difference, however, is that hashing is
very efficient in the average case. The average case assumes the keys are uniformly
distributed throughout the table. It depends on the average probe length and the
average probe length depends on the load factor. Given the load factor α = n

m < 1,
Donald E. Knuth, author of the definitive book series on data structures and
algorithms, The Art of Computer Programming, derived equations for the average
probe length. The times depend on the type of probe used in the search and
whether the search was successful.

When using a linear probe, the average number of comparisons required to
locate a key in the hash table for a successful search is:

1
2

(
1 +

1
(1− α)2

)

and for an unsuccessful search:
1
2

(
1 +

1
(1− α)

)

When using a quadratic probe or double hashing, the average number of com-
parisons required to locate a key for a successful search is:
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− log(1− α)
α

and for an unsuccessful search:

1
(1− α)

Table 11.1 shows the average number of comparisons for both linear and quad-
ratic probes when used with various load factors. As the load factor increases
beyond approximately 2/3, the average number of comparisons become very large,
especially for an unsuccessful search. The data in the table also shows that the
quadratic and double hashing probes can allow for higher load factors than the
linear probe.

Load Factor 0.25 0.5 0.67 0.8 0.99

Successful search:
Linear Probe 1.17 1.50 2.02 3.00 50.50
Quadratic Probe 1.66 2.00 2.39 2.90 6.71

Unsuccessful search:
Linear Probe 1.39 2.50 5.09 13.00 5000.50
Quadratic Probe 1.33 2.00 3.03 5.00 100.00

Table 11.1: Average search times for both linear and quadratic probes.

Based on experiments and the equations above, we can conclude that the hash
operations only require an average time of O(1) when the load factor is between
1/2 and 2/3. Compare this to the average times for the linear and binary searches
(O(n) and O(log n), respectively) and we find that hashing provides an efficient
solution for the search operation.

11.3 Separate Chaining
When a collision occurs, we have to probe the hash table to find another available
slot. In the previous section, we reviewed several probing techniques that can
be used to help reduce the number of collisions. But we can eliminate collisions
entirely if we allow multiple keys to share the same table entry. To accommodate
multiple keys, linked lists can be used to store the individual keys that map to
the same entry. The linked lists are commonly referred to as chains and this
technique of collision resolution is known as separate chaining .

In separate chaining, the hash table is constructed as an array of linked lists.
The keys are mapped to an individual index in the usual way, but instead of storing
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the key into the array elements, the keys are inserted into the linked list referenced
from the corresponding entry; there’s no need to probe for a different slot. New
keys can be prepended to the linked list since the nodes are in no particular order.
Figure 11.15 illustrates the use of separate chaining to build a hash table.
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Figure 11.15: Hash table using separate chaining.

The search operation is much simpler when using separate chaining. After
mapping the key to an entry in the table, the corresponding linked list is searched
to determine if the key is in the table. When deleting a key, the key is again
mapped in the usual way to find the linked list containing that key. After locating
the list, the node containing the key is removed from the linked list just as if we
were removing any other item from a linked list. Since the keys are not stored in
the array elements themselves, we no longer have to mark the entry as having been
filled by a previously deleted key.

Separate chaining is also known as open hashing since the keys are stored
outside the table. The term closed hashing is used when the keys are stored
within the elements of the table as described in the previous section. To confuse
things a bit, some computer scientists also use the terms closed addressing to
describe open hashing and open addressing to describe closed hashing. The use
of the addressing terms refers to the possible locations of the keys in relation to the
table entries. In open addressing, the keys may have been stored in an open slot
different from the one to which it originally mapped while in closed addressing, the
key is contained within the entry to which it mapped.

The table size used in separate chaining is not as important as in closed hashing
since multiple keys can be stored in the various linked list. But it still requires
attention since better key distribution can be achieved if the table size is a prime
number. In addition, if the table is too small, the linked lists will grow larger
with the addition of each new key. If the list become too large, the table can be
rehashed just as we did when using closed hashing.

The analysis of the efficiency for separate chaining is similar to that of closed
hashing. As before, the search required to locate a key is the most time consuming
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part of the hash operations. Mapping a key to an entry in the hash table can
be done in one step, but the time to search the corresponding linked list is based
on the length of that list. In the worst case, the list will contain all of the keys
stored in the hash table, resulting in a linear time search. As with closed hashing,
separate chaining is very efficient in the average case. The average time to locate
a key within the hash table assumes the keys are uniformly distributed across
the table and it depends on the average length of the linked lists. If the hash
table contains n keys and m entries, the average list length is n

m , which is the
same as the load factor. Deriving equations for the average number of searches in
separate chaining is much easier than with closed hashing. The average number of
comparisons required to locate a key in the hash table for a successful search is:

1 +
α

2

and for an unsuccessful search is:

1 + α

When the load factor is less than 2 (twice the number of keys as compared to
the number of table entries), it can be shown that the hash operations only require
O(1) time in the average case. This is a better average time than that for closed
hashing, which is an advantage of separate chaining. The drawback to separate
chaining, however, is the need for additional storage used by the link fields in the
nodes of the linked lists.

11.4 Hash Functions
The efficiency of hashing depends in large part on the selection of a good hash
function. As we saw earlier, the purpose of a hash function is to map a set of
search keys to a range of index values corresponding to entries in a hash table.
A “perfect” hash function will map every key to a different table entry, resulting
in no collisions. But this is seldom achieved except in cases like our collection of
products in which the keys are within a small range or when the keys are known
beforehand. Instead, we try to design a good hash function that will distribute the
keys across the range of hash table indices as evenly as possible. There are several
important guidelines to consider in designing or selecting a hash function:

� The computation should be simple in order to produce quick results.

� The resulting index cannot be random. When a hash function is applied
multiple times to the same key, it must always return the same index value.

� If the key consists of multiple parts, every part should contribute in the com-
putation of the resulting index value.

� The table size should be a prime number, especially when using the modulus
operator. This can produce better distributions and fewer collisions as it tends
to reduce the number of keys that share the same divisor.
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Integer keys are the easiest to hash, but there are many times when we have to
deal with keys that are either strings or a mixture of strings and integers. When
dealing with non-integer keys, the most common approach is to first convert the
key to an integer value and then apply an integer-based hash function to that
value. In this section, we first explore several hash functions that can be used with
integers and then look at common techniques used to convert strings to integer
values that can then be hashed.

Division

The simplest hash function for integer values is the one we have been using through-
out the chapter. The integer key, or a mixed type key that has been converted to
an integer, is divided by the size of the hash table with the remainder becoming
the hash table index:

h(key) = key % M

Computing the remainder of an integer key is the easiest way to ensure the
resulting index always falls within the legal range of indices. The division technique
is one of the most commonly used hash functions, applied directly to an integer
key or after converting a mixed type key to an integer.

Truncation

For large integers, some columns in the key value are ignored and not used in the
computation of the hash table index. In this case, the index is formed by selecting
the digits from specific columns and combining them into an integer within the
legal range of indices. For example, if the keys are composed of integer values that
all contain seven digits and the hash table size is 1000, we can concatenate the
first, third, and sixth digits (counting from right to left) to form the index value.
Using this technique, key value 4873152 would hash to index 812.

Folding

In this method, the key is split into multiple parts and then combined into a single
integer value by adding or multiplying the individual parts. The resulting integer
value is then either truncated or the division method is applied to fit it within
the range of legal table entries. For example, given a key value 4873152 consisting
of seven digits, we can split it into three smaller integer values (48, 731, and 52)
and then sum these to obtain a new integer: 48 + 731 + 52 = 831. The division
method can then be used to obtain the hash table index. This method can also
be used when the keys store data with explicit components such as social security
numbers or phone numbers.

Hashing Strings

Strings can also be stored in a hash table. The string representation has to be
converted to an integer value that can be used with the division or truncation
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methods to generate an index within the valid range. There are many different
techniques available for this conversion. The simplest approach is to sum the ASCII
values of the individual characters. For example, if we use this method to hash the
string 'hashing', the result will be:

104 + 97 + 115 + 104 + 105 + 110 + 103 = 738

This approach works well with small hash tables. But when used with larger
tables, short strings will not hash to the larger index values; they will only be used
when probed. For example, suppose we apply this method to strings containing
seven characters, each with a maximum ASCII value of 127. Summing the ASCII
values will yield a maximum value of 127 * 7 = 889. A second approach that can
provide good results regardless of the string length uses a polynomial:

s0a
n−1 + s1a

n−2 + · · ·+ sn−3a
2 + sn−2a+ sn−1

where a is a non-zero constant, si is the ith element of the string, and n is the length
of the string. If we use this method with the string 'hashing', where a = 27, the
resulting hash value will be 41746817200. This value can then be used with the
division method to yield an index value within the valid range.

11.5 The HashMap Abstract Data Type
One of the most common uses of a hash table is for the implementation of a map.
In fact, Python’s dictionary is implemented using a hash table with closed hashing.
The definition of the Map ADT from Chapter 3 allows for the use of any type of
comparable key, which differs from Python’s dictionary since the latter requires the
keys to be hashable. That requirement can limit the efficient use of the dictionary
since we must define our own hash function for any user-defined types that are to
be used as dictionary keys. Our hash function must produce good results or the
dictionary operations may not be very efficient.

In this section, we provide an implementation for the map that is very similar to
the approach used in implementing Python’s dictionary. Since this version requires
the keys to be hashable, we use the name HashMap to distinguish it from the more
general Map ADT. For the implementation of the HashMap ADT, we are going to
use a hash table with closed hashing and a double hashing probe. The source code
is provided in Listing 11.1 on the next page.

The Hash Table

In implementing the HashMap ADT, we must first decide how big the hash table
should be. The HashMap ADT is supposed to be a general purpose structure
that can store any number of key/value pairs. To maintain this property, we must
allow the hash table to expand as needed. Thus, we can start with a relatively
small table (M = 7) and allow it to expand as needed by rehashing each time the
load factor is exceeded. The next question we need to answer is what load factor
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should we use? As we saw earlier, a load factor between 1/2 and 2/3 provides good
performance in the average case. For our implementation we are going to use a
load factor of 2/3.

Listing 11.1 The hashmap.py module.

1 # Implementation of the Map ADT using closed hashing and a probe with
2 # double hashing.
3 from arrays import Array
4
5 class HashMap :
6 # Defines constants to represent the status of each table entry.
7 UNUSED = None
8 EMPTY = _MapEntry( None, None )
9

10 # Creates an empty map instance.
11 def __init__( self ):
12 self._table = Array( 7 )
13 self._count = 0
14 self._maxCount = len(self._table) - len(self._table) // 3
15
16 # Returns the number of entries in the map.
17 def __len__( self ):
18 return self._count
19
20 # Determines if the map contains the given key.
21 def __contains__( self, key ):
22 slot = self._findSlot( key, False )
23 return slot is not None
24
25 # Adds a new entry to the map if the key does not exist. Otherwise, the
26 # new value replaces the current value associated with the key.
27 def add( self, key, value ):
28 if key in self :
29 slot = self._findSlot( key, False )
30 self._table[slot].value = value
31 return False
32 else :
33 slot = self._findSlot( key, True )
34 self._table[slot] = _MapEntry( key, value )
35 self._count += 1
36 if self._count == self._maxCount :
37 self._rehash()
38 return True
39
40 # Returns the value associated with the key.
41 def valueOf( self, key ):
42 slot = self._findSlot( key, False )
43 assert slot is not None, "Invalid map key."
44 return self._table[slot].value
45
46 # Removes the entry associated with the key.
47 def remove( self, key ):
48 ......
49
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50 # Returns an iterator for traversing the keys in the map.
51 def __iter__( self ):
52 ......
53
54 # Finds the slot containing the key or where the key can be added.
55 # forInsert indicates if the search is for an insertion, which locates
56 # the slot into which the new key can be added.
57 def _findSlot( self, key, forInsert ):
58 # Compute the home slot and the step size.
59 slot = self._hash1( key )
60 step = self._hash2( key )
61
62 # Probe for the key.
63 M = len(self._table)
64 while self._table[slot] is not UNUSED :
65 if forInsert and \
66 (self._table[slot] is UNUSED or self._table[slot] is EMPTY) :
67 return slot
68 elif not forInsert and \
69 (self._table[slot] is not EMPTY and self._table[slot].key == key) :
70 return slot
71 else :
72 slot = (slot + step) % M
73
74 # Rebuilds the hash table.
75 def _rehash( self ) :
76 # Create a new larger table.
77 origTable = self._table
78 newSize = len(self._table) * 2 + 1
79 self._table = Array( newSize )
80
81 # Modify the size attributes.
82 self._count = 0
83 self._maxCount = newSize - newSize // 3
84
85 # Add the keys from the original array to the new table.
86 for entry in origTable :
87 if entry is not UNUSED and entry is not EMPTY :
88 slot = self._findSlot( key, True )
89 self._table[slot] = entry
90 self._count += 1
91
92 # The main hash function for mapping keys to table entries.
93 def _hash1( self, key ):
94 return abs( hash(key) ) % len(self._table)
95
96 # The second hash function used with double hashing probes.
97 def _hash2( self, key ):
98 return 1 + abs( hash(key) ) % (len(self._table) - 2)
99

100 # Storage class for holding the key/value pairs.
101 class _MapEntry :
102 def __init__( self, key, value ):
103 self.key = key
104 self.value = value
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In the constructor (lines 11–14), we create three attributes: table stores the
array used for the hash table, count indicates the number of keys currently stored
in the table, and maxCount indicates the maximum number of keys that can be
stored in the table before exceeding the load factor. Instead of using floating-
point operations to determine if the load factor has been exceeded, we can store
the maximum number of keys needed to reach that point. Each time the table is
expanded, a new value of maxCount is computed. For the initial table size of 7,
this value will be 5.

The key/value entries can be stored in the table using the same storage class
MapEntry as used in our earlier implementation. But we also need a way to

flag an entry as having been previously used by a key but has now been deleted.
The easiest way to do this is with the use of a dummy MapEntry object. When
a key is deleted, we simply store an alias of the dummy object reference in the
corresponding table entry. For easier readability of the source code, we create two
named constants in lines 7–8 to indicate the two special states for the table entries:
an UNUSED entry, which is indicated by a null reference, is one that has not yet been
used to store a key; and an EMPTY entry is one that had previously stored a key
but has now been deleted. The third possible state of an entry, which is easily
determined if the entry is not one of the other two states, is one that is currently
occupied by a key.

Hash Functions

Our implementation will need two hash functions: the main function for mapping
the key to a home position and the function used with the double hashing. For
both functions, we are going to use the simple division method in which the key
value is divided by the size of the table and the remainder becomes the index to
which the key maps. The division hash functions defined earlier in the chapter
assumed the search key is an integer value. But the HashMap ADT allows for
the storage of any type of search key, which includes strings, floating-point values,
and even user-defined types. To accommodate keys of various data types, we can
use Python’s built-in hash() function, which is automatically defined for all of the
built-in types. It hashes the given key and returns an integer value that can be used
in the division method. But the value returned by the Python’s hash() function
can be any integer, not just positive values or those within a given range. We can
still use the function and simply take its absolute value and then divide it by the
size of the table. The main hash function for our implementation is defined as:

h(key) = |hash(key)| % M

while the second function for use with double hashing is defined as:

hp(key) = 1 + |hash(key)| % (M − 2)

The size of our hash table will always be an odd number, so we subtract 2 from the
size of the table in the second function to ensure the division is by an odd number.
The two hash functions are implemented in lines 93–98 of Listing 11.1.
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To use objects of a user-defined class as keys in the dictionary, the class must
implement both the hash and eq methods. The hash method should
hash the contents of the object and return an integer that can be used by either
of our two hash functions, h() and hp(). The eq is needed for the equality
comparison in line 69 of Listing 11.1, which determines if the key stored in the
given slot is the target key.

Searching

As we have seen, a search has to be performed no matter which hash table operation
we use. To aide in the search, we create the findSlot() helper method as shown
in lines 57–72. Searching the table to determine if a key is simply contained in
the table and searching for a key to be deleted require the same sequence of steps.
After mapping the key to its home position, we determine if the key was found at
this location or if a probe has to be performed. When probing, we step through
the keys using the step size returned by the second hash function. The probe
continues until the key has been located or we encounter an unused slot (contains
a null reference). The search used to locate a slot for the insertion of a new key,
however, has one major difference. The probe must also terminate if we encounter
a table entry marked as empty from a previously deleted key since a new key can
be stored in such an entry.

This minor difference between the two types of searches is handled by the
forInsert argument. When True, a search is performed for the location where
a new key can be inserted and the index of that location is returned. When the
argument is False, a normal search is performed and either the index of the entry
containing the key is returned or None is returned when the key is not in the table.
When used in the contains and valueOf() methods, the findSlot() method
is called with a value of False for the forInsert argument.

Insertions

The add() method also uses the findSlot() helper method. In fact, it’s called
twice. First, we determine if the key is in the table that indirectly calls the
contains method. If the key is in the table, we have to locate the key through

a normal search and modify its corresponding value. On the other, if the key is not
in the table, findSlot is called with a value of True passed to the forInsert
argument to locate the next available slot. Finally, if the key is new and has to
be added to the table, we check the count and determine if it exceeds the load
factor, in which case the table has to be rehashed. The remove operation and the
implementation of an iterator for use with this new version of the Map ADT are
left as exercises.

Rehashing

The rehash operation is shown in lines 75–90 of Listing 11.1. The first step is to
create a new larger array. For simplicity, the new size is computed to be M ∗2 + 1,
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which ensures an odd value. A more efficient solution would ensure the new size
is always a prime number by searching for the next prime number larger than
M ∗ 2 + 1.

The original array is saved in a temporary variable and the new array is assigned
to the table attribute. The reason for assigning the new array to the attribute
at this time is that we will need to use the findSlot() method to add the keys
to the new array and that method works off the table attribute. The count and
maxCount are also reset. The value of maxCount is set to be approximately two-
thirds the size of the new table using the expression shown in line 83 of Listing 11.1.

Finally, the key/value pairs are added to the new array, one at a time. Instead
of using the add() method, which first verifies the key is new, we perform the
insertion of each directly within the for loop.

11.6 Application: Histograms
Graphical displays or charts of tabulated frequencies are very common in statistics.
These charts, known as histograms, are used to show the distribution of data
across discrete categories. A histogram consists of a collection of categories and
counters. The number and types of categories can vary depending on the problem.
The counters are used to accumulate the number of occurrences of values within
each category for a given data collection. Consider the example histogram in
Figure 11.16. The five letter grades are the categories and the heights of the bars
represent the value of the counters.
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Figure 11.16: Sample histogram for a distribution of grades.

11.6.1 The Histogram Abstract Data Type
We can define an abstract data type for collecting and storing the frequency counts
used in constructing a histogram. An ideal ADT would allow for building a general
purpose histogram that can contain many different categories and be used with
many different problems.
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Define Histogram ADT

A histogram is a container that can be used to collect and store discrete frequency
counts across multiple categories representing a distribution of data. The category
objects must be comparable.

� Histogram( catSeq ): Creates a new histogram containing the categories pro-
vided in the given sequence, catSeq. The frequency counts of the categories
are initialized to zero.

� getCount( category ): Returns the frequency count for the given category,
which must be valid.

� incCount( category ): Increments the count by 1 for the given category. The
supplied category must be valid.

� totalCount(): Returns a sum of the frequency counts for all of the categories.

� iterator (): Creates and returns an iterator for traversing over the histogram
categories.

Building a Histogram

The program in Listing 11.2 produces a text-based version of the histogram from
Figure 11.16 and illustrates the use of the Histogram ADT. The program extracts
a collection of numeric grades from a text file and assigns a letter grade to each
value based on the common 10-point scale: A: 100 – 90, B: 89 – 80, C: 79 – 70,
D: 69 – 60, F: 59 – 0. The frequency counts of the letter grades are tabulated and
then used to produce a histogram.

Listing 11.2 The buildhist.py program.

1 # Prints a histogram for a distribution of letter grades computed
2 # from a collection of numeric grades extracted from a text file.
3
4 from maphist import Histogram
5
6 def main():
7 # Create a Histogram instance for computing the frequencies.
8 gradeHist = Histogram( "ABCDF" )
9

10 # Open the text file containing the grades.
11 gradeFile = open('cs101grades.txt', "r")
12
13 # Extract the grades and increment the appropriate counter.
14 for line in gradeFile :
15 grade = int(line)
16 gradeHist.incCount( letterGrade(grade) )
17

(Listing Continued)
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Listing 11.2 Continued . . .

18 # Print the histogram chart.
19 printChart( gradeHist )
20
21 # Determines the letter grade for the given numeric value.
22 def letterGrade( grade ):
23 if grade >= 90 :
24 return 'A'
25 elif grade >= 80 :
26 return 'B'
27 elif grade >= 70 :
28 return 'C'
29 elif grade >= 60 :
30 return 'D'
31 else :
32 return 'F'
33
34 # Prints the histogram as a horizontal bar chart.
35 def printChart( gradeHist ):
36 print( " Grade Distribution" )
37 # Print the body of the chart.
38 letterGrades = ( 'A', 'B', 'C', 'D', 'F' )
39 for letter in letterGrades :
40 print( " |" )
41 print( letter + " +", end = "" )
42 freq = gradeHist.getCount( letter )
43 print( '*' * freq )
44
45 # Print the x-axis.
46 print( " |" )
47 print( " +----+----+----+----+----+----+----+----" )
48 print( " 0 5 10 15 20 25 30 35" )
49
50 # Calls the main routine.
51 main()

The buildhist.py program consists of three functions. The main() function
drives the program, which extracts the numeric grades and builds an instance of
the Histogram ADT. It initializes the histogram to contain the five letter grades
as its categories. The letterGrade() function is a helper function, which simply
returns the letter grade for the given numeric value. The printChart() function
prints the text-based histogram using the frequency counts computed in the main
routine. Assuming the following grades are extracted from the text file:

77 89 53 95 68 86 91 89 60 70 80 77 73 73 93 85 83 67 75 71 94 64
79 97 59 69 61 80 73 70 82 86 70 45 100

the buildhist.py program would produce the following text-based histogram:
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Grade Distribution
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Implementation

To implement the Histogram ADT, we must select an appropriate data structure
for storing the categories and corresponding frequency counts. There are several
different structures and approaches that can be used, but the Map ADT provides
an ideal solution since it already stores key/value mappings and allows for a full
implementation of the Histogram ADT. To use a map, the categories can be stored
in the key part of the key/value pairs and a counter (integer value) can be stored
in the value part. When a category counter is incremented, the entry is located
by its key and the corresponding value can be incremented and stored back into
the entry. The implementation of the Histogram ADT using an instance of the
hash table version of the Map ADT as the underlying structure is provided in
Listing 11.3.

Listing 11.3 The maphist.py module.

1 # Implementation of the Histogram ADT using a Hash Map.
2
3 from hashmap import HashMap
4
5 class Histogram :
6 # Creates a histogram containing the given categories.
7 def __init__( self, catSeq ):
8 self._freqCounts = HashMap()
9 for cat in catSeq :

10 self._freqCounts.add( cat, 0 )
11
12 # Returns the frequency count for the given category.
13 def getCount( self, category ):
14 assert category in self._freqCounts, "Invalid histogram category."
15 return self._freqCounts.valueOf( category )
16

(Listing Continued)
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Listing 11.3 Continued . . .

17 # Increments the counter for the given category.
18 def incCount( self, category ):
19 assert category in self._freqCounts, "Invalid histogram category."
20 value = self._freqCounts.valueOf( category )
21 self._freqCounts.add( category, value + 1 )
22
23 # Returns the sum of the frequency counts.
24 def totalCount( self ):
25 total = 0
26 for cat in self._freqCounts :
27 total += self._freqCounts.valueOf( cat )
28 return total
29
30 # Returns an iterator for traversing the categories.
31 def __iter__( self ):
32 return iter( self._freqCounts )

The iterator operation defined by the ADT is implemented in lines 31–32. In
Section 1.4.1, we indicated the iterator method is supposed to create and return
an iterator object that can be used with the given collection. Since the Map ADT
already provides an iterator for traversing over the keys, we can have Python access
and return that iterator as if we had created our own. This is done using the iter()

function, as shown in our implementation of the iter method in lines 31–32.

11.6.2 The Color Histogram
A histogram is used to tabulate the frequencies of multiple discrete categories.
The Histogram ADT from the previous section works well when the collection of
categories is small. Some applications, however, may deal with millions of distinct
categories, none of which are known up front, and require a specialized version
of the histogram. One such example is the color histogram , which is used to
tabulate the frequency counts of individual colors within a digital image. Color
histograms are used in areas of image processing and digital photography for image
classification, object identification, and image manipulation.

Color histograms can be constructed for any color space, but we limit our
discussion to the more common discrete RGB color space. In the RGB color
space, individual colors are specified by intensity values for the three primary
colors: red, green, and blue. This color space is commonly used in computer
applications and computer graphics because it is very convenient for modeling the
human visual system. The intensity values in the RGB color space, also referred
to as color components, can be specified using either real values in the range
[0 . . . 1] or discrete values in the range [0 . . . 255]. The discrete version is the most
commonly used for the storage of digital images, especially those produced by
digital cameras and scanners. With discrete values for the three color components,
more than 16.7 million colors can be represented, far more than humans are capable
of distinguishing. A value of 0 indicates no intensity for the given component while
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255 indicates full intensity. Thus, white is represented with all three components
set to 255, while black is represented with all three components set to 0.

We can define an abstract data type for a color histogram that closely follows
that of the general histogram:

Define Color Histogram ADT

A color histogram is a container that can be used to collect and store frequency
counts for multiple discrete RGB colors.

� ColorHistogram(): Creates a new empty color histogram.

� getCount( red, green, blue ): Returns the frequency count for the given
RGB color, which must be valid.

� incCount( red, green, blue ): Increments the count by 1 for the given RGB
color if the color was previously added to the histogram or the color is added
to the histogram as a new entry with a count of 1.

� totalCount(): Returns a sum of the frequency counts for all colors in the
histogram.

� iterator (): Creates and returns an iterator for traversing over the colors in
the color histogram.

There are a number of ways we can construct a color histogram, but we need
a fast and memory-efficient approach. The easiest approach would be to use a
three-dimensional array of size 256 × 256 × 256, where each element of the array
represents a single color. This approach, however, is far too costly. It would
require 2563 array elements, most of which would go unused. On the other hand,
the advantage of using an array is that accessing and updating a particular color
is direct and requires no costly operations.

Other options include the use of a Python list or a linked list. But these would
be inefficient when working with images containing millions of colors. In this
chapter, we’ve seen that hashing can be a very efficient technique when used with
a good hash function. For the color histogram, closed hashing would not be an
ideal choice since it may require multiple rehashes involving hundreds of thousands,
if not millions, of colors. Separate chaining can be used with good results, but it
requires the design of a good hash function and the selection of an appropriately
sized hash table.

A different approach can be used that combines the advantages of the direct
access of the 3-D array and the limited memory use and fast searches possible with
hashing and separate chaining. Instead of using a 1-D array to store the separate
chains, we can use a 2-D array of size 256 × 256. The colors can be mapped to
a specific chain by having the rows correspond to the red color component and
the columns correspond to the green color component. Thus, all colors having the
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same red and green components will be stored in the same chain, with only the
blue components differing. Figure 11.17 illustrates this 2-D array of linked lists.
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Figure 11.17: A 2-D array of linked lists used to store color counts in a color histogram.

Given a digital image consisting of n distinct pixels, all of which may contain
unique colors, the histogram can be constructed in linear time. This time is derived
from the fact that searching for the existence of a color can be done in constant
time. Locating the specific 2-D array entry in which the color should be stored
is a direct mapping to the corresponding array indices. Determining if the given
color is contained in the corresponding linked list requires a linear search over the
entire list. Since all of the nodes in the linked list store colors containing the same
red and green components, they only differ in their blue components. Given that
there are only 256 different blue component values, the list can never contain more
than 256 entries. Thus, the length of the linked list is independent of the number
of pixels in the image. This results in a worst case time of O(1) to search for the
existence of a color in the histogram in order to increment its count or to add a
new color to the histogram. A search is required for each of the n distinct image
pixels, resulting in a total time O(n) in the worst case.

After the histogram is constructed, a traversal over the unique colors contained
in the histogram is commonly performed. We could traverse over the entire 2-D
array, one element at a time, and then traverse the linked list referenced from the
individual elements. But this can be time consuming since in practice, many of the
elements will not contain any colors. Instead, we can maintain a single separate
linked list that contains the individual nodes from the various hash chains, as
illustrated in Figure 11.18. When a new color is added to the histogram, a node is
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created and stored in the corresponding chain. If we were to include a second link
within the same nodes used in the chains to store the colors and color counts, we
can then easily add each node to a separate linked list. This list can then be used
to provide a complete traversal over the entries in the histogram without wasting
time in visiting the empty elements of the 2-D array. The implementation of the
color histogram is left as an exercise.
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Figure 11.18: The individual chain nodes are linked together for faster traversals.

Exercises
11.1 Assume an initially empty hash table with 11 entries in which the hash func-

tion uses the division method. Show the contents of the hash table after the
following keys are inserted (in the order listed), assuming the indicated type
of probe is used: 67, 815, 45, 39, 2, 901, 34.

(a) linear probe (with c = 1)

(b) linear probe (with c = 3)

(c) quadratic probe

(d) double hashing [with hp(key) = (key ∗ 3) % 7]

(e) separate chaining
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11.2 Do the same as in Exercise 11.1 but use the following hash function to map
the keys to the table entries:

h(key) = (2 ∗ key + 3) % 11

11.3 Show the contents of the hash table from Exercise 11.1 after rehashing with a
new table containing 19 entries.

11.4 Consider a hash table of size 501 that contains 85 keys.

(a) What is the load factor?
(b) What is the average number of comparisons required to determine if the

collection contains the key 73, if:
i. linear probing is used
ii. quadratic probing is used

iii. separate chaining is used

11.5 Do the same as in Exercise 11.4 but for a hash table of size 2031 that contains
999 keys.

11.6 Show why the table size must be a prime number in order for double hashing
to visit every entry during the probe.

11.7 Design a hash function that can be used to map the two-character state abbre-
viations (including the one for the District of Columbia) to entries in a hash
table that results in no more than three collisions when used with a table
where M < 100.

Programming Projects
11.1 Implement the remove operation for the HashMap ADT.

11.2 Design and implement an iterator for use with the implementation of the
HashMap ADT.

11.3 Modify the implementation of the HashMap ADT to:

(a) Use linear probing instead of double hashing
(b) Use quadratic probing instead of double hashing
(c) Use separate chaining instead of closed hashing

11.4 Design and implement a program that compares the use of linear probing,
quadratic probing, and double hashing on a collection of string keys of varying
lengths. The program should extract a collection of strings from a text file and
compute the average number of collisions and the average number of probes.

11.5 Implement the Color Histogram ADT using the 2-D array of chains as de-
scribed in the chapter.



CHAPTER 12
Advanced Sorting

We introduced the sorting problem in Chapter 5 and explored three basic sorting
algorithms, but there are many others. Most sorting algorithms can be divided
into two categories: comparison sorts and distribution sorts. In a comparison
sort , the data items can be arranged in either ascending (from smallest to largest)
or descending (from largest to smallest) order by performing pairwise logical com-
parisons between the sort keys. The pairwise comparisons are typically based on
either numerical order when working with integers and reals or lexicographical or-
der when working with strings and sequences. A distribution sort , on the other
hand, distributes or divides the sort keys into intermediate groups or collections
based on the individual key values. For example, consider the problem of sorting a
list of numerical grades based on their equivalent letter grade instead of the actual
numerical value. The grades can be divided into groups based on the corresponding
letter grade without having to make comparisons between the numerical values.

The sorting algorithms described in Chapter 5 used nested iterative loops to sort
a sequence of values. In this chapter, we explore two additional comparison sort
algorithms, both of which use recursion and apply a divide and conquer strategy
to sort sequences. Many of the comparison sorts can also be applied to linked lists,
which we explore along with one of the more common distribution sorts.

12.1 Merge Sort

The merge sort algorithm uses the divide and conquer strategy to sort the keys
stored in a mutable sequence. The sequence of values is recursively divided into
smaller and smaller subsequences until each value is contained within its own sub-
sequences. The subsequences are then merged back together to create a sorted
sequence. For illustration purposes, we assume the mutable sequence is a list.

339
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12.1.1 Algorithm Description
The algorithm starts by splitting the original list of values in the middle to create
two sublists, each containing approximately the same number of values. Consider
the list of integer values at the top of Figure 12.1. This list is first split following
the element containing value 18. These two sublists are then split in a similar
fashion to create four sublists and those four are split to create eight sublists.

1010 2323 5151 1818 44 3131 1313 55

1010 2323 5151 1818 44 3131 1313 55

3131441818515123231010

1010 2323

551313

5151 1818 44 3131 1313 55

Figure 12.1: Recursively splitting a list until each element is contained within its own list.

After the list has been fully subdivided into individual sublists, the sublists are
then merged back together, two at a time, to create a new sorted list. These sorted
lists are themselves merged to create larger and larger lists until a single sorted
list has been constructed. During the merging phase, each pair of sorted sublists
are merged to create a new sorted list containing all of the elements from both
sublists. This process is illustrated in Figure 12.2.

12.1.2 Basic Implementation
Given a basic description of the merge sort algorithm from an abstract view, we
now turn our attention to the implementation details. There are two major steps
in the merge sort algorithm: dividing the list of values into smaller and smaller
sublists and merging the sublists back together to create a sorted list. The use of
recursion provides a simple solution to this problem. The list can be subdivided
by each recursive call and then merged back together as the recursion unwinds.

Listing 12.1 illustrates a simple recursive function for use with a Python list.
If the supplied list contains a single item, it is by definition sorted and the list
is simply returned, which is the base case of the recursive definition. If the list
contains multiple items, it has to be split to create two sublists of approximately
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3131441818515123231010 551313

1010 2323 1818 5151 44 3131 55 1313

44 55 1010 1313 1818 2323 3131 5151

1010 1818 2323 5151 44 55 1313 3131

Figure 12.2: The sublists are merged back together to create a sorted list.

equal size. The split is handled by first computing the midpoint of the list and then
using the slice operation to create two new sublists. The left sublist is then passed
to a recursive call of the pythonMergeSort() function. That portion of the list
will be processed recursively until it is completely sorted and returned. The right
half of the list is then processed in a similar fashion. After both the left and right
sublists have been ordered, the two lists are merged using the mergeSortedLists()
function from Section 5.3.2. The new sorted list is returned.

Listing 12.1 Implementation of the merge sort algorithm for use with Python lists.

1 # Sorts a Python list in ascending order using the merge sort algorithm.
2 def pythonMergeSort( theList ):
3 # Check the base case - the list contains a single item.
4 if len(theList) <= 1 :
5 return theList
6 else :
7 # Compute the midpoint.
8 mid = len(theList) // 2
9

10 # Split the list and perform the recursive step.
11 leftHalf = pythonMergeSort( theList[ :mid ] )
12 rightHalf = pythonMergeSort( theList[ mid: ] )
13
14 #Merge the two ordered sublists.
15 newList = mergeOrderedLists( leftHalf, rightHalf )
16 return newList

The pythonMergeSort() function provides a simple recursive implementation
of the merge sort algorithm, but it has several disadvantages. First, it relies on
the use of the slice operation, which prevents us from using the function to sort an
array of values since the array structure does not provide a slice operation. Second,
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new physical sublists are created in each recursive call as the list is subdivided. We
learned in Chapter 4 that the slice operation can be time consuming since a new
list has to be created and the contents of the slice copied from the original list. A
new list is also created each time two sublists are merged during the unwinding of
the recursion, adding yet more time to the overall process. Finally, the sorted list
is not contained within the same list originally passed to the function as was the
case with the sorting algorithms presented earlier in Chapter 5.

12.1.3 Improved Implementation
We can improve the implementation of the merge sort algorithm by using a tech-
nique similar to that employed with the binary search algorithm from Chapter 5.
Instead of physically creating sublists when the list is split, we can use index mark-
ers to specify a subsequence of elements to create virtual sublists within the original
physical list as was done with the binary search algorithm. Figure 12.3 shows the
corresponding index markers used to split the sample list from Figure 12.1. The
use of virtual sublists eliminates the need to repeatedly create new physical arrays
or Python list structures during each recursive call.

1010 2323 5151 1818 44 3131 1313 55

0 1 2 3 4 5 6 7

first mid last

1010 2323 5151 1818 44 3131 1313 55

0 1 2 3 4 5 6 7

firstL lastL firstR lastR

left sublist right sublist

Figure 12.3: Splitting a list of values into two virtual sublists.

The new implementation of the merge sort algorithm is provided in Listing 12.2.
The recMergeSort() function is very similar to the earlier implementation since
both require the same steps to implement the merge sort algorithm. The difference
is that recMergeSort() works with virtual sublists instead of using the slice oper-
ation to create actual sublists. This requires two index variables, first and last,
for indicating the range of elements within the physical sublist that comprise the
virtual sublist.

This implementation of the merge sort algorithm requires the use of a tempo-
rary array when merging the sorted virtual sublists. Instead of repeatedly creating
a new array and later deleting it each time sublists are merged, we can create a
single array and use it for every merge operation. Since this array is needed in-
side the mergeVirtualLists() function, it has to either be declared as a global
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Listing 12.2 Improved implementation of the merge sort algorithm.

1 # Sorts a virtual subsequence in ascending order using merge sort.
2
3 def recMergeSort( theSeq, first, last, tmpArray ):
4 # The elements that comprise the virtual subsequence are indicated
5 # by the range [first...last]. tmpArray is temporary storage used in
6 # the merging phase of the merge sort algorithm.
7
8 # Check the base case: the virtual sequence contains a single item.
9 if first == last :

10 return;
11 else :
12 # Compute the mid point.
13 mid = (first + last) // 2
14
15 # Split the sequence and perform the recursive step.
16 recMergeSort( theSeq, first, mid, tmpArray )
17 recMergeSort( theSeq, mid+1, last, tmpArray )
18
19 # Merge the two ordered subsequences.
20 mergeVirtualSeq( theSeq, first, mid+1, last+1, tmpArray )

variable or created and passed into the recursive function before the first call. Our
implementation uses the latter approach.

The mergeVirtualSeq() function, provided in Listing 12.3 on the next page,
is a modified version of mergeSortedLists() from Section 5.3.2. The original
function was used to create a new list that contained the elements resulting from
merging two sorted lists. This version is designed to work with two virtual mutable
subsequences that are stored adjacent to each other within the physical sequence
structure, theSeq. Since the two virtual subsequences are always adjacent within
the physical sequence, they can be specified by three array index variables: left,
the index of the first element in the left subsequence; right, the index of the first
element in the right subsequence; and end, the index of the first element following
the end of the right subsequence. A second difference in this version is how the
resulting merged sequence is returned. Instead of creating a new list structure,
the merged sequence is stored back into the physical structure within the elements
occupied by the two virtual subsequences.

The tmpArray argument provides a temporary array needed for intermediate
storage during the merging of the two subsequences. The array must be large
enough to hold all of the elements from both subsequences. This temporary stor-
age is needed since the resulting sorted sequence is not returned by the function but
instead is copied back to the original sequence structure. During the merging oper-
ation, the elements from the two subsequences are saved into the temporary array.
After being merged, the elements are copied from the temporary array back to the
original structure. We could create a new array each time the function is called,
which would then be deleted when the function terminates. But that requires addi-
tional overhead that is compounded by the many calls to the mergeVirtualSeq()
function during the execution of the recursive recMergeSort() function. To reduce
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Listing 12.3 Merging two ordered virtual sublists.

1 # Merges the two sorted virtual subsequences: [left..right) [right..end)
2 # using the tmpArray for intermediate storage.
3
4 def mergeVirtualSeq( theSeq, left, right, end, tmpArray ):
5 # Initialize two subsequence index variables.
6 a = left
7 b = right
8 # Initialize an index variable for the resulting merged array.
9 m = 0

10 # Merge the two sequences together until one is empty.
11 while a < right and b < end :
12 if theSeq[a] < theSeq[b] :
13 tmpArray[m] = theSeq[a]
14 a += 1
15 else :
16 tmpArray[m] = theSeq[b]
17 b += 1
18 m += 1
19
20 # If the left subsequence contains more items append them to tmpArray.
21 while a < right :
22 tmpArray[m] = theSeq[a]
23 a += 1
24 m += 1
25
26 # Or if right subsequence contains more, append them to tmpArray.
27 while b < end :
28 tmpArray[m] = theSeq[b]
29 b += 1
30 m += 1
31
32 # Copy the sorted subsequence back into the original sequence structure.
33 for i in range( end - left ) :
34 theSeq[i+left] = tmpArray[i]

this overhead, implementations of the the merge sort algorithm typically allocate
a single array that is of the same size as the original list and then simply pass the
array into the mergeVirtualSeq() function. The use of the temporary array is
illustrated in Figure 12.4 with the merging of the two subsequences lists formed
from the second half of the original sequence.

The implementation of the earlier sorting algorithms only required the user
to supply the array or list to be sorted. The recMergeSort() function, however,

N
O

TE

i Wrapper Functions. A wrapper function is a function that provides
a simpler and cleaner interface for another function and typically pro-

vides little or no additional functionality. Wrapper functions are commonly
used with recursive functions that require additional arguments since their
initial invocation may not be as natural as an equivalent sequential function.
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Figure 12.4: A temporary array is used to merge two virtual subsequences.

requires not only the sequence structure but also the index markers and a tempo-
rary array. These extra arguments may not be as intuitive to the user as simply
passing the sequence to be sorted. In addition, what happens if the user sup-
plies incorrect range values or the temporary array is not large enough to merge
the largest subsequence? A better approach is to provide a wrapper function for
recMergeSort() such as the one shown in Listing 12.4. The mergeSort() function
provides a simpler interface as it only requires the array or list to be sorted. The
wrapper function handles the creation of the temporary array needed by the merge
sort algorithm and initiates the first call to the recursive function.

Listing 12.4 A wrapper function for the new implementation of the merge sort algorithm.

1 # Sorts an array or list in ascending order using merge sort.
2 def mergeSort( theSeq ):
3 n = len( theSeq )
4 # Create a temporary array for use when merging subsequences.
5 tmpArray = Array( n )
6 # Call the private recursive merge sort function.
7 recMergeSort( theSeq, 0, n-1, tmpArray )

12.1.4 Efficiency Analysis
We provided two implementations for the merge sort algorithm: one that can only
be used with lists and employs the slice operation, and another that can be used
with arrays or lists but requires the use of a temporary array in merging virtual
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subsequences. Both implementations run in O(n log n) time. To see how we obtain
this result, assume an array of n elements is passed to recMergeSort() on the first
invocation of the recursive function. For simplicity, we can let n be a power of 2,
which results in subsequences of equal size each time a list is split.

As we saw in Chapter 10, the running time of a recursive function is computed
by evaluating the time required by each function invocation. This evaluation only
includes the time of the steps actually performed in the given function invocation.
The recursive steps are omitted since their times will be computed separately.

We can start by evaluating the time required for a single invocation of the
recMergeSort() function. Since each recursive call reduces the size of the problem,
we let m represent the number of keys in the subsequence passed to the current
instance of the function (n represents the size of the entire array). When the
function is executed, either the base case or the divide and conquer steps are
performed. The base case occurs when the supplied sequence contains a single item
(m = 1), which results in the function simply returning without having performed
any operations. This of course only requires O(1) time. The dividing step is
also a constant time operation since it only requires computing the midpoint to
determine where the virtual sequence will be split. The real work is done in the
conquering step by the mergeVirtualLists() function. This function requires
O(m) time in the worst case where m represents the total number of items in
both subsequences. The analysis for the merging operation follows that of the
mergeSortedLists() from Chapter 5 and is left as an exercise. Having determined
the time required of the various operations, we can conclude that a single invocation
of the recMergeSort() function requires O(m) time given a subsequence of m keys.

The next step is to determine the total time required to execute all invocations
of the recursive function. This analysis is best described using a recursive call tree.
Consider the call tree in Figure 12.5, which represents the merge sort algorithm
when applied to a sequence containing 16 keys. The values inside the function call
boxes show the size of the subsequence passed to the function for that invocation.
Since we know a single invocation of the recMergeSort() function requires O(m)
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Figure 12.5: Recursive call tree for the merge sort algorithm for n = 16.



12.2 Quick Sort 347

time, we can determine the time required for each instance of the function based
on the size of the subsequence processed by that instance.

To obtain the total running time of the merge sort algorithm, we need to
compute the sum of the individual times. In our sample call tree, where n = 16, the
first recursive call processes the entire key list. This instance makes two recursive
calls, each processing half (n

2 ) of the original key sequence, as shown on the second
level of the call tree. The two function instances at the second level of the call tree
each make two recursive calls, all of which process one-fourth (n

4 ) of the original
key sequence. These recursive calls continue until the subsequence contains a single
key value, as illustrated in the recursive call tree.

While each invocation of the function, other than the initial call, only processes
a portion of the original key sequence, all n keys are processed at each level. If
we can determine how many levels there are in the recursive call tree, we can
multiply this value by the number of keys to obtain the final run time. When n
is a power of 2, the merge sort algorithm requires log n levels of recursion. Thus,
the merge sort algorithm requires O(n log n) time since there are log n levels and
each level requires n time. The final analysis is illustrated graphically by the more
general recursive call tree provided in Figure 12.6. When n is not a power of 2,
the only difference in the analysis is that the lowest level in the call tree will not
be completely full, but the call tree will still contain at most dlog ne levels.

n/4n/4

n/2n/2

log n

n

n

n

nn

n/2n/2

n/4n/4 n/4n/4 n/4n/4

●
●
●

number of levels time per level

●
●
●

total time: n log n

Figure 12.6: Time analysis of the merge sort algorithm.

12.2 Quick Sort
The quick sort algorithm also uses the divide and conquer strategy. But un-
like the merge sort, which splits the sequence of keys at the midpoint, the quick
sort partitions the sequence by dividing it into two segments based on a selected
pivot key . In addition, the quick sort can be implemented to work with virtual
subsequences without the need for temporary storage.
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12.2.1 Algorithm Description
The quick sort is a simple recursive algorithm that can be used to sort keys stored
in either an array or list. Given the sequence, it performs the following steps:

1. The first key is selected as the pivot, p. The pivot value is used to partition the
sequence into two segments or subsequences, L and G, such that L contains
all keys less than the p and G contains all keys greater than or equal to p.

2. The algorithm is then applied recursively to both L and G. The recursion con-
tinues until the base case is reached, which occurs when the sequence contains
fewer than two keys.

3. The two segments and the pivot value are merged to produce a sorted sequence.
This is accomplished by copying the keys from segment L back into the original
sequence, followed by the pivot value and then the keys from segment G. After
this step, the pivot key will end up in its proper position within the sorted
sequence.

An abstract view of the partitioning step, in which much of the actual work
is done, is illustrated in Figure 12.7. You will notice the size of the segments will
vary depending on the value of the pivot. In some instances, one segment may not
contain any elements. It depends on the pivot value and the relationship between
that value and the other keys in the sequence. When the recursive calls return, the
segments and pivot value are merged to produce a sorted sequence. This process
is illustrated in Figure 12.8.

1010
44 55 2323 5151 1818 3131 1313

1010 2323 5151 1818 44 3131 55 1313

44
55

2323
1818 1313 5151 3131

1818
1313

5151
3131

Figure 12.7: An abstract view showing how quick sort partitions the sequence into seg-
ments based on the pivot value (shown with a gray background).
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1818
1313

5151
3131

Figure 12.8: An abstract showing how quick sort merges the sorted segments and pivot
value back into the original sequence.

12.2.2 Implementation
A simple implementation using the slice operation can be devised for the quick
sort algorithm as was done with the merge sort but it would require the use of
temporary storage. An efficient solution can be designed to work with virtual
subsequences or segments that does not require temporary storage. However, it
is not as easily implemented since the partitioning must be done using the same
sequence structure.

A Python implementation of the quick sort algorithm is provided in Listing 12.5.
The quickSort() function is a simple wrapper that is used to initiate the recur-
sive call to recQuickSort(). The recursive function is rather simple and follows
the enumerated steps described earlier. Note that first and last indicate the
elements in the range [first . . . last] that comprise the current virtual segment.

The partitioning step is handled by the partitionSeq() function. This func-
tion rearranges the keys within the physical sequence structure by correctly posi-
tioning the pivot key within the sequence and placing all keys that are less than
the pivot to the left and all keys that are greater to the right as shown here:

1010 > pivot< pivot

pos

first last

The final position of the pivot value also indicates the position at which the
sequence is split to create the two segments. The left segment consists of the ele-
ments between the first element and the pos - 1 element while the right segment
consists of the elements between pos + 1 and last, inclusive. The virtual segments
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Listing 12.5 Implementation of the quick sort algorithm.

1 # Sorts an array or list using the recursive quick sort algorithm.
2 def quickSort( theSeq ):
3 n = len( theSeq )
4 recQuickSort( theSeq, 0, n-1 )
5
6 # The recursive implementation using virtual segments.
7 def recQuickSort( theSeq, first, last ):
8 # Check the base case.
9 if first >= last :

10 return
11 else :
12 # Save the pivot value.
13 pivot = theSeq[first]
14
15 # Partition the sequence and obtain the pivot position.
16 pos = partitionSeq( theSeq, first, last )
17
18 # Repeat the process on the two subsequences.
19 recQuickSort( theSeq, first, pos - 1 )
20 recQuickSort( theSeq, pos + 1, last )
21
22 # Partitions the subsequence using the first key as the pivot.
23 def partitionSeq( theSeq, first, last ):
24 # Save a copy of the pivot value.
25 pivot = theSeq[first]
26
27 # Find the pivot position and move the elements around the pivot.
28 left = first + 1
29 right = last
30 while left <= right :
31 # Find the first key larger than the pivot.
32 while left < right and theSeq[left] < pivot :
33 left += 1
34
35 # Find the last key in the sequence that is smaller than the pivot.
36 while right >= left and theSeq[right] >= pivot :
37 right -= 1
38
39 # Swap the two keys if we have not completed this partition.
40 if left < right :
41 tmp = theSeq[left]
42 theSeq[left] = theSeq[right]
43 theSeq[right] = tmp
44
45 # Put the pivot in the proper position.
46 if right != first :
47 theSeq[first] = theSeq[right]
48 theSeq[right] = pivot
49
50 # Return the index position of the pivot value.
51 return right
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are passed to the recursive calls in lines 19 and 20 of Listing 12.5 using the proper
index ranges.

After the recursive calls, the recQuickSort() function returns. In the earlier
description, the sorted segments and pivot value had to be merged and stored back
into the original sequence. But since we are using virtual segments, the keys are
already stored in their proper position upon the return of the two recursive calls.

To help visualize the operation of the partitionSeq() function, we step through
the first complete partitioning of the sample sequence. The function begins by sav-
ing a copy of the pivot value for easy reference and then initializes the two index
markers, left and right. The left marker is initialized to the first position fol-
lowing the pivot value while the right marker is set to the last position within
the virtual segment. The two markers are used to identify the range of elements
within the sequence that will comprise the left and right segments.

first last

1010 2323 5151 1818 44 3131 55 1313

left right

The main loop is executed until one of the two markers crosses the other as
they are shifted in opposite directions. The left marker is shifted to the right by
the loop in lines 32 and 33 of Listing 12.5 until a key value larger than the pivot is
found or the left marker crosses the right marker. Since the left marker starts
at a key larger than the pivot, the body of the outer loop is not executed if theSeq
is empty.

1010 2323 5151 1818 44 3131 55 1313

left right

After the left marker is positioned, the right marker is then shifted to the
left by the loop in lines 36 and 37. The marker is shifted until a key value less
than or equal to the pivot is located or the marker crosses the left marker. The
test for less than or equal allows for the correct sorting of duplicate keys. In our
example, the right marker will be shifted to the position of the 5.

1010 2323 5151 1818 44 3131 55 1313

left right

The two keys located at the positions marked by left and right are then
swapped, which will place them within the proper segment once the location of the
pivot is found.

1010 2323 5151 1818 44 3131 55 1313

left right
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After the two keys are swapped, the two markers are again shifted starting
where they left off:

1010 55 5151 1818 44 3131 2323 1313

left right

The left marker will be shifted to key value 51 and the right marker to value 4.

1010 55 5151 1818 44 3131 2323 1313

left right

1010 55 5151 1818 44 3131 2323 1313

left right

Once the two markers are shifted, the corresponding keys are swapped:

1010 55 5151 1818 44 3131 2323 1313

left right

and the process is repeated. This time, the left marker will stop at value 18 while
the right marker will stop at value 4.

1010 55 44 1818 5151 3131 2323 1313

left right

1010 55 44 1818 5151 3131 2323 1313

leftright

Note that the right marker has crossed the left such that right < left, re-
sulting in the termination of the outer while loop. When the two markers cross,
the right marker indicates the final position of the pivot value in the resulting
sorted list. Thus, the pivot value currently located in the first element and the
element marked by right have to be swapped:

1010 55 44 1818 5151 3131 2323 1313

resulting in value 10 being placed in element number 3, the final sorted position of
the pivot within the original sequence:
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44 55 1010 1818 5151 3131 2323 1313

pos

The if statement at line 46 of Listing 12.5 is included to prevent a swap from
occurring when the right marker is at the same position as the pivot value. This
situation will occur when there are no keys in the list that are smaller than the
pivot. Finally, the function returns the pivot position for use in splitting the
sequence into the two segments.

We are not limited to selecting the first key within the list as the pivot, but it
is the easiest to implement. We could have chosen the last key instead. But, in
practice, using the first or last key as the pivot is a poor choice especially when
a subsequence is already sorted that results in one of the segments being empty.
Choosing a key near the middle is a better choice that can be implemented with
a few modifications to the code provided. We leave these modifications as an
exercise.

12.2.3 Efficiency Analysis
The quick sort algorithm has an average or expected time of O(n log n) but runs in
O(n2) in the worst case, the analysis of which is left as an exercise. Even though
quick sort is quadratic in the worst case, it does approach the average case in many
instances and has the advantage of not requiring additional temporary storage as
is the case with the merge sort. The quick sort is the commonly used algorithm to
implement sorting in language libraries. Earlier versions of Python used quick sort
to implement the sort() method of the list structure. In the current version of
Python, a hybrid algorithm that combines the insertion and merge sort algorithms
is used instead.

12.3 How Fast Can We Sort?
The comparison sort algorithms achieve their goal by comparing the individual
sort keys to other keys in the list. We have reviewed five sorting algorithms in this
chapter and Chapter 5. The first three—bubble, selection, and insertion—have a
worst case time of O(n2) while the merge sort has a worst case time of O(n log n).
The quick sort, the more commonly used algorithm in language libraries, is O(n2)
in the worst case but it has an expected or average time of O(n log n). The natural
question is can we do better than O(n log n)? For a comparison sort, the answer is
no. It can be shown, with the use of a decision tree and examining the permutations
of all possible comparisons among the sort keys, that the worst case time for a
comparison sort can be no better than O(n log n).

This does not mean, however, that the sorting operation cannot be done faster
than O(n log n). It simply means that we cannot achieve this with a comparison
sort. In the next section, we examine a distribution sort algorithm that works in
linear time. Distribution sort algorithms use techniques other than comparisons
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among the keys themselves to sort the sequence of keys. While these distribution
algorithms are fast, they are not general purpose sorting algorithms. In other
words, they cannot be applied to just any sequence of keys. Typically, these
algorithms are used when the keys have certain characteristics and for specific
types of applications.

12.4 Radix Sort
Radix sort is a fast distribution sorting algorithm that orders keys by examining
the individual components of the keys instead of comparing the keys themselves.
For example, when sorting integer keys, the individual digits of the keys are com-
pared from least significant to most significant. This is a special purpose sorting
algorithm but can be used to sort many types of keys, including positive integers,
strings, and floating-point values.

The radix sort algorithm also known as bin sort can be traced back to the time
of punch cards and card readers. Card readers contained a number of bins in which
punch cards could be placed after being read by the card reader. To sort values
punched on cards the cards were first separated into 10 different bins based on the
value in the ones column of each value. The cards would then be collected such
that the cards in the bin representing zero would be placed on top, followed by
the cards in the bin for one, and so on through nine. The cards were then sorted
again, but this time by the tens column. The process continued until the cards
were sorted by each digit in the largest value. The final result was a stack of punch
cards with values sorted from smallest to largest.

12.4.1 Algorithm Description
To illustrate how the radix sort algorithm works, consider the array of values shown
at the top of Figure 12.9. As with the card reader version, bins are used to store the
various keys based on the individual column values. Since we are sorting positive
integers, we will need ten bins, one for each digit.

The process starts by distributing the values among the various bins based on
the digits in the ones column, as illustrated in step (a) of Figure 12.9. If keys have
duplicate digits in the ones column, the values are placed in the bins in the order
that they occur within the list. Thus, each duplicate is placed behind the keys
already stored in the corresponding bin, as illustrated by the keys in bins 1, 3, and
8.

After the keys have been distributed based on the least significant digit, they
are gathered back into the array, one bin at a time, as illustrated in step (b) of
Figure 12.9. The keys are taken from each bin, without rearranging them, and
inserted into the array with those in bin zero placed at the front, followed by those
in bin one, then bin two, and so on until all of the keys are back in the sequence.

At this point, the keys are only partially sorted. The process must be repeated
again, but this time the distribution is based on the digits in the tens column. After
distributing the keys the second time, as illustrated in step (c) of Figure 12.9, they
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31315151bin 1

1010bin 0

13132323bin 3

6262bin 2

5454bin 4

55bin 5

bin 6

bin 7

1818bin 8

2929bin 9

4848 88
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2323 1010 1818 5151 55 1313 3131 5454 4848 6262 2929 88 3737
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55bin 0

37373131bin 3

2323bin 2

4848bin 4

5151bin 5

bin 6

bin 7

bin 8

bin 9

6262

55 88 1010 1313 1818 2323 2929 3131 3737 4848 5151 5454 6262

88

1818

2929

5454

Distribute the keys across the bins 
based on the ones column.

Gather the keys back into 
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Distribute the keys across the bins 
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Gather the keys back into 
the array.

a

b

c

d

Figure 12.9: Sorting an array of integer keys using the radix sort algorithm.
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are once again gathered back into the array, one bin at a time as shown in step
(d). The result is a correct ordering of the keys from smallest to largest, as shown
at the bottom of Figure 12.9.

In this example, the largest value (62) only contains two digits. Thus, we had
to distribute and then gather the keys twice, once for the ones column and once
for the tens column. If the largest value in the list had contain additional digits,
the process would have to be repeated for each digit in that value.

12.4.2 Basic Implementation
The radix sort, as indicated earlier, is not a general purpose algorithm. Instead, it’s
used in special cases such as sorting records by zip code, Social Security number,
or product codes. The sort keys can be represented as integers, reals, or strings.
Different implementations are required, however, since the individual key compo-
nents (digits or characters) differ based on the type of key. In addition, we must
know the maximum number of digits or characters used by the largest key in order
to know the number of iterations required to distribute the keys among the bins.

In this section, we implement a version of the radix sort algorithm for use with
positive integer values stored in a mutable sequence. First, we must decide how to
represent the bins used in distributing the values. Consider the following points
related to the workings of the algorithm:

� The individual bins store groups of keys based on the individual digits.

� Keys with duplicate digits (in a given column) are stored in the same bin, but
following any that are already there.

� When the keys are gathered from the bins, they have to be stored back into the
original sequence. This is done by removing them from the bins in a first-in
first-out ordering.

You may notice the bins sound very much like queues and in fact they can
be represented as such. Adding a key to a bin is equivalent to enqueuing the
key while removing the keys from the bins to put them back into the sequence
is easily handled with the dequeue operation. Since there are ten digits, we will
need ten queues. The queues can be stored in a ten-element array to provide easy
management in the distribution and gathering of the keys. Our implementation of
the radix sort algorithm is provided in Listing 12.6.

The function takes two arguments, the list of integer values to be sorted and
the maximum number of digits possible in the largest key value. Instead of relying
on the user to supply the number of digits, we could easily have searched for the
largest key value in the sequence and then computed the number of digits in that
value.

The implementation of the radix sort uses two loops nested inside an outer
loop. The outer for loop iterates over the columns of digits with the number of
iterations based on the user-supplied numDigits argument. The first nested loop
in lines 19–21 distributes the keys across the bins. Since the queues are stored in
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Listing 12.6 Implementation of the radix sort using an array of queues.

1 # Sorts a sequence of positive integers using the radix sort algorithm.
2
3 from llistqueue import Queue
4 from array import Array
5
6 def radixSort( intList, numDigits ):
7 # Create an array of queues to represent the bins.
8 binArray = Array( 10 )
9 for k in range( 10 ):

10 binArray[k] = Queue()
11
12 # The value of the current column.
13 column = 1
14
15 # Iterate over the number of digits in the largest value.
16 for d in range( numDigits ):
17
18 # Distribute the keys across the 10 bins.
19 for key in intList :
20 digit = (key // column) % 10
21 binArray[digit].enqueue( key )
22
23 # Gather the keys from the bins and place them back in intList.
24 i = 0
25 for bin in binArray :
26 while not bin.isEmpty() :
27 intList[i] = bin.dequeue()
28 i += 1
29
30 # Advance to the next column value.
31 column *= 10

the ten-element array, the distribution is easily handled by determining the bin or
corresponding queue to which each key has to be added (based on the digit in the
current column being processed) and enqueuing it in that queue. To extract the
individual digits, we can use the following arithmetic expression:

digit = (key // columnValue) % 10

where column is the value (1, 10, 100, . . .) of the current column being processed.
The variable is initialized to 1 since we work from the least-significant digit to the
most significant. After distributing the keys and then gathering them back into the
sequence, we can advance to the next column by simply multiplying the current
value by 10, as is done at the bottom of the outer loop in line 31.

The second nested loop, in lines 24–28, handles the gathering step. To remove
the keys from the queues and place them back into the sequence, we must dequeue
all of the keys from each of the ten queues and add them to the sequence in
successive elements starting at index position zero.
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This implementation of the radix sort algorithm is straightforward, but it re-
quires the use of multiple queues. To result in an efficient implementation, we
must use the Queue ADT implemented as a linked list or have direct access to the
underlying list in order to use the Python list version.

12.4.3 Efficiency Analysis
To evaluate the radix sort algorithm, assume a sequence of n keys in which each
key contains d components in the largest key value and each component contains a
value between 0 and k−1. Also assume we are using the linked list implementation
of the Queue ADT, which results in O(1) time queue operations.

The array used to store the k queues and the creation of the queues themselves
can be done in O(k) time. The distribution and gathering of the keys involves two
steps, which are performed d times, one for each component:

� The distribution of the n keys across the k queues requires O(n) time since
an individual queue can be accessed directly by subscript.

� Gathering the n keys from the queues and placing them back into the sequence
requires O(n) time. Even though the keys have to be gathered from k queues,
there are n keys in total to be dequeued resulting in the dequeue() operation
being performed n times.

The distribution and gathering steps are performed d times, resulting in a time
of O(dn). Combining this with the initialization step we have an overall time of
O(k+dn). The radix sort is a special purpose algorithm and in practice both k and
d are constants specific to the given problem, resulting in a linear time algorithm.
For example, when sorting a list of integers, k = 10 and d can vary but commonly
d < 10. Thus, the sorting time depends only on the number of keys.

12.5 Sorting Linked Lists
The sorting algorithms introduced in the previous sections and earlier in Chapter 5
can be used to sort keys stored in a mutable sequence. But what if we need to sort
keys stored in an unsorted singly linked list such as the one shown in Figure 12.10?
In this section, we explore that topic by reviewing two common algorithms that
can be used to sort a linked list by modifying the links to rearrange the existing
nodes.

The techniques employed by any of the three quadratic sorting algorithms—
bubble, selection, and insertion—presented in Chapter 5 can be used to sort a linked
list. Instead of swapping or shifting the values within the sequence, however, the
nodes are rearranged by unlinking each node from the list and then relinking them
at a different position. A linked list version of the bubble sort would rearrange the
nodes within the same list by leap-frogging the nodes containing larger values over
those with smaller values. The selection and insertion sorts, on the other hand,
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would create a new sorted linked list by selecting and unlinking nodes from the
original list and adding them to the new list.

 



 2323 22 1818 44 3131

origList



5151

Figure 12.10: An unsorted singly linked list.

12.5.1 Insertion Sort
A simple approach for sorting a linked list is to use the technique employed by
the insertion sort algorithm: take each item from an unordered list and insert
them, one at a time, into an ordered list. When used with a linked list, we can
unlink each node, one at a time, from the original unordered list and insert them
into a new ordered list using the technique described in Chapter 6. The Python
implementation is shown in Listing 12.7.

To create the sorted linked list using the insertion sort, we must unlink each
node from the original list and insert them into a new ordered list. This is done in

Listing 12.7 Implementation of the insertion sort algorithm for use with a linked list.

1 # Sorts a linked list using the technique of the insertion sort. A
2 # reference to the new ordered list is returned.
3
4 def llistInsertionSort( origList ):
5 # Make sure the list contains at least one node.
6 if origList is None :
7 return None
8
9 # Iterate through the original list.

10 newList = None
11 while origList is not None :
12 # Assign a temp reference to the first node.
13 curNode = origList
14
15 # Advance the original list reference to the next node.
16 origList = origList.next
17
18 # Unlink the first node and insert into the new ordered list.
19 curNode.next = None
20 newList = addToSortedList( newList, curNode )
21
22 # Return the list reference of the new ordered list.
23 return newList
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four steps, as illustrated in Figure 12.11 and implemented in lines 11–20. Inserting
the node into the new ordered list is handled by the addToSortedList() function,
which simply implements the operation from Listing 6.10. Figure 12.12 illustrates
the results after each of the remaining iterations of the insertion sort algorithm
when applied to our sample linked list.

The insertion sort algorithm used with linked lists is O(n2) in the worst case
just like the sequence-based version. The difference, however, is that the items do
not have to be shifted to make room for the unsorted items as they are inserted
into the sorted list. Instead, we need only modify the links to rearrange the nodes.





(a)

(b)

(d)

   2323 5151 1818 44 313122


origListcurNode


newList

 



 2323 5151 1818 44 3131

origList



22

curNode


newList

   2323 5151 1818 44 313122


origList


newList

   2323 5151 1818 44 313122


origListcurNode


newList

(c)



Figure 12.11: The individual steps performed in each iteration of the linked list insertion
sort algorithm: (a) assign the temporary reference to the first node; (b) advance the list
reference; (c) unlink the first node; and (d) insert the node into the new list.
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Figure 12.12: The results after each iteration of the linked list insertion sort algorithm.
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12.5.2 Merge Sort
The merge sort algorithm is an excellent choice for sorting a linked list. Unlike the
sequence-based version, which requires additional storage, when used with a linked
list the merge sort is efficient in both time and space. The linked list version, which
works in the same fashion as the sequence version, is provided in Listing 12.8.

Listing 12.8 The merge sort algorithm for linked lists.

1 # Sorts a linked list using merge sort. A new head reference is returned.
2 def llistMergeSort( theList ):
3
4 # If the list is empty (base case), return None.
5 if theList is None :
6 return None
7
8 # Split the linked list into two sublists of equal size.
9 rightList = _splitLinkedList( theList )

10 leftList = theList
11
12 # Perform the same operation on the left half...
13 leftList = llistMergeSort( leftList )
14
15 # ... and the right half.
16 rightList = llistMergeSort( rightList )
17
18 # Merge the two ordered sublists.
19 theList = _mergeLinkedLists( leftList, rightList )
20
21 # Return the head pointer of the ordered sublist.
22 return theList
23
24 # Splits a linked list at the midpoint to create two sublists. The
25 # head reference of the right sublist is returned. The left sublist is
26 # still referenced by the original head reference.
27 def _splitLinkedList( subList ):
28
29 # Assign a reference to the first and second nodes in the list.
30 midPoint = subList
31 curNode = midPoint.next
32
33 # Iterate through the list until curNode falls off the end.
34 while curNode is not None :
35 # Advance curNode to the next node.
36 curNode = curNode.next
37
38 # If there are more nodes, advance curNode again and midPoint once.
39 if curNode is not None :
40 midPoint = midPoint.next
41 curNode = curNode.next
42
43 # Set rightList as the head pointer to the right sublist.
44 rightList = midPoint.next
45 # Unlink the right sub list from the left sublist.
46 midPoint.next = None
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47 # Return the right sub list head reference.
48 return rightList
49
50 # Merges two sorted linked list; returns head reference for the new list.
51 def _mergeLinkedLists( subListA, subListB ):
52 # Create a dummy node and insert it at the front of the list.
53 newList = ListNode( None )
54 newTail = newList
55
56 # Append nodes to the new list until one list is empty.
57 while subListA is not None and subListB is not None :
58 if subListA.data <= subListB.data :
59 newTail.next = subListA
60 subListA = subListA.next
61 else :
62 newTail.next = subListB
63 subListB = subListB.next
64
65 newTail = newTail.next
66 newTail.next = None
67
68 # If self list contains more terms, append them.
69 if subListA is not None :
70 newTail.next = subListA
71 else :
72 newTail.next = subListB
73
74 # Return the new merged list, which begins with the first node after
75 # the dummy node.
76 return newList.next

The linked list is recursively subdivided into smaller linked lists during each
recursive call, which are then merged back into a new ordered linked list. Since the
nodes are not contained within a single object as the elements of an array are, the
head reference of the new ordered list has to be returned after the list is sorted. To
sort a linked list using the merge sort algorithm, the sort function would be called
using the statement:

theList = llistMergeSort( theList )

The implementation in Listing 12.8 includes the recursive function and two
helper functions. You will note that a wrapper function is not required with this
version since the recursive function only requires the head reference of the list being
sorted as the single argument.

Splitting the List

The split operation is handled by the splitLinkedList() helper function, which
takes as an argument the head reference to the singly linked list to be split and
returns the head reference for the right sublist. The left sublist can still be refer-
enced by the original head reference. To split a linked list, we need to know the
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midpoint, or more specifically, the node located at the midpoint. An easy way to
find the midpoint would be to traverse through the list and count the number of
nodes and then iterate the list until the node at the midpoint is located. This is
not the most efficient approach since it requires one and a half traversals through
the list.

Instead, we can devise a solution that requires one complete list traversal, as
shown in lines 27–48 of Listing 12.8. This approach uses two external references,
midPoint and curNode. The two references are initialized with midPoint referenc-
ing the first node and curNode referencing the second node. The two references
are advanced through the list using a loop as is done in a normal list traversal, but
the curNode reference will advance twice as fast as the midPoint reference. The
traversal continues until curNode becomes null, at which point the midPoint ref-
erence will be pointing to the last node in the left sublist. Figure 12.13 illustrates
the traversal required to find the midpoint of our sample linked list.

   2323 22 1818 44 31315151


midPoint curNode


subList

   2323 22 1818 44 31315151

curNode


midPoint


subList

1

   2323 22 1818 44 31315151

curNode


midPoint


subList

2

   2323 22 1818 44 31315151

curNode


midPoint


subList

3









Figure 12.13: Sequence of steps for finding the midpoint in a linked list.
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After the midpoint is located, the link between the node referenced by midPoint
and its successor can be removed, creating two sublists, as illustrated in Fig-
ure 12.14. Before the link is removed, a new head reference rightList has to
be created and initialized to reference the first node in the right sublist. The
rightList head reference is returned by the function to provide access to the new
sublist.

   2323 22 1818 44 31315151

curNode


midPoint


subList


rightList

   2323 22 1818 44 31315151

curNode


midPoint


subList


rightList

2
1

(a)

(b)





Figure 12.14: Splitting the list after finding the midpoint: (a) link modifications required to
unlink the last node of the left sublist from the right sublist and (b) the two sublists resulting
from the split.

Merging the Lists

The mergeLinkedLists() function, provided in lines 51–76 of Listing 12.8, man-
ages the merging of the two sorted linked lists. In Chapter 4, we discussed an
efficient solution for the problem of merging two sorted Python lists, and earlier
in this chapter that algorithm was adapted for use with arrays. The array and
Python list versions are rather simple since we can refer to individual elements by
index and easily append the values to the sequence structure.

Merging two sorted linked lists requires several modifications to the earlier
algorithm. First, the nodes from the two sublists will be removed from their
respective list and appended to a new sorted linked list. We can use a tail reference
with the new sorted list to allow the nodes from the sublists to be appended in
O(1) time. Second, after all of the nodes have been removed from one of the two
sublists, we do not have to iterate through the other list to append the nodes.
Instead, we can simply link the last node of the new sorted list to the first node
in the remaining sublist. Finally, we can eliminate the special case of appending
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the first node to the sorted list with the use of a dummy node at the front of the
list, as illustrated in Figure 12.15. The dummy node is only temporary and will
not be part of the final sorted list. Thus, after the two sublists have been merged,
the function returns a reference to the second node in the list (the first real node
following the dummy node), which becomes the head reference.




newList


newTail



dummy node







 

22 5151

44 1818 3131

2323







 

22 5151

44 1818 3131

2323
subListA


subListB

(a)

(b)

Figure 12.15: Merging two ordered linked lists using a dummy node and tail reference.

The linked list version of the merge sort algorithm is also a O(n log n) function
but it does not require temporary storage to merge the sublists. The analysis of
the run time is left as an exercise.

N
O

TE i Dummy Nodes. A dummy node is a temporary node that is used
to simplify link modifications when adding or removing nodes from a

linked list. They are called dummy nodes because they contain no actual
data. But they are part of the physical linked structure.
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Exercises
12.1 Given the following sequence of keys (80, 7, 24, 16, 43, 91, 35, 2, 19, 72),

trace the indicated algorithm to produce a recursive call tree when sorting the
values in descending order.

(a) merge sort

(b) quick sort

12.2 Do the same as in Exercise 12.1 but produce a recursive call tree when sorting
the values in ascending order.

12.3 Show the distribution steps performed by the radix sort when ordering the
following list of keys:

(a) 135, 56, 21, 89, 395, 7, 178, 19, 96, 257, 34, 29

(b) 1.25, 2.46, 0.34, 8.67, 3.21, 1.09, 3.33, 0.02, 5.44, 7.78, 1.93, 4.22

(c) "MS", "VA", "AK", "LA", "CA", "AL", "GA", "TN", "WA", "DC"

12.4 Analyze the quick sort algorithm to show the worst case time is O(n2).

12.5 Analyze the mergeVirtualSeq() function and show that it is a linear time
operation in the worst case.

12.6 Analyze the linked list version of the merge sort algorithm to show the worst
case time is O(n log n).

12.7 An important property of sorting algorithms is stability. A sorting algorithm is
stable if it preserves the original order of duplicate keys. Stability is important
when sorting a collection that has already been sorted by a primary key that
will now be sorted by a secondary key . For example, suppose we have a
sequence of student records that have been sorted by name and now we want
to sort the sequence by GPA. Since there can be many duplicate GPAs, we
want to order any duplicates by name. Thus, if Smith and Green both have the
same GPA, then Green would be listed before Smith. If the sorting algorithm
used for this second sort is stable, then the proper ordering can be achieved
since Green would appear before Smith in the original sequence.

(a) Determine which of the comparison sorts presented in this chapter and in
Chapter 5 are stable sorts.

(b) For any of the algorithms that are not stable, provide a sequence containing
some duplicate keys that shows the order of the duplicates is not preserved.
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Programming Projects
12.1 Implement the addToSortedList() function for use with the linked list version

of the insertion sort algorithm.

12.2 Create a linked list version of the indicated algorithm.

(a) bubble sort

(b) selection sort

12.3 Create a new version of the quick sort algorithm that chooses a different key
as the pivot instead of the first element.

(a) select the middle element

(b) select the last element

12.4 Write a program to read a list of grade point averages (0.0 – 4.0) from a
text file and sort them in descending order. Select the most efficient sorting
algorithm for your program.

12.5 Some algorithms are too complex to analyze using simple big-O notation or
a representative data set may not be easily identifiable. In these cases, we
must actually execute and test the algorithms on different sized data sets
and compare the results. Special care must be taken to be fair in the actual
implementation and execution of the different algorithms. This is known as
an empirical analysis. We can also use an empirical analysis to verify and
compare the time-complexities of a family of algorithms such as those for
searching or sorting.

Design and implement a program to evaluate the efficiency of the comparison
sorts used with sequences by performing an empirical analysis using random
numbers. Your program should:

� Prompt the user for the size of the sequence: n.

� Generate a random list of n values (integers) from the range [0 . . . 4n].

� Sort the original list using each of the sorting algorithms, keeping track of
the number of comparisons performed by each algorithm.

� Compute the average number of comparisons for each algorithm and then
report the results.

When performing the empirical analysis on a family of algorithms, it is im-
portant that you use the same original sequence for each algorithm. Thus,
instead of sorting the original sequence, you must make a duplicate copy of
the original and sort that sequence in order to preserve the original for use
with each algorithm.



CHAPTER 13
Binary Trees

We have introduced and used several sequential structures throughout the text such
as the array, Python list, linked list, stacks, and queues. These structures organize
data in a linear fashion in which the data elements have a “before” and “after”
relationship. They work well with many types of problems, but some problems
require data to be organized in a nonlinear fashion. In this chapter, we explore the
tree data structure, which can be used to arrange data in a hierarchical order. Trees
can be used to solve many different problems, including those encountered in data
mining, database systems, encryption, artificial intelligence, computer graphics,
and operating systems.

13.1 The Tree Structure
A tree structure consists of nodes and edges that organize data in a hierarchical
fashion. The relationships between data elements in a tree are similar to those of
a family tree: “child,” “parent,” “ancestor,” etc. The data elements are stored
in nodes and pairs of nodes are connected by edges. The edges represent the
relationship between the nodes that are linked with arrows or directed edges to
form a hierarchical structure resembling an upside-down tree complete with
branches, leaves, and even a root.

Formally, we can define a tree as a set of nodes that either is empty or has a
node called the root that is connected by edges to zero or more subtrees to form a
hierarchical structure. Each subtree is itself by definition a tree.

A classic example of a tree structure is the representation of directories and
subdirectories in a file system. The top tree in Figure 13.1 illustrates the hierar-
chical nature of a student’s home directory in the UNIX file system. Trees can
be used to represent structured data, which results in the subdivision of data into
smaller and smaller parts. A simple example of this use is the division of a book
into its various parts of chapters, sections, and subsections, as illustrated by the

369



370 CHAPTER 13 Binary Trees

bottom tree in Figure 13.1. Trees are also used for making decisions. One that you
are most likely familiar with is the phone, or menu, tree. When you call customer
service for most businesses today, you are greeted with an automated menu that
you have to traverse. The various menus are nodes in a tree and the menu options
from which you can choose are branches to other nodes.

/home/smith//home/smith/

cs241/cs241/ cs304/cs304/

courses/courses/ documents/documents/music/music/pictures/pictures/ java/java/

projs/projs/ hw/hw/

proj1/proj1/ proj2/proj2/ proj3/proj3/

asm/asm/ hw/hw/

pdf/pdf/ odp/odp/ text/text/ other/other/

BookBook

ContentsContents Chapter 2Chapter 2PrefacePreface Chapter 1Chapter 1 IndexIndexChapter 12Chapter 12

Sect 1.2Sect 1.2Sect 1.1Sect 1.1 Sect 1.3Sect 1.3

Sect 1.1.2Sect 1.1.2Sect 1.1.1Sect 1.1.1 Sect 1.1.3Sect 1.1.3 Sect 1.3.2Sect 1.3.2Sect 1.3.1Sect 1.3.1

Sect 2.1Sect 2.1 Sect 2.4Sect 2.4● ● ●

● ● ●

Sect 12.1Sect 12.1 Sect 12.5Sect 12.5

Sect 12.1.1Sect 12.1.1 Sect 12.1.4Sect 12.1.4 Sect 12.5.2Sect 12.5.2Sect 12.5.1Sect 12.5.1

● ● ●

● ● ●

Figure 13.1: Example tree structures: a UNIX file system home directory (top) and the
subdivision of a book into its parts (bottom).

We use many terms to describe the different characteristics and components of
trees. Most of the terminology comes from that used to describe family relation-
ships or botanical descriptions of trees. Knowing some of these terms will help you
grasp the tree structure and its use in various applications.

Root

The topmost node of the tree is known as the root node . It provides the single
access point into the structure. The root node is the only node in the tree that
does not have an incoming edge (an edge directed toward it). Consider the sample
tree in Figure 13.2(a). The node with value T is the root of the tree. By definition,
every non-empty tree must contain a root node.
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(a) (b)

T is the root node. Nodes T, C, R, and 
K form a path
from T to K.

TT

XX CC

JJ RR

KK MM

BB GG

ZZ

TT

XX CC

JJ RR

KK MM

BB GG

ZZ

Figure 13.2: A sample tree with: (a) the root node; and (b) a path from T to K.

Path

The other nodes in the tree are accessed by following the edges starting with the
root and progressing in the direction of the arrow until the destination node is
reached. The nodes encountered when following the edges from a starting node to
a destination form a path . As shown in Figure 13.2(b), the nodes labeled T, C, R,
and K form a path from node T to node K.

Parent

The organization of the nodes form relationships between the data elements. Every
node, except the root, has a parent node , which is identified by the incoming edge.
A node can have only one parent (or incoming edge) resulting in a unique path
from the root to any other node in the tree. There are a number of parent nodes
in the sample tree: one is node X, which is the parent of B and G, as shown in
Figure 13.3(a).

Children

Each node can have one or more child nodes resulting in a parent-child hierarchy.
The children of a node are identified by the outgoing edges (directed away from the

TT

XX CC

JJ RR

KK MM

BB GG

ZZ

TT

XX CC

JJ RR

KK MM

BB GG

ZZ

(a) (b)

X is the parent of
nodes B and G.

B and G are 
children of node X.

B and G are
siblings.

The gray nodes
are interior nodes.

The white nodes
are leaves.

Figure 13.3: The sample tree with: (a) the parent, child, and sibling relationships; and
(b) the distinction between interior and leaf nodes.
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node). For example, nodes B and G are the children of X. All nodes that have the
same parent are known as siblings, but there is no direct access between siblings.
Thus, we cannot directly access node C from node X or vice versa.

Nodes

Nodes that have at least one child are known as interior nodes while nodes that
have no children are known as leaf nodes. The interior nodes of the sample tree
are shown with gray backgrounds in Figure 13.3(b) and the leaf nodes are shown
in white.

Subtree

A tree is by definition a recursive structure. Every node can be the root of its
own subtree , which consists of a subset of nodes and edges of the larger tree.
Figure 13.4 shows the subtree with node C as its root.

Every node is the root
of its own subtree.TT

XX CC

JJ RR

KK MM

BB GG

ZZ

Figure 13.4: A subtree with root node C.

Relatives

All of the nodes in a subtree are descendants of the subtree’s root. In the example
tree, nodes J, R, K, and M are descendants of node C. The ancestors of a node
include the parent of the node, its grandparent, its great-grandparent, and so on all
the way up to the root. The ancestors of a node can also be identified by the nodes
along the path from the root to the given node. The root node is the ancestor of
every node in the tree and every node in the tree is a descendant of the root node.

N
O

TE

i Binary Tree Illustrations. The trees illustrated above used directed
edges to indicate the parent-child relationship between the nodes.

But it’s not uncommon to see trees drawn using straight lines or undirected
edges. When a tree is drawn without arrows, we have to be able to deduce
the parent-child relationship from the placement of the nodes. Thus, the par-
ent is always placed above its children. With binary trees, the left and right
children are always drawn offset from the parent in the appropriate direction
in order to easily identify the specific child node.
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13.2 The Binary Tree
Trees can come in many different shapes, and they can vary in the number of
children allowed per node or in the way they organize data values within the
nodes. One of the most commonly used trees in computer science is the binary
tree. A binary tree is a tree in which each node can have at most two children.
One child is identified as the left child and the other as the right child . In the
remainder of the chapter, we focus on the use and construction of the binary tree.
In the next chapter, we will continue our discussion of binary trees but also explore
other types.

13.2.1 Properties
Binary trees come in many different shapes and sizes. The shapes vary depending
on the number of nodes and how the nodes are linked. Figure 13.5 illustrates three
different shapes of a binary tree consisting of nine nodes. There are a number of
properties and characteristics associated with binary trees, all of which depend on
the organization of the nodes within the tree.

level 7

level 6

level 5

level 4

level 3

level 2

level 1

AA

BB CC

FF GG

II

DD EE

HH

AA

BB CC

FFDD EE

GG

HH

II

AA

BB

CC

DD

EE

FF

GG

HH

level 0

(a) (b) (c)

Figure 13.5: Three different arrangements of nine nodes in a binary tree.

Tree Size

The nodes in a binary tree are organized into levels with the root node at level 0,
its children at level 1, the children of level one nodes are at level 2, and so on. In
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family tree terminology, each level corresponds to a generation. The binary tree in
Figure 13.5(a), for example, contains two nodes at level one (B and C), four nodes
at level two (D, E, F, and G), and two nodes at level three (H and I). The root node
always occupies level zero.

The depth of a node is its distance from the root, with distance being the
number of levels that separate the two. A node’s depth corresponds to the level it
occupies. Consider node G in the three trees of Figure 13.5. In tree (a), G has a
depth of 2, in tree (b) it has a depth of 3, and in (c) its depth is 6.

The height of a binary tree is the number of levels in the tree. For example,
the three binary trees in Figure 13.5 have different heights: (a) has a height of 4,
(b) has a height of 6, and (c) has a height of 8. The width of a binary tree is the
number of nodes on the level containing the most nodes. In the three binary trees
of Figure 13.5, (a) has a width of 4, (b) has a width of 3, and (c) has a width of
1. Finally, the size of a binary tree is simply the number of nodes in the tree. An
empty tree has a height of 0 and a width of 0, and its size is 0.

20 = 1

nodes

21 = 2

22 = 4

23 = 8

2(h-1)

● ● ●
●
●
●

level
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1

2

3

h-1

●
●
●

● ● ●

Figure 13.6: Possible slots for the placement of nodes in a binary tree.

A binary tree of size n can have a maximum height of n, which results when
there is one node per level. This is the case with the binary tree in Figure 13.5(c).
What is the minimum height of a binary tree with n nodes? To determine this,
we need to consider the maximum number of nodes at each level since the nodes
will have to be organized with each level at full capacity. Figure 13.6 illustrates
the slots for the possible placement of nodes within a binary tree. Since each node
can have at most two children, each successive level in the tree doubles the number
of nodes contained on the previous level. This corresponds to a given tree level i
having a capacity for 2i nodes. If we sum the size of each level, when all of the
levels are filled to capacity, except possibly the last one, we find that the minimum
height of a binary tree of size n is blog2 nc+ 1.
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Tree Structure

The height of the tree will be important in analyzing the time-complexities of
various algorithms applied to binary trees. The structural properties of binary
trees can also play a role in the efficiency of an algorithm. In fact, some algorithms
require specific tree structures.

A full binary tree is a binary tree in which each interior node contains two
children. Full trees come in many different shapes, as illustrated in Figure 13.7.

Figure 13.7: Examples of full binary trees.

A perfect binary tree is a full binary tree in which all leaf nodes are at the
same level. The perfect tree has all possible node slots filled from top to bottom
with no gaps, as illustrated in Figure 13.8.

Figure 13.8: A perfect binary tree.

A binary tree of height h is a complete binary tree if it is a perfect binary tree
down to height h− 1 and the nodes on the lowest level fill the available slots from
left to right leaving no gaps. Consider the two complete binary trees in Figure 13.9.
If any of the three leaf nodes labeled A, B, or C in the left tree were missing, that
tree would not be complete. Likewise, if either leaf node labeled X or Y in the right
tree were missing, it would not be complete.

13.2.2 Implementation
Binary trees are commonly implemented as a dynamic structure in the same fashion
as linked lists. A binary tree is a data structure that can be used to implement
many different abstract data types. Since the operations that a binary tree supports
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AA BB CC

XX YY

perfect tree
down to 

height h-1

slots on the lowest
level filled from 
left to right.

Figure 13.9: Examples of complete binary trees.

depend on its application, we are going to create and work with the trees directly
instead of creating a generic binary tree class.

Trees are generally illustrated as abstract structures with the nodes represented
as circles or boxes and the edges as lines or arrows. To implement a binary tree,
however, we must explicitly store in each node the links to the two children along
with the data stored in that node. We define the BinTreeNode storage class,
shown in Listing 13.1, for creating the nodes in a binary tree. Like other storage
classes, the tree node class is meant for internal use only. Figure 13.10 illustrates
the physical implementation of the sample binary tree from Figure 13.4.

Listing 13.1 The binary tree node class.

1 # The storage class for creating binary tree nodes.
2 class _BinTreeNode :
3 def __init__( self, data ):
4 self.data = data
5 self.left = None
6 self.right = None

13.2.3 Tree Traversals
The operations that can be performed on a binary tree depend on the application,
especially the construction of the tree. In this section, we explore the tree traversal
operation, which is one of the most common operations performed on collections
of data. Remember, a traversal iterates through a collection, one item at a time, in
order to access or visit each item. The actual operation performed when “visiting”
an item is application dependent, but it could involve something as simple as
printing the data item or saving it to a file.

With a linear structure such as a linked list, the traversal is rather easy since
we can start with the first node and iterate through the nodes, one at at time,
by following the links between the nodes. But how do we visit every node in a
binary tree? There is no single path from the root to every other node in the tree.
Remember, the links between the nodes lead us down into the tree. If we were to
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Figure 13.10: The physical implementation of a binary tree.

simply follow the links, once we reach a leaf node we cannot directly access any
other node in the tree.

Preorder Traversal

A tree traversal must begin with the root node, since that is the only access into
the tree. After visiting the root node, we can then traverse the nodes in its left
subtree followed by the nodes in its right subtree. Since every node is the root
of its own subtree, we can repeat the same process on each node, resulting in a
recursive solution. The base case occurs when a null child link is encountered since
there will be no subtree to be processed from that link. The recursive operation
can be viewed graphically, as illustrated in Figure 13.11.

left
subtree

right
subtree

visit the node 1

traverse the
left subtree

2 traverse the
right subtree

3

Figure 13.11: Trees are traversed recursively.

Consider the binary tree in Figure 13.12. The dashed lines show the logical
order the nodes would be visited during the traversal: A, B, D, E, H, C, F, G,
I, J. This traversal is known as a preorder traversal since we first visit the node
followed by the subtree traversals.

The recursive function for a preorder traversal of a binary tree is rather simple,
as shown in Listing 13.2. The subtree argument will either be a null reference or
a reference to the root of a subtree in the binary tree. If the reference is not None,
the node is first visited and then the two subtrees are traversed. By convention,
the left subtree is always visited before the right subtree. The subtree argument
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AA

BB CC

GG

II JJ

DD EE

HH

1. Visit the node.
2. Traverse the left subtree.
3. Traverse the right subtree.

FF

Figure 13.12: The logical ordering of the nodes with a preorder traversal.

will be a null reference when the binary tree is empty or we attempt to follow a
non-existent link for one or both of the children.

Given a binary tree of size n, a complete traversal of a binary tree visits each
node once. If the visit operation only requires constant time, the tree traversal can
be done in O(n).

Listing 13.2 Preorder traversal on a binary tree.

1 def preorderTrav( subtree ):
2 if subtree is not None :
3 print( subtree.data )
4 preorderTrav( subtree.left )
5 preorderTrav( subtree.right )

Inorder Traversal

In the preorder traversal, we chose to first visit the node and then traverse both
subtrees. Another traversal that can be performed is the inorder traversal , in
which we first traverse the left subtree and then visit the node followed by the
traversal of the right subtree. Figure 13.13 shows the logical ordering of the node
visits in the example tree: D, B, H, E, A, F, C, I, G, J.

The recursive function for an inorder traversal of a binary tree is provided in
Listing 13.3. It is almost identical to the preorder traversal function. The only
difference is the visit operation is moved following the traversal of the left subtree.

Listing 13.3 Inorder traversal on a binary tree.

1 def inorderTrav( subtree ):
2 if subtree is not None :
3 inorderTrav( subtree.left )
4 print( subtree.data )
5 inorderTrav( subtree.right )



13.2 The Binary Tree 379

BB CC

GG

II JJ

DD EE

HH

1. Traverse the left subtree.
2. Visit the node.
3. Traverse the right subtree.

FF
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Figure 13.13: The logical ordering of the nodes with an inorder traversal.

Postorder Traversal

We can also perform a postorder traversal , which can be viewed as the opposite
of the preorder traversal. In a postorder traversal, the left and right subtrees
of each node are traversed before the node is visited. The recursive function is
provided in Listing 13.4.

Listing 13.4 Postorder traversal on a binary tree.

1 def postorderTrav( subtree ):
2 if subtree is not None :
3 postorderTrav( subtree.left )
4 postorderTrav( subtree.right )
5 print( subtree.data )

The example tree with the logical ordering of the node visits in a postorder
traversal is shown in Figure 13.14. The nodes are visited in this order: D, H, E,
B, F, I, J, G, C, A. You may notice that the root node is always visited first
in a preorder traversal but last in a postorder traversal.

AA

BB CC

GG

II JJ

DD EE

HH

1. Traverse the left subtree.
2. Traverse the right subtree.
3. Visit the node.

FF

Figure 13.14: The logical ordering of the nodes with a postorder traversal.
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Breadth-First Traversal

The preorder, inorder, and postorder traversals are all examples of a depth-first
traversal . That is, the nodes are traversed deeper in the tree before returning to
higher-level nodes. Another type of traversal that can be performed on a binary
tree is the breadth-first traversal . In a breadth-first traversal, the nodes are
visited by level, from left to right. Figure 13.15 shows the logical ordering of the
nodes in a breadth-first traversal of the example tree.

AA

BB CC

GG

II JJ

DD EE

HH

FF

Figure 13.15: The logical ordering of the nodes with a breadth-first traversal.

Recursion cannot be used to implement a breadth-first traversal since the re-
cursive calls must follow the links that lead deeper into the tree. Instead, we must
devise another approach. Your first attempt might be to visit a node followed by
its two children. Thus, in the example tree we would visit node A followed by nodes
B and C, which is the correct ordering. But what happens when we visit node B?
We can’t visit its two children, D and E, until after we have visited node C. What
we need is a way to remember or save the two children of B until after C has been
visited. Likewise, when visiting node C, we will have to save its two children until
after the children of B have been visited. After visiting node C, we have saved four
nodes—D, E, F, and G—which are the next four to be visited, in the order they were
saved. The best way to save a node’s children for later access is to use a queue.
We can then use an iterative loop to move across the tree in the correct node order
to produce a breadth-first traversal.

Listing 13.5 uses a queue to implement the breadth-first traversal. The process
starts by saving the root node and in turn priming the iterative loop. During each
iteration, we remove a node from the queue, visit it, and then add its children to
the queue. The loop terminates after all nodes have been visited.

13.3 Expression Trees
Arithmetic expressions such as (9+3)∗(8−4) can be represented using an expression
tree. An expression tree is a binary tree in which the operators are stored in
the interior nodes and the operands (the variables or constant values) are stored
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Listing 13.5 Breadth-first traversal on a binary tree.

1 def breadthFirstTrav( bintree ):
2 # Create a queue and add the root node to it.
3 Queue q
4 q.enqueue( bintree )
5
6 # Visit each node in the tree.
7 while not q.isEmpty() :
8 # Remove the next node from the queue and visit it.
9 node = q.dequeue()

10 print( node.data )
11
12 # Add the two children to the queue.
13 if node.left is not None :
14 q.enqueue( node.left )
15 if node.right is not None :
16 q.enqueue( node.right )

in the leaves. Once constructed, an expression tree can be used to evaluate the
expression or for converting an infix expression to either prefix or postfix notation.

The structure of the expression tree is based on the order in which the operators
are evaluated. The operator in each internal node is evaluated after both its left and
right subtrees have been evaluated. Thus, the lower an operator is in a subtree, the
earlier it will be evaluated. The root node contains the operator to be evaluated.
Figure 13.16 illustrates several expression trees.

++

55 88

++

** 88

22 77
5 + 8

2 * 7 + 8 (9 + 3) * (8 - 4)

//

aa --

bb 33

a / (b - 3)

**

++ --

88 4499 33

Figure 13.16: Sample arithmetic expression trees.

While Python provides the eval() function for evaluating an arithmetic ex-
pression stored as a string, the string must be parsed each time it’s evaluated. This
means the Python interpreter has to determine the order in which the operators are
evaluated and then perform each of the corresponding operations. One way it can
do this is with the use of an expression tree. After the expression has been parsed
and the tree constructed, the evaluation step is quite simple, as you will see later
in this section. This real-time evaluation of expression strings is not commonly
available in compiled languages. When using such a language and a user-supplied
expression has to be evaluated, an expression tree can be constructed and evaluated
to obtain the result.
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13.3.1 Expression Tree Abstract Data Type
Arithmetic expressions can consist of both unary (-a, n!) and binary operators
(a + b). We only consider expressions containing binary operators and leave the
inclusion of unary operators as an exercise. Binary operators are stored in an
expression tree with the left subtree containing the left side of the operation and the
right subtree containing the right side. We define the Expression Tree ADT below
for use with arithmetic expressions consisting of operands comprised of single-
integer digits or single-letter variables.

Define Expression Tree ADT

An expression tree is a binary tree representation of an arithmetic expression that
consists of various operators (+, -, *, /, %) and operands comprised of single
integer digits and single-letter variables within a fully parenthesized expression.

� ExpressionTree( expStr ): Builds an expression tree for the expression given
in expStr. Assume the string contains a valid, fully parenthesized expression.

� evaluate( varDict ): Evaluates the expression tree and returns the numeric
result. The values of the single-letter variables are extracted from the supplied
dictionary structure. An exception is raised if there is a division by zero error
or an undefined variable is used.

� toString (): Constructs and returns a string representation of the expression.

The Expression Tree ADT can be used to evaluate basic arithmetic expressions
of any size. The following example illustrates the use of the ADT:

# Create a dictionary containing values for the one-letter variables.
vars = { 'a' : 5, 'b' : 12 }

# Build the tree for a sample expression and then evaluate it.
expTree = expressionTree( "(a/(b-3))" )
print( "The result = ", expTree.evaluate(vars) )

# We can change the value assigned to a variable and reevaluate.
vars['a'] = 22
print( "The result = ", expTree.evaluate(vars) )

In the following sections we develop algorithms for constructing and evaluating
arithmetic expression trees in order to implement the ExpressionTree class. A
partial implementation is provided in Listing 13.6. All of the operations will require
a recursive algorithm that is applied to the tree structure. Thus, each will call a
helper method to which the root reference will be passed in order to initiate the
recursion. If the helper methods were not used, the client or user code would have
to have access to the root reference in order to pass it to the recursive operation.
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Listing 13.6 The exptree.py module.

1 class ExpressionTree :
2 # Builds an expression tree for the expression string.
3 def __init__( self, expStr ):
4 self._expTree = None
5 self._buildTree( expStr )
6
7 # Evaluates the expression tree and returns the resulting value.
8 def evaluate( self, varMap ):
9 return self._evalTree( self._expTree, varMap )

10
11 # Returns a string representation of the expression tree.
12 def __str__( self ):
13 return self._buildString( self._expTree )
14 # ...
15
16 # Storage class for creating the tree nodes.
17 class _ExpTreeNode :
18 def __init__( self, data ):
19 self.element = data
20 self.left = None
21 self.right = None

The constructor creates a single data field for storing the reference to the root
node of the tree. The buildTree() helper method is then called to actually
construct the tree. The evaluate() and str methods each call their own
helper method and simply return the value returned by the helper. The nodes of
the expression tree will be created by the ExpTreeNode storage class, as shown in
lines 17–21. The helper methods will be developed in the following sections.

13.3.2 String Representation
Before looking at how we create and evaluate expression trees, let’s consider the
results of performing the three depth-first traversals on an arithmetic expression
tree. Consider the larger expression tree from Figure 13.17 and suppose we perform
a postorder traversal on the tree. The order the nodes are visited is:

8 5 * 9 7 4 - / +

What does this ordering represent? If you look closely, you should notice it as the
postfix representation for the expression 8 * 5 + 9 / (7 - 4). Thus, a postorder
traversal can be used to convert an arithmetic expression tree to the equivalent
postfix expression while a preorder traversal will produce the equivalent prefix
expression. So, in what order would the nodes be visited by an inorder traversal?

8 * 5 + 9 / 7 - 4

It appears to be the infix representation, but notice the result is not correct
since the parentheses around (7 - 4) were omitted. Even though this result is in-
correct, we can develop an algorithm that uses a combination of all three depth-first
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++

** //

99 --88 55

77 44

Figure 13.17: Expression tree for 8 ∗ 5 + 9/(7− 4).

traversals to produce the correct expression. Trying to determine the minimum
sets of parentheses that are required can be difficult, but we can easily create a
fully parenthesized expression: ((8 * 5) + (9 / (7 - 4))). We know an in-
order traversal produces the correct ordering of operators and operands for the
resulting expression. We just have to figure out how to insert the parentheses.

In a fully parenthesized expression, a pair of parentheses encloses each operator
and its operands. Thus, we need to enclose each subtree within a pair of parenthe-
ses, as illustrated in Figure 13.18. A left parenthesis needs to be printed before a
subtree is visited, whereas the right one needs to be printed after the subtree has
been visited. We can combine all three traversals in a single recursive operation,
as shown in Listing 13.7.

++

** //

99 --88 55

77 44

Figure 13.18: Expression tree with braces grouping the subtrees.

13.3.3 Tree Evaluation
Given an algebraic expression represented as a binary tree, we can develop an
algorithm to evaluate the expression. Each subtree represents a valid subexpression
with those lower in the tree having higher precedence. Thus, the two subtrees of
each interior node must be evaluated before the node itself. For example, in the
expression tree from Figure 13.17, the addition operation cannot be performed until
both subexpressions (the multiplication and the division) have been computed as
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Listing 13.7 The _buildString helper method.

1 class ExpressionTree :
2 # ...
3 # Recursively builds a string representation of the expression tree.
4 def _buildString( self, treeNode ):
5 # If the node is a leaf, it's an operand.
6 if treeNode.left is None and treeNode.right is None :
7 return str( treeNode.element )
8 else : # Otherwise, it's an operator.
9 expStr = '('

10 expStr += self._buildString( treeNode.left )
11 expStr += str( treeNode.element )
12 expStr += self._buildString( treeNode.right )
13 expStr += ')'
14 return expStr

their results are needed by the operation. Further, the division cannot be evaluated
until the subtraction of (7 - 4) has been computed.

We have already discussed two versions of an algorithm that processes both sub-
trees of a node before the node itself. Remember, this was the technique employed
by both the preorder and postorder traversals. We can use one of these to evaluate
an expression tree. The difference is that the visit operation is only applied to
the operator (interior) nodes and a visit becomes the evaluation of the operation
applied to the value of both subtrees. The recursive function for evaluating an
expression tree and returning the result is provided in Listing 13.8.

Listing 13.8 Evaluate an expression tree.

1 class ExpressionTree :
2 # ...
3 def _evalTree( self, subtree, varDict ):
4 # See if the node is a leaf node, in which case return its value.
5 if subtree.left is None and subtree.right is None :
6 # Is the operand a literal digit?
7 if subtree.element >= '0' and subtree.element <= '9' :
8 return int(subtree.element)
9 else : # Or is it a variable?

10 assert subtree.element in varDict, "Invalid variable."
11 return varDict[subtree.element]
12
13 # Otherwise, it's an operator that needs to be computed.
14 else :
15 # Evaluate the expression in the left and right subtrees.
16 lvalue = _evalTree( subtree.left, varDict )
17 rvalue = _evalTree( subtree.right, varDict )
18 # Evaluate the operator using a helper method.
19 return computeOp( lvalue, subtree.element, rvalue )
20
21 # Compute the arithmetic operation based on the supplied op string.
22 def _computeOp( left, op, right ):
23 ......
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When a leaf node is encountered, we know it contains an operand. But we
must determine if that operand is a single-integer digit, in which case the integer
value can be returned, or if it’s a single-letter variable. In the case of the latter,
the value for the variable must be located and returned from the user-supplied
dictionary. For interior nodes, the two subtrees are evaluated by recursively calling
the evalTree() function. After the two recursive calls return, the operation
represented by the interior node can be computed. The computation is performed
using the computeOp() helper function, which performs the appropriate arithmetic
operation based on the given operator. The implementation of computeOp() is
left as an exercise. The recursive call tree for the evalStr() method is shown in
Figure 13.19 when applied to the expression tree from Figure 13.17.

++

** //

99 --88 55

77 44

58

47

39

340

43

Figure 13.19: The recursive call tree for the _evalStr() function.

13.3.4 Tree Construction
You have seen how an expression tree is used; now let’s look at how to construct
the tree given an infix expression. For simplicity, we assume the following: (1) the
expression is stored in string with no white space; (2) the supplied expression is
valid and fully parenthesized; (3) each operand will be a single-digit or single-letter
variable; and (4) the operators will consist of +, -, *, /, and %.

An expression tree is constructed by parsing the expression and evaluating the
individual tokens. As the tokens are evaluated, new nodes are inserted into the
tree for both the operators and operands. Each set of parentheses will consist of
an interior node containing the operator and two children, which may be single
valued or subtrees representing subexpressions. The process starts with an empty
root node set as the current node:

  current

root

Suppose we are building the tree for the expression (8*5). The action taken
depends on the value of the current token. The first token is a left parenthesis.



13.3 Expression Trees 387

When a left parenthesis is encountered, a new node is created and linked into the
tree as the left child of the current node. We then descend down to the new node,
making the left child the new current node.

  current

root

  
current

root
token: '('

The next token is the operand: 8. When an operand is encountered, the data value
of the current node is set to contain the operand. We then move up to the parent
of the current node.

  

root

88

  
current

root

88

current

token: '8'

Next comes the plus operator. When an operator is encountered, the data value
of the current node is set to the operator. A new node is then created and linked
into the tree as the right child of the current node. We descend down to the new
node.

**

root

88

  
current

root

88

current

token: '*'

The second operand, 5, repeats the same action taken with the first operand:

**

root

88

** current

root

88 55

current

55

token: '5'

Finally, the right parenthesis is encountered and we move up to the parent of the
current node. In this case, we have reached the end of the expression and the tree
is complete.

**

root

88

current

55


token: ')'
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Constructing the expression tree involves performing one of five different steps
for each token in the expression. This same process can be used on larger expres-
sions to construct each part of the tree. Consider Figure 13.20, which illustrates the
steps required to build the tree for the expression ((2*7)+8). The steps illustrated
in the figure are described below:

  

22

**

22

**

22 77

**

22 77

++

**

22 77

++

**

22 77

88

++

**

22 77

88

(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

Figure 13.20: Steps for building an expression tree for ((2 ∗ 7) + 8).

1. Create an empty root node and mark it as the current node.

2. Read the left parenthesis: add a new node as the left child and descend down
to the new node.

3. Read the next left parenthesis: add a new node as the left child and descend
down to the new node.

4. Read the operand 2: set the value of the current node to the operand and
move up to the parent of the current node.

5. Read the operator *: set the value of the current node to the operator and
create a new node linked as the right child. Then descend down to the new
node.

6. Read the operand 7: set the value of the current node to the operand and
move up to the parent of the current node.

7. Read the right parenthesis: move up to the parent of the current node.

8. Read the operator +: set the value of the current node to the operator and
create a new node linked as the right child; descend down to the new node.
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9. Read the operand 8: set the value of the current node to the operand and
move up to the parent of the current node.

10. Read the right parenthesis: move up to the parent of the current node. Since
this is the last token, we are finished and the expression tree is complete.

Having stepped through the construction of two sample expressions, we now
turn our attention to the implementation of the method for building an expression
tree. Throughout the process we have to descend down into the tree to construct
each side of an operator and then back up when a right parenthesis is encountered.
But how do we remember where we were in order to back up? There are two
approaches we can use. One involves the use of a stack and the other recursion. In
Chapter 10, you saw that backtracking is automatically handled by the recursion
as the recursive calls unwind. Given this simplicity, we implement a recursive
function to build an expression tree, as shown in Listing 13.9.

Listing 13.9 Constructing an expression tree.

1 class ExpressionTree :
2 # ...
3 def _buildTree( self, expStr ):
4 # Build a queue containing the tokens in the expression string.
5 expQ = Queue()
6 for token in expStr :
7 expQ.enqueue( token )
8
9 # Create an empty root node.

10 self._expTree = _ExpTreeNode( None )
11 # Call the recursive function to build the expression tree.
12 self._recBuildTree( self._expTree, expQ )
13
14 # Recursively builds the tree given an initial root node.
15 def _recBuildTree( self, curNode, expQ ):
16 # Extract the next token from the queue.
17 token = expQ.dequeue()
18
19 # See if the token is a left paren: '('
20 if token == '(' :
21 curNode.left = _ExpTreeNode( None )
22 buildTreeRec( curNode.left, expQ )
23
24 # The next token will be an operator: + - / * %
25 curNode.data = expQ.dequeue()
26 curNode.right = _ExpTreeNode( None )
27 self._buildTreeRec( curNode.right, expQ )
28
29 # The next token will be a ), remove it.
30 expQ.dequeue()
31
32 # Otherwise, the token is a digit that has to be converted to an int.
33 else :
34 curNode.element = token
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The recBuildTree() method takes two arguments, a reference to the current
node and a queue containing the tokens that have yet to be processed. The use of
the queue is the easiest way to keep track of the tokens throughout the recursive
process. We indicated earlier that the expression will be supplied as a string, but
strings in Python are immutable, which makes it difficult to remove the tokens as
they are processed. The queue, which was introduced in Chapter 8, is the best
choice since the tokens will be processed in a FIFO order.

The non-recursive buildTree() method creates a queue and fills it with the
tokens from the expression, as shown in lines 5–7 of Listing 13.9. The code in this
method can actually be placed within the constructor. We only used this helper
method in order to hide the tree construction details in the initial presentation of
the ExpressionTree class in Listing 13.6 until the actual operation was presented.
The recursive function assumes the root node has been created before the first
invocation. Thus, after building the token queue in buildTree(), an empty root
node is created and the two structures are passed to the recursive function.

The recBuildTree() method implements the five operations for building the
expression tree as described earlier. If you review those steps, you will notice the
only times we descend down the tree is after encountering a left parenthesis or an
operator. After moving down to either the left or right child node, the next token
encountered must be either a left parenthesis or an operand. Thus, the function
extracts the next token to be processed and then evaluates it to see if it is either
a ( or an operand. If the token is an operand, we can set the data field of the
current node with the integer value of the token and then return. This takes us
back to the parent of the current node.

The bulk of the work is done when a left parenthesis is encountered. The same
sequence of steps, as shown in lines 20–30, is always performed since we are only
working with binary operators. First, a new left child is created and we descend
down to the new node by making a recursive call. Upon returning to this invocation
of the function, which represents the parent of the new node, the next token must
contain an operator. It is removed from the queue and assigned to the current
node’s data field. A new right child is then created and again we descend down to
the new node to process the right side of the operator. Finally, when the second
recursive call returns, the next token will be a right parenthesis, which can removed
from the queue and discarded.

13.4 Heaps
A heap is a complete binary tree in which the nodes are organized based on their
data entry values. There are two variants of the heap structure. A max-heap has
the property, known as the heap order property , that for each non-leaf node V ,
the value in V is greater than the value of its two children. The largest value in a
max-heap will always be stored in the root while the smallest values will be stored
in the leaf nodes. The min-heap has the opposite property. For each non-leaf
node V , the value in V is smaller than the value of its two children. Figure 13.21
illustrates an example of a max-heap and a min-heap.
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Figure 13.21: Examples of a heap.

13.4.1 Definition
The heap is a specialized structure with limited operations. We can insert a new
value into a heap or extract and remove the root node’s value from the heap. In this
section, we explore these operations for use with a max-heap. Their application to
a min-heap is identical except for the logical relationship between each node and
its children.

Insertions

When a new value is inserted into a heap, the heap order property and the heap
shape property (a complete binary tree) must be maintained. Suppose we want
to add value 90 to the max-heap in Figure 13.21(b). If we are to maintain the
property of the max-heap, there are only two places in the tree where 90 can be
inserted, as shown in Figure 13.22(a). Contrast this to the possible locations if we
were to add value 41 to the max-heap, shown in Figure 13.22(b).

Knowing the possible locations is only part of the problem. What happens to
the values in the nodes where the new value must be stored in order to maintain
the heap order property? In other words, if we insert 90 into the heap, it must be
placed into either the node currently containing 84 or 71. Suppose we choose to
place it in the node containing value 84, what becomes of value 84? It will have to

100100

71718484

6060 2323

443737

1212 2929

11

The nodes where value
90 can be inserted.

100100

71718484

6060 2323

443737

1212 2929

11

The nodes where value
41 can be inserted.

(a) (b)

Figure 13.22: Candidate locations in a heap for new values.



392 CHAPTER 13 Binary Trees

be moved to another node where it can be legally placed, and the value displaced
by 84 will have to be moved, and so on until a new leaf node is created for the last
value displaced.

Instead of starting from the top and searching for a node in the tree where the
new value can be properly placed, we can start at the bottom and work our way
up. This involves several steps, which we outline using Figure 13.23. First, we
create a new node and fill it with the new value as shown in part (a). The node
is then attached as a leaf node at the only spot in the tree where the heap shape
property can be maintained (part (b)). Remember, a heap is a complete tree and
in such a tree, the leaf nodes on the lowest level must be filled from left to right.
As you will notice, the heap order property has been violated since the parent of
node 90 is smaller but in a max-heap it is supposed to be larger.

100100

71718484

6060 2323

443737

1212 2929

11 9090

(a) create a new node for 90.

100100

71718484

6060 9090

443737

1212 2929

11 2323

(c) sift-up: swap 23 and 90.

100100

71719090

6060 8484

443737

1212 2929

11 2323

(d) sift-up: swap 84 and 90.

100100

71718484

6060 2323

443737

1212 2929

11 9090

(b) link the node as the last child.

Figure 13.23: The steps to insert value 90 into the heap.

To restore the heap order property, the new value has to move up along the
path in reverse order from the root to the insertion point until a node is found
where it can be positioned properly. This operation is known as a sift-up. It
can also be known as an up-heap, bubble-up, percolate-up, or heapify-up, among
others. The sift-up operation compares the new value 90 in the new node to the
value in its parent node, 23. Since its parent is smaller, we know it belongs above
the parent and the two values are swapped, as shown in Figure 13.23(c). Value 90
is then compared to the value in its new parent node. Again, we find the parent
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is smaller and the two values have to be swapped, as shown in part (d). The
comparison is repeated again, but this time we find value 90 is less than or equal
to its parent and the process ends.

Now, suppose we add value 41 to the heap, as illustrated in Figure 13.24. The
new node is created and filled with value 41 and linked into the tree as the left
child of node 12. When the new value is sifted up, we find values 12 and 41 have
to be swapped, resulting in the final placement of the new value.

100100

71719090

6060 8484

443737

1212 2929

11 2323 4141

(a)

100100

71719090

6060 8484

443737

4141 2929

11 2323 1212

(b)

Figure 13.24: Inserting value 41 into the heap: (a) create the new node and link it into
the tree; and (b) sift the new value up the tree.

Extractions

When a value is extracted and removed from the heap, it can only come from the
root node. Thus, in a max-heap, we always extract the largest value and in a
min-heap, we always extract the smallest value. After the value in the root has
been removed, the binary tree is no longer a heap since there is now a gap in the
root node, as illustrated in Figure 13.25.

To restore the tree to a heap, another value will have to take the place of the
value extracted from the root and a node has to be removed from the tree since

71719090

6060 8484

443737

4141 2929

11 2323 1212

Figure 13.25: Extracting a value from the max-heap leaves a hole at the root node.
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there is one less value in the heap. Since a heap requires a complete tree, there is
only one leaf that can be removed: the rightmost node on the lowest level.

To maintain a complete tree and the heap order property, an extraction requires
several steps. First, we copy and save the value from the root node, which will
be returned after the extraction process has been completed. Next, the value
from the rightmost node on the lowest level is copied to the root and that leaf
node is removed from the tree, as shown in Figure 13.26(a). This maintains the
heap structure property requiring a complete tree, but it violates the heap order
property since 12 is smaller than its children. To restore the heap order property,
value 12 has to be sifted-down the tree. The sift-down works in the same fashion
as the sift-up used with an insertion. Starting at the root node, the node’s value
is compared to its children and swapped with the larger of the two. The sift-down
is then applied to the node into which the smaller value was copied. This process
continues until the smaller value is copied into a leaf node or a node whose children
are even smaller. Parts (b - d) of Figure 13.26 show the sift-down operation applied
to value 12 in the root node: value 12 is swapped with 90, then with 84, and finally
with 23, resulting in a proper heap.

The code in this method can be placed within the constructor. We only used
this helper method in order to hide the tree construction details in the initial
presentation of the ExpressionTree class in Listing 13.6 until the actual operation
was presented.
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(b) sift-down: swap 12 and 90.
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(c) sift-down: swap 12 and 84.

(a) copy the last item to the root.

9090

71718484

6060 2323

443737

4141 2929

11 1212

(d) sift-down: swap 12 and 23.

copy 12
to the 
root

Figure 13.26: The steps in restoring a max-heap after extracting the root value.
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13.4.2 Implementation
Throughout our discussion, we have used the abstract view of a binary tree with
nodes and edges to illustrate the heap structure. While a heap is a binary tree,
it’s seldom, if ever, implemented as a dynamic linked structure due to the need of
navigating the tree both top-down and bottom-up. Instead, we can implement a
heap using an array or vector to physically store the individual nodes with implicit
links between the nodes. Suppose we number the nodes in the heap left to right
by level starting with zero, as shown in Figure 13.27(a). We can then place the
heap values within an array using these node numbers as indices into the array, as
shown in Figure 13.27(b).

(a)

(b)

0

1 2

3 4 5 6

7 8 9

100100

71718484

6060 2323

443737

1212 2929

11

100100 8484 7171 6060 2323 1212 2929 11 3737 44

0 1 2 3 4 5 6 7 8 9

Figure 13.27: A heap can be implemented using an array or vector.

Node Access

Since a heap is a complete tree, it will never contain holes resulting from missing
internal nodes. Thus, the root will always be at position 0 within the array and
its two children will always occupy elements 1 and 2. In fact, the children of any
given node will always occupy the same elements within the array. This allows us
to quickly locate the parent of any node or the left and right child of any node.
Given the array index i of a node, the index of the parent or children of that node
can be computed as:

parent = (i-1) // 2
left = 2 * i + 1
right = 2 * i + 2
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Determining if a node’s child link is null is simply a matter of computing the
index of the appropriate child and testing to see if the index is out of range. For
example, suppose we want to test if node 29 in the tree from Figure 13.27 has a
left child. Since the node is stored at index position 6, we plug this value into the
equation for computing the left child index, which yields 13. This tells us that if
node 29 had a left child it would be located within the array at index position 13.
But there are only 10 items in the heap, stored in positions 0 . . . 9, and 13 would
be outside the range of valid node positions. This indicates node 29 does not have
a left child.

Class Definition

We define the MaxHeap class for our array-based implementation of the max-heap
in Listing 13.10. An array-based version of the heap structure is commonly used
when the maximum capacity of the heap is known beforehand. If the maximum
capacity is not known, then a Python list structure can be used instead. The array
is created with a size equal to the maxSize argument supplied to the constructor
and assigned to elements. Since we will be adding one item at a time to the
heap, the items currently in the heap will only use a portion of the array, with the
remaining elements available for new items. The count attribute keeps track of
how many items are currently in the heap.

Listing 13.10 The arrayheap.py module.

1 # An array-based implementation of the max-heap.
2 class MaxHeap :
3 # Create a max-heap with maximum capacity of maxSize.
4 def __init__( self, maxSize ):
5 self._elements = Array( maxSize )
6 self._count = 0
7
8 # Return the number of items in the heap.
9 def __len__( self ):

10 return self._count
11
12 # Return the maximum capacity of the heap.
13 def capacity( self ):
14 return len( self._elements )
15
16 # Add a new value to the heap.
17 def add( self, value ):
18 assert self._count < self.capacity(), "Cannot add to a full heap."
19 # Add the new value to the end of the list.
20 self._elements[ self._count ] = value
21 self._count += 1
22 # Sift the new value up the tree.
23 self._siftUp( self._count - 1 )
24
25 # Extract the maximum value from the heap.
26 def extract( self ):
27 assert self._count > 0, "Cannot extract from an empty heap."
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28 # Save the root value and copy the last heap value to the root.
29 value = self._elements[0]
30 self._count -= 1
31 self._elements[0] = self._elements[ self._count ]
32 # Sift the root value down the tree.
33 self._siftDown( 0 )
34
35 # Sift the value at the ndx element up the tree.
36 def _siftUp( self, ndx ):
37 if ndx > 0 :
38 parent = ndx // 2
39 if self._elements[ndx] > self._elements[parent] : # swap elements
40 tmp = self._elements[ndx]
41 self._elements[ndx] = self._elements[parent]
42 self._elements[parent] = tmp
43 self._siftUp( parent )
44
45 # Sift the value at the ndx element down the tree.
46 def _siftDown( self, ndx ):
47 left = 2 * ndx + 1
48 right = 2 * ndx + 2
49 # Determine which node contains the larger value.
50 largest = ndx
51 if left < count and self._elements[left] >= self._elements[largest] :
52 largest = left
53 elif right < count and self._elements[right] >= self._elements[largest]:
54 largest = right
55 # If the largest value is not in the current node (ndx), swap it with
56 # the largest value and repeat the process.
57 if largest != ndx :
58 swap( self._elements[ndx], self._elements[largest] )
59 _siftDown( largest )

The first step when adding a new item to a heap is to link a new leaf node
in the rightmost position on the lowest level. In the array implementation, this
will always be the next position following the last heap item in the array. After
inserting the new item into the array (lines 20–21) it has to be sifted up the tree
to find its correct position. Figure 13.28 illustrates the modifications to the heap
and the storage array when adding 90 to the sample heap.

To extract the maximum value from a max-heap, we first have to copy and save
the value in the root node, which we know is in index position 0. Next, the root
value has to be replaced with the value from the leaf node that is in the rightmost
position on the lowest level of the tree. In the array implementation, that leaf
node will always be the last item of the heap stored in linear order within the
array. After copying the last heap item to the root node (lines 30–31), the new
value in the root node has to be sifted down the tree to find its correct position.

The implementation of the sift-down operation is straightforward. After de-
termining the indices of the nodes left and right child, we determine which of the
three values is larger: the value in the node, the value in the node’s left child,
or the value in the node’s right child. If one of the two children contains a value
greater than or equal to the value in the node: (1) it has to be swapped with the
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Figure 13.28: Inserting value 90 into the heap implemented as an array.

value in the current node and (2) the sift-down operation has to be repeated on
that child. Otherwise, the proper position of the value being sifted down has been
located and the base case of the recursive operation is reached.

Analysis

Inserting an item into a heap implemented as an array requires O(log n) time in
the worst case. Inserting the new item at the end of the sequence of heap items
can be done in O(1) time. After the new item is inserted, it has to be sifted up
the tree. The worst case time of the sift-up operation is the maximum number of
levels the new item can move up the tree. A new item always begins in a leaf node
and may end up in the root node, which is a distance equal to the height of the
tree. Since a heap is a complete binary tree, we know its height is always log n.
Extracting an item from a heap implemented as an array also requires O(log n)
time in the worst case, the analysis of which we leave as an exercise.

13.4.3 The Priority Queue Revisited
A priority queue, which was introduced in Chapter 8, works like a normal queue
except each item is assigned a priority and the items with a higher priority are
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dequeued first. The bounded priority queue, in which the number of priorities is
fixed, allows for an efficient implementation with the use of an array of queues
(Section 8.3.3). The unbounded priority queue does not place any restriction on
the maximum positive integer value that can be used as the priority values. With
an unlimited number of priorities, the array of queues implementation would not be
very efficient and could waste a lot of space. Instead, we would have to use either
the Python list (Section 8.3.2) or linked list (Section 8.3.2) based implementation
of the priority queue.

A min-heap can also be used to implement the general priority queue. The
ordering of the heap nodes is based on the priority associated with each item
in the queue. For example, Figure 13.29 illustrates the contents of the heap for
the example priority queue from Figure 8.8. Since lower values indicate a higher
priority, the item with the highest priority will always be in the root of the min-
heap. When that item is dequeued, the item with the next highest priority will
work its way to the top as the sift-down operation is performed.

“white”0

“black”1 “orange”3

“purple”5 “green”1 “yellow”5

Figure 13.29: Contents of the heap used in the implementation of a priority queue.

When using a heap implemented as an array, the operations of the general
priority queue are very efficient: both the enqueue and dequeue operations have
worst case times of O(log n). An array-based version of the heap is sufficient in
applications where the maximum capacity of the queue is known beforehand. If
the heap is implemented using a Python list, the enqueue and dequeue operations
have worst case times of O(n) since the underlying array may have to expand or
shrink, but amortized cost of O(log n). Table 13.1 compares the worst case times
and amortized cost for various implementations of the unbounded priority queue.

Worst Case Amortized

Implementation Enqueue Dequeue Enqueue Dequeue

Python List O(n) O(n) O(1) O(n)
Linked List O(1) O(n) - -
Heap (array) O(log n) O(log n) - -
Heap (list) O(n) O(n) O(log n) O(log n)

Table 13.1: Time-complexities for various implementations of the bounded priority queue.
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13.5 Heapsort
The simplicity and efficiency of the heap structure can be applied to the sorting
problem. The heapsort algorithm builds a heap from a sequence of unsorted
values and then extracts the items from the heap to create a sorted sequence.

13.5.1 Simple Implementation
Consider the function in Listing 13.11. We create a max-heap with enough capacity
to store all of the values in theSeq. Each value from the sequence is then inserted
into the heap. After that, the values are then extracted from the heap, one at a
time, and stored back into the original sequence structure in reverse order. Since
we are using a max-heap, each time a value is extracted, we get the next largest
value in sorted order.

The heapsort algorithm is very efficient and only requires O(n log n) time in
the worst case. The construction of the heap requires O(n log n) time since there
are n items in the sequence and each call to add() requires log n time. Extracting
the values from the heap and storing them into the sequence structure also requires
O(n log n) time.

Listing 13.11 A simple implementation of the heapsort algorithm.

1 def simpleHeapSort( theSeq ):
2 # Create an array-based max-heap.
3 n = len(theSeq)
4 heap = MaxHeap( n )
5
6 # Build a max-heap from the list of values.
7 for item in theSeq :
8 heap.add( item )
9

10 # Extract each value from the heap and store them back into the list.
11 for i in range( n, 0, -1 ) :
12 theSeq[i] = heap.extract()

13.5.2 Sorting In Place
The implementation of the heapsort algorithm provided in Listing 13.11 has one
drawback: it requires the use of additional storage to build the heap structure.
But we don’t actually need a second array. The entire process of building the heap
and extracting the values can be done in place—that is, within the same sequence
in which the original values are supplied.

Suppose we are given the array of values shown at the bottom of Figure 13.30(a)
and want to sort them using the heapsort algorithm. The first step is to construct
a heap from this sequence of values. As you will see, we can do this within the
same array without the need for additional storage. Remember, the nodes in the
heap occupy the elements of the array from front to back. We can keep the heap
items at the front of the array and those values that have yet to be added to the
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1010

10 51 2 18 4 31 13 5 23 64 29 51 10 2 18 4 31 13 5 23 64 29

(a) (b) 5151

1010

Figure 13.30: Adding the first two values to the heap.

heap at the end of the array. All we have to do is keep track of where the heap
ends and the sequence of remaining values begin.

If we consider the first value in the array, it constitutes a max-heap of one
item, as shown in Figure 13.30(a). When adding a value to a heap, it’s copied
to the first element in the array immediately following the last heap item and
sifted up the tree. The next value, 51, from our sequence that is to be added to
the heap is already in this position. Thus, all we have to do is apply the sift-up
operation to the value, resulting in a max-heap with two items, as illustrated in
Figure 13.30(b). We can repeat this process on each value in the array to create
a max-heap consisting of all the values from the array. This process is illustrated
in Figure 13.31 and includes both the abstract view of the heap and the contents
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22 1313
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51 10 2 18 4 31 13 5 23 64 29
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2323 3131
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64 51 31 18 23 2 13 5 10 4 29
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22 1313
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64 51 31 18 29 2 13 5 10 4 23

2323

Figure 13.31: Adding the remaining values to the heap.
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of the corresponding array. The shaded part of the array indicates the items that
are currently part of the array. The boldfaced value indicates the next item to be
sifted up the tree.

We have shown it is quite easy to build a heap using the same array containing
the values that are to be added to the heap. A similar approach can be used to ex-
tract the values from the heap and create a sorted array using the array containing
the heap. Remember, when the root value is extracted from a heap, the value from
the rightmost leaf at the lowest level is copied to the root node and then sifted
down the tree. Consider the completed heap in Figure 13.32(a). When value 64
is extracted from the heap, the last value in the array, 23, would be copied to
the root node since it corresponds to the rightmost leaf node at the lowest level.
Instead of simply copying this leaf value to the root, we can swap the two values,
as shown in Figure 13.32(b).

The next step in the process of extracting a value from the heap is to remove
the leaf node from the heap. In an array representation, we do this by reducing
a counter indicating the number of items in the heap. In Figure 13.32(c), the
elements comprising the heap are shown with a white background and the value

6464

31315151

1818 2929

441010

22 1313

55

64 51 31 18 29 2 13 5 10 4 23

2323

2323

31315151

1818 2929

441010

22 1313

55

23 51 31 18 29 2 13 5 10 4 64

6464

2323

31315151

1818 2929

441010

22 1313

55

23 51 31 18 29 2 13 5 10 4 64

(b) swap the first and last items in the heap.(a) the original max-heap.

(c) remove the last item from the heap.

5151

31312929

1818 2323

441010

22 1313

55

51 29 31 18 23 2 13 5 10 4 64

(d) sift the root value down the tree.

Figure 13.32: The three steps performed to extract in place a single value from the heap.
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just swapped with the root is shown in a gray background. Notice that value 64 is
the largest value in the original array of unsorted values and when sorted belongs
in this exact position at the end of the array. Finally, the value copied from the
leaf to the root has to be sifted down, as illustrated in Figure 13.32(d).

If we repeat this same process, swapping the root value with the last item in
the subarray that comprises the heap, for each item in the heap we end up with
a sorted array of values in ascending order. Figure 13.33 illustrates the remaining
steps in extracting each value from the heap and storing them in the same array.
The shaded part of the array shows the values that have been removed from the
heap and placed in sorted order while the elements with a white background show
those that comprise the heap are currently part of the array. The boldfaced values
indicate those that were affected by the sift-down operation.
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22 44
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31 29 13 18 23 2 4 5 10 51 64
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55
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55

2244

4 2 5 10 13 18 23 29 31 51 64

44

22

2 4 5 10 13 18 23 29 31 51 64

44

Figure 13.33: The steps in extracting the values from the heap into the same array that
will store the resulting sequence.

The implementation for this improved version of the heapsort algorithm is
provided in Listing 13.12. It does not use the MaxHeap class from earlier, but it
does rely on siftUp() and siftDown() functions like those used with the class.
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Listing 13.12 Improved implementation of the heapsort algorithm.

1 # Sorts a sequence in ascending order using the heapsort.
2 def heapsort( theSeq ):
3 n = len(theSeq)
4 # Build a max-heap within the same array.
5 for i in range( n ) :
6 siftUp( theSeq, i )
7
8 # Extract each value and rebuild the heap.
9 for j in range( n-1, 0, -1) :

10 tmp = theSeq[j]
11 theSeq[j] = theSeq[0]
12 theSeq[0] = tmp
13 siftDown( theSeq, j-1, 0 )

13.6 Application: Morse Code
Morse Code is a type of character encoding originally designed in the late 1830s by
Samuel Morse for use with his telegraph system. Morse Code allowed messages to
be transmitted long distances across telegraph wires and was extensively used by
the American railroad companies. It was first used in 1844 to transmit messages
between Washington and Baltimore. The original code used various patterns of
dots and spaces to represent the letters of the alphabet. While this was sufficient
for use in the United States, the code could not be used in Europe to transmit
non-English text, which contains diacritic marks. To remedy this shortcoming,
Friedrich Clemens Gerke improved on the original Morse Code and developed a
new version that was first used in 1848 to transmit messages in Germany. Gerke’s
version of the code, with minor changes, was standardized in 1851 and became
known as International Morse Code. The original code developed by Samuel Morse
became known as American Morse Code.

The modern International Morse Code represents various letters, symbols, and
digits using sequences of dots (or dits), dashes (or dahs), short gaps, and long gaps.
The short gaps are used to break the sequence between letters and the long gaps
are used to separate words. The most famous is the sequence for SOS:

... --- ...

At this point, you might be wondering why we are discussing Morse Code and
what it has to do with binary trees. Suppose you are given the following sequence:

- .-. . . ... .- .-. . ..-. ..- -.

and would like to know what it means. The most obvious way to decode this
message is to look through a table for each part of the sequence and find the
corresponding letter. When decoded the message reads:

TREES ARE FUN



13.6 Application: Morse Code 405

13.6.1 Decision Trees
Another way to translate the message is with the use of a decision tree. A decision
tree models a sequence of decisions or choices in which selections are made in
stages from among multiple alternatives at each stage. The stages in the decision
are represented as nodes while the branches indicate the decisions that can be
made at each stage.

A common use of the decision tree with which you should be familiar is the
dreaded automated phone menu. When the automated system answers your call, it
starts at the root of the tree and offers several choices from which you can choose.
After making your initial selection, you are presented with a submenu from which
you must make a second selection, and then possibly a third selection, and so on.
The presentation of the menu options by the automated system are the stages in
the decision and represented in the tree as nodes. The menu choices from which
you can select at each stage are indicated by branches from those nodes.

This same idea can be used to decode a Morse Code sequence. While each code
sequence is unique, they do not have unique prefixes. For example, the sequences
for the letters R and S both begin with a dot. To distinguish between the two, we
have to examine more of the sequence. The second symbol in the sequence for R
is a dash, while the sequence for S has a dot. It’s not until the third component
of the sequence that we can fully distinguish between the R and the S. To confuse
the situation even more, the letter A is indicated by the two-symbol sequence of
(.-), which is the sequence prefix for R. A subset of the International Morse Code
is shown here:

A .- F ..-. K -.- P .--. U ..-

B -... G --. L .-.. Q --.- V ...-

C -.-. H .... M -- R .-. W .--

D -.. I .. N -. S ... X -..-

E . J .--- O --- T - Y -.--

Z --..

To help decode a sequence, we can build a decision tree that models Morse
Code, as illustrated in Figure 13.34. The nodes represent the letters and symbols
that are part of Morse Code and the branches provide a selection of either a dot
(left branch) or a dash (right branch). The root node is empty and indicates the
starting position when decoding a sequence.

To decode a given sequence, we start at the root and follow the left or right
branch to the next node based on the current symbol in our sequence. For example,
to decode (.-.), we start at the root and examine the first symbol. Since the first
symbol is a dot, we have to follow the left branch to the next node, which leads
us to node E. Each time we move to a node, we examine the next character in the
sequence. Since the second symbol is a dash, we take the right branch from node
E leading us to node A. From that node, we take the left branch since the third
symbol is a dot. This leads us to node R. After exhausting all of the symbols in
the sequence, the last node visited will contain the character corresponding to the
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Figure 13.34: Morse Code modeled as a binary decision tree.

given sequence. In this case, the sequence (.-.) represents the letter R. The path
of the steps through the tree to decode the sequence is shown in Figure 13.35.

EE TT

AAII

WWRRUUSS

VVHH FF LL JJPP

MMNN

OOGGKKDD

XXBB CC YY

-.

-. -.

-. -.-. -.

-.-. . . -. -.

ZZ QQ

-.

Figure 13.35: Decoding the Morse Code sequence (.-.).

What happens if we try to decode an invalid sequence? For example, try
decoding the sequence (-.-..). This will take us from the root node, right to
node T, left to node N, right to node K, and left to node C. The last symbol in
the sequence is a dot, which indicates we are supposed to take the left branch at
node C, but it has no left child, as illustrated in Figure 13.36. If a null child link is
encountered during the navigation of the tree, we know the sequence is invalid.

13.6.2 The ADT Definition
We can define an abstract data type that can be used to store a Morse Code tree
for use in decoding Morse Code sequences. The ADT only includes two operations:
the constructor and the translate operations.
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null

Figure 13.36: Decoding an invalid Morse Code sequence (-.-..).

Define Morse Code Tree ADT

A Morse Code tree is a decision tree that contains the letters of the alphabet and
other special symbols in its nodes. The nodes are organized based on the Morse
Code sequence corresponding to each letter and symbol.

� MorseCodeTree(): Builds the Morse Code tree consisting of the letters of the
alphabet and other special symbols.

� translate( codeSeq ): Translates and returns the given Morse Code sequence
to its equivalent character if the sequence is valid or returns None otherwise.

We leave the implementation of the ADT as an exercise. The tree has to be
built as part of the constructor. Start with an empty root node and then add
one letter at a time. When adding a letter, follow the branches corresponding to
the code sequence representing the given letter. If a null child link is encountered,
simply add a new empty node and continue following the branches. After reaching
the end of the sequence, the letter being added to the tree is assigned to the last
node visited.

Exercises
13.1 Given a binary tree of size 76, what is the minimum number of levels it can

contain? What is the maximum number of levels?

13.2 Draw all possible binary trees that contain 12 nodes.



408 CHAPTER 13 Binary Trees

13.3 What is the maximum number of nodes possible in a binary tree with 5 levels?

13.4 Given the following binary trees:

(a) (b) (c)

(d) (e)

(a) Indicate all of the structure properties that apply to each tree: full, perfect,
complete.

(b) Determine the size of each tree.

(c) Determine the height of each tree.

(d) Determine the width of each tree.

13.5 Consider the following binary tree:

1414

227878

3939 5252

8383

1717 99

4141

6060 2323

44 1919

(a) Show the order the nodes will be visited in a:

i. preorder traversal
ii. inorder traversal

iii. postorder traversal
iv. breadth-first traversal

(b) Identify all of the leaf nodes.

(c) Identify all of the interior nodes.

(d) List all of the nodes on level 4.
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(e) List all of the nodes in the path to each of the following nodes:

i. 83 ii. 39 iii. 4 iv. 9

(f) Consider node 52 and list the node’s:

i. descendants ii. ancestors iii. siblings

(g) Identify the depth of each of the following nodes:

i. 78 ii. 41 iii. 60 iv. 19

13.6 Determine the arithmetic expression represented by each of the following ex-
pression trees:

//

aa %%

bb 33

++

** //

yy 44xx 33

(a) (b) (c)

//

xx %%

zz 33

++

ww

13.7 Build the expression tree for each of the following arithmetic expressions:

(a) (A * B) / C

(b) A - (B * C) + D / E

(c) (X - Y) + (W * Z) / V

(d) V * W % X + Y - Z

(e) A / B * C - D + E

13.8 Consider the following set of values and use them to build a heap by adding
one value at a time in the order listed:

30 63 2 89 16 24 19 52 27 9 4 45

(a) min-heap (b) max-heap

13.9 Prove or show that the worst case time of the extraction operation on a heap
implemented as an array is O(log n).

13.10 Prove or show that the insertion and extraction operations on a heap im-
plemented as a Python list is O(n) in the worst case. Also show that each
operation has an amortized cost of O(log n).
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Programming Projects
13.1 Implement the function treeSize(root), which computes the number of

nodes in a binary tree.

13.2 Implement the function treeHeight(root), which computes the height of a
binary tree.

13.3 Implement the computeOp(lvalue, operator, rvalue) helper method used
to compute the value of a binary operator when evaluating an expression tree.
Assume all operands in the expression tree are single digits.

13.4 Modify the ExpressionTree class from the chapter to handle the unary op-
erator - and unary mathematical function n!.

13.5 Implement the general Priority Queue ADT using the min-heap implemented
as an array. Instead of having the number of priority levels as an argument
of the constructor, specify the maximum capacity of the queue. In addition,
define the isFull() method that returns True when the queue is full and
False otherwise.

13.6 Implement the general Priority Queue ADT using the min-heap implemented
as a vector. Instead of having the number of priority levels as an argument of
the constructor, specify the maximum capacity of the queue.

13.7 Complete the implementation of the Morse Code Tree ADT.

13.8 Add the operation getCodeSeq(symbol) to the Morse Code Tree ADT, which
accepts a single-character symbol and returns the corresponding Morse Code
sequence for that symbol. None should be returned if the supplied symbol is
invalid.

13.9 Design and implement a program that uses the Morse Code Tree ADT to
decode Morse Code sequences extracted from standard input. Your program
should detect and report any invalid code sequences.



CHAPTER 14
Search Trees

Searching, which has been discussed throughout the text, is a very common op-
eration and has been studied extensively. A linear search of an array or Python
list is very slow, but that can be improved with a binary search. Even with the
improved search time, arrays and Python lists have a disadvantage when it comes
to the insertion and deletion of search keys. Remember, a binary search can only
be performed on a sorted sequence. When keys are added to or removed from an
array or Python list, the order must be maintained. This can be time consuming
since keys have to be shifted to make room when adding a new key or to close the
gap when deleting an existing key. The use of a linked list provides faster insertions
and deletions without having to shift the existing keys. Unfortunately, the only
type of search that can be performed on a linked list is a linear search, even if the
list is sorted. In this chapter, we explore some of the many ways the tree structure
can be used in performing efficient searches.

The tree structure, which was introduced in the last chapter, can be used to
organize dynamic data in a hierarchical fashion. Trees come in various shapes
and sizes depending on their application and the relationship between the nodes.
When used for searching, each node contains a search key as part of its data
entry (sometimes called the payload) and the nodes are organized based on the
relationship between the keys. There are many different types of search trees, some
of which are simply variations of others, and some that can be used to search data
stored externally. But the primary goal of all search trees is to provide an efficient
search operation for quickly locating a specific item contained in the tree.

Search trees can be used to implement many different types of containers,
some of which may only need to store the search keys within each node of the
tree. More commonly, however, applications associate data or a payload with each
search key and use the structure in the same fashion as a Map ADT would be
used. The Map ADT was introduced in Chapter 3, at which time we implemented
it using a list structure. Exercises in several chapters offered the opportunity
to provide new implementations using various data structures. In Chapter 11,

411
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we implemented a hash table version of the Map ADT that improved the search
times. But its efficiency depends on the type of keys stored in the map, since
the choice of hash function can greatly impact the search operation. Throughout
the chapter, we explore several different search trees, each of which we will use to
implement new versions of the Map ADT. To help avoid confusion between the
various implementations, we use a different class name for each implementation.

14.1 The Binary Search Tree
A binary search tree (BST) is a binary tree in which each node contains a search
key within its payload and the tree is structured such that for each interior node V :

� All keys less than the key in node V are stored in the left subtree of V .

� All keys greater than the key in node V are stored in the right subtree of V .

Consider the binary search tree in Figure 14.1, which contains integer search
keys. The root node contains key value 60 and all keys in the root’s left subtree
are less than 60 and all of the keys in the right subtree are greater than 60. If you
examine every node in the keys, you will notice the same key relationship applies
to every node in the tree. Given the relationship between the nodes, an inorder
traversal will visit the nodes in increasing search key order. For the example binary
search tree, the order would be 1 4 12 23 29 37 41 60 71 84 90 100.

6060

90901212

44 4141

2929

2323 3737

7171 100100

848411

Figure 14.1: A binary search tree storing integer search keys.

Our definition of the binary search tree precludes the storage of duplicate keys
in the tree, which makes the implementation of the various operations much easier.
It’s also appropriate for some applications, but the restriction can be changed to
allow duplicate keys, if needed. In addition, for illustration purposes, we only show
the key within each node of our search trees. You should assume the corresponding
data value is also stored in the nodes.

A partial implementation of the binary search tree version of the Map ADT
is shown in Listing 14.1. The remaining code will be added as each operation is
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Listing 14.1 Partial implementation of the Map ADT using a binary search tree.

1 class BSTMap :
2 # Creates an empty map instance.
3 def __init__( self ):
4 self._root = None
5 self._size = 0
6
7 # Returns the number of entries in the map.
8 def __len__( self ):
9 return self._size

10
11 # Returns an iterator for traversing the keys in the map.
12 def __iter__( self ):
13 return _BSTMapIterator( self._root )
14
15 # Storage class for the binary search tree nodes of the map.
16 class _BSTMapNode :
17 def __init__( self, key, value ):
18 self.key = key
19 self.value = value
20 self.left = None
21 self.right = None

discussed throughout the section. As with any binary tree, a reference to the root
node must also be maintained for a binary search tree. The constructor defines
the root field for this purpose and also defines the size field to keep track of
the number of entries in the map. The latter is needed by the len method.
The definition of the private storage class used to create the tree nodes is shown
in lines 16–21.

14.1.1 Searching
Given a binary search tree, you will eventually want to search the tree to determine
if it contains a given key or to locate a specific element. In the last chapter, we
saw that there is a single path from the root to every other node in a tree. If the
binary search tree contains the target key, then there will be a unique path from
the root to the node containing that key. The only question is, how do we know
which path to take?

Since the root node provides the single access point into any binary tree, our
search must begin there. The target value is compared to the key in the root node
as illustrated in Figure 14.2. If the root contains the target value, our search is
over with a successful result. But if the target is not in the root, we must decide
which of two possible paths to take. From the definition of the binary search tree,
we know the key in the root node is larger than the keys in its left subtree and
smaller than the keys in its right subtree. Thus, if the target is less than the root’s
key, we move left and we move right if it’s greater. We repeat the comparison
on the root node of the subtree and take the appropriate path. This process is
repeated until target is located or we encounter a null child link.
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xx

left
subtree

right
subtree

if target < x search
the left subtree

compare target to x

if target > x search
   the right subtree

Figure 14.2: The structure of a binary search tree is based on the search keys.

Suppose we want to search for key value 29 in the binary search tree from
Figure 14.1. We begin by comparing the target to 60. Since the target is less than
60, we move left. The target is then compared to 12. This time we move right
since the target is larger than 12. Next, the target is compared to 41, resulting
in a move to the left. Finally, when we examine the left child of node 41, we find
the target and report a successful search. The path taken to find key 29 in the
example tree is illustrated in Figure 14.3(a) by the dashed directed lines.

What if the target is not in the tree? For example, suppose we want to search
for key 68. We would repeat the same process used to find key 29, as illustrated
in Figure 14.3(b). The difference is what happens when we reach node 71 and
compare it to the target. If 68 were in the the binary search tree, it would have to
be in the left subtree of node 71. But you will notice node 71 does not have a left
child. If we continue in that direction, we will “fall” off the tree. Thus, reaching a
null child link during the search for a target key indicates an unsuccessful search.

The binary search tree operations can be implemented iteratively or with the
use of recursion. We implement recursive functions for each operation and leave
the iterative versions as exercises. The bstSearch() helper method, provided in
lines 14–22 of Listing 14.2, recursively navigates a binary search tree to find the
node containing the target key. The method has two base cases: the target is
contained in the current node or a null child link is encountered. When a base case
is reached, the method returns either a reference to the node containing the key or
None, back through all of the recursive calls. The latter indicates the key was not

6060

90901212

44 4141

2929

2323 3737

7171 100100

848411
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null
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11

(a) (b)

Figure 14.3: Searching a binary search tree: (a) successful search for 29 and (b) unsuc-
cessful search for 68.
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Listing 14.2 Searching for a target key in a binary search tree.

1 class BSTMap :
2 # ...
3 # Determines if the map contains the given key.
4 def __contains__( self, key ):
5 return self._bstSearch( self._root, key ) is not None
6
7 # Returns the value associated with the key.
8 def valueOf( self, key ):
9 node = self._bstSearch( self._root, key )

10 assert node is not None, "Invalid map key."
11 return node.value
12
13 # Helper method that recursively searches the tree for a target key.
14 def _bstSearch( self, subtree, target ):
15 if subtree is None : # base case
16 return None
17 elif target < subtree.key : # target is left of the subtree root.
18 return self._bstSearch( subtree.left )
19 elif target > subtree.key : # target is right of the subtree root.
20 return self._bstSearch( subtree.right )
21 else : # base case
22 return subtree

found in the tree. The recursive call is made by passing the link to either the left
or right subtree depending on the relationship between the target and the key in
the current node.

You may be wondering why we return a reference to the node and not just a
boolean value to indicate the success or failure of the search. This allows us to
use the same helper method to implement both the contains and valueOf()
methods of the Map class. Both call the recursive helper method to locate the node
containing the target key. In doing so, the root node reference has to be passed to
the helper to initiate the recursion. The value returned from bstSearch() can be
evaluated to determine if the key was found in the tree and the appropriate action
can be taken for the corresponding Map ADT operation.

A binary search tree can be empty, as indicated by a null root reference, so
we must ensure any operation performed on the tree also works when the tree is
empty. In the bstSearch() method, this is handled by the first base case on the
first call to the method.

14.1.2 Min and Max Values
Another operation similar to a search that can be performed on a binary search
tree is finding the minimum or maximum key values. Given the definition of the
binary search tree, we know the minimum value is either in the root or in a node
to its left. But how do we know if the root is the smallest value and not somewhere
in its left subtree? We could compare the root to its left child, but if you think
about it, there is no need to compare the individual keys. The reason has to do
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with the relationship between the keys. If the root node contains keys in its left
subtree, then it cannot possibly contain the minimum key value since all of the
keys to the left of the root are smaller than the root. What if the root node does
not have a left child? In this case, the root would contain the smallest key value
since all of the keys to the right are larger than the root.

If we applied the same logic to the left child of the root node (assuming it has
a left child) and then to that node’s left child and so on, we will eventually find
the minimum key value. That value will be found in a node that is either a leaf
or an interior node with no left child. It can be located by starting at the root
and following the left child links until a null link is encountered, as illustrated in
Figure 14.4. The maximum key value can be found in a similar fashion.

6060

90901212

44 4141

2929

2323 3737

7171 100100

8484

Traverse left as
far as possible.

minimum
key

11

Figure 14.4: Finding the minimum or maximum key in a binary search tree.

Listing 14.3 provides a recursive helper method for finding the node that con-
tains the minimum key value in the binary search tree. The method requires the
root of the tree or of a subtree as an argument. It returns either a reference to the
node containing the smallest key value or None when the tree is empty.

Listing 14.3 Find the element with the minimum key value in a binary search tree.

1 class BSTMap :
2 # ...
3 # Helper method for finding the node containing the minimum key.
4 def _bstMinumum( self, subtree ):
5 if subtree is None :
6 return None
7 elif subtree.left is None :
8 return subtree
9 else :

10 return self._bstMinimum( subtree.left )
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14.1.3 Insertions
When a binary search tree is constructed, the keys are added one at a time. As
the keys are inserted, a new node is created for each key and linked into its proper
position within the tree. Suppose we want to build a binary search tree from the
key list [60, 25, 100, 35, 17, 80] by inserting the keys in the order they are
listed. Figure 14.5 illustrates the steps in building the tree, which you can follow
as we describe the process.

6060 6060

2525

6060

2525 100100

6060

2525 100100

3535

6060

2525 100100

35351717

6060

1001002525

1717 3535 8080

(a) Insert 60. (b) Insert 25. (c) Insert 100.

(d) Insert 35. (e) Insert 17. (f) Insert 80.

Figure 14.5: Building a binary tree by inserting the keys [60, 25, 100, 35, 17, 80].

We start by inserting value 60. A node is created and its data field set to that
value. Since the tree is initially empty, this first node becomes the root of the tree
(part a). Next, we insert value 25. Since it is smaller than 60, it has to be inserted
to the left of the root, which means it becomes the left child of the root (part b).
Value 100 is then inserted in a node linked as the right child of the root since it is
larger than 60 (part c). What happens when value 35 is inserted? The root already
has both its left and right children. When new keys are inserted, we do not modify
the data fields of existing nodes or the links between existing nodes. Thus, there is
only one location in which key value 35 can be inserted into our current tree and
still maintain the search tree property. It has to be inserted as the right child of
node 25 (part d). You may have noticed the pattern that is forming as new nodes
are added to the binary tree. The new nodes are always inserted as a leaf node
in its proper position such that the binary search tree property is maintained. We
conclude this example by inserting the last two keys, 35 and 80, into the tree (parts
e and f).

Working through this example by hand, it was easy to see where each new node
had to be linked into the tree. But how do we insert the new keys in program code?
Suppose we want to insert key 30 into the tree we built by hand. What happens
if we use the bstSearch() method and search for key 30? The search will lead
us to node 35 and we then fall off the tree when attempting to follow its left child
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null

(a) (b)

Figure 14.6: Inserting a new node into a binary search tree: (a) searching for the node’s
location and (b) linking the new node into the tree.

link, as illustrated in Figure 14.6(a). Notice that this is the exact location where
the new key needs to be inserted.

We can use a modified version of the search operation to insert new keys into a
binary search tree, as shown in Listing 14.4. To describe how the recursive method
works, suppose we want to insert key value 30 into the tree we built by hand in
Figure 14.5. Figure 14.7 illustrates the method’s view of the tree in each invocation
and shows the changes to the tree as the specific instructions are executed.

Remember, given the recursive definition of a binary tree, each node is itself
the root of a subtree. As the bstInsert() recursive method navigates through

Listing 14.4 Insert a key into a binary tree.

1 class BSTMap :
2 # ...
3 # Adds a new entry to the map or replaces the value of an existing key.
4 def add( self, key, value ):
5 # Find the node containing the key, if it exists.
6 node = self._bstSearch( key )
7 # If the key is already in the tree, update its value.
8 if node is not None :
9 node.value = value

10 return False
11 # Otherwise, add a new entry.
12 else :
13 self._root = self._bstInsert( self._root, key, value )
14 self._size += 1
15 return True
16
17 # Helper method that inserts a new item, recursively.
18 def _bstInsert( self, subtree, key, value ):
19 if subtree is None :
20 subtree = _BSTMapNode( key, value )
21 elif key < subtree.key :
22 subtree.left = self._bstInsert( subtree.left, key, value )
23 elif key > subtree.key :
24 subtree.right = self._bstInsert( subtree.right, key, value )
25 return subtree
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(b) bstInsert(subtree.left,key) (c) bstInsert(subtree.right,key)

(d) bstInsert(subtree.left,key) (e) subtree = TreeNode(key) (f) subtree.left = bstInsert(...)

(g) subtree.right = bstInsert(...) (h) subtree.left = bstInsert(...) (i) root = bstInsert(...)

Figure 14.7: The recursive steps of the _bstInsert() method when inserting 30 into the
binary search tree. Each tree shows the results after performing the indicated instruction.

the tree, the root of the current subtree will be the node of interest. To insert
key value 30, the method must search for its ultimate location by recursively nav-
igating deeper into the tree following either the left or right branch at each node
as appropriate. These recursive steps are shown in parts (a – c) of Figure 14.7.
The gray nodes indicate the root of the subtree currently being processed by the
current invocation of the method. The dashed lines indicate the direction we must
follow to find the correct path through the tree and then the path followed during
the unwinding of the recursion.
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The base case is reached when the empty subtree is encountered after taking
the left child link from node 35, as shown in (part d). At this point, a new tree
node is created and its data field set to the new key 30 (part e). A reference to this
new node is then returned and the recursion begins unwinding. The first step in
the unwinding takes us back to node 35. The reference returned by the recursive
call is assigned to the left field of the subtree node, resulting in the new node
being linked into the tree. As the recursion continues unwinding, shown in parts
(f – i), the current subtree reference is returned and relinked to its parent. This
does not change the structure of the tree since the same references are simply being
reassigned. This is necessary given the way we link the new node to its parent and
to allow the method to be used with an initially empty tree. When inserting the
first key into the tree, the root reference will be null. If we called the method on
an empty tree with self._bstInsert( self._root, 30 ), the new node will be
created within the method, but the reference to the new node is not assigned to
the root field and the tree remains empty. Since method arguments are passed
by value in Python, we have to return the reference and explicitly assign it to the
root field as is done in the add() method. Finally, after the new item is added

to the tree, the size field is incremented by one to reflect this change.
You may have noticed the insertion method lacks a final else clause on the

conditional statement, which would handle the case when the new key equals an
existing key. If a duplicate key is encountered during the search phase, we simply
return the subtree reference to stop the recursion and allow for a proper unwinding.

14.1.4 Deletions
Removing an element from a binary search tree is a bit more complicated than
searching for an element or inserting a new element into the tree. A deletion
involves searching for the node that contains the target key and then unlinking the
node to remove it from the tree. When a node is removed, the remaining nodes
must preserve the search tree property. There are three cases to consider once the
node has been located:

1. The node is a leaf.

2. The node has a single child.

3. The node has two children.

The first step in removing an element is to find the node that contains the
key. This can be done in a manner similar to that used when searching for the
location to insert a new element. Once the node is located, it has to be unlinked to
remove it from the tree. We consider the three cases separately and then provide a
complete listing of the recursive bstRemove() method and its use in implementing
the remove() method.
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Removing a Leaf Node

Removing a leaf node is the easiest among the three cases. Suppose we want to
delete key value 23 from the binary search tree in Figure 14.1. After finding the
node, it has to be unlinked, which can be done by setting the left child field of its
parent, node 29, to None, as shown in Figure 14.8(a).

Removing a leaf node in our recursive method is as simple as returning a
null reference. The bstRemove() method uses the same technique of returning a
reference from each recursive call as the insertion operation. By returning None
back to the parent node, a null reference will be assigned to the appropriate link
field in the parent, thus unlinking it from the tree, as shown in Figure 14.8(b).
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Figure 14.8: Removing a leaf node from a binary search tree: (a) finding the node and
unlinking it from its parent; and (b) the tree after removing 23.

Removing an Interior Node with One Child

If the node to be removed has a single child, it can be either the left or right child.
Suppose we want to delete key value 41 from the binary search tree in Figure 14.1.
The node containing 41 has a subtree linked as the left child. If we were to simply
return None back to the parent (12) as we did for a leaf node, not only would
node 41 be removed, but we would also lose all of its descendants, as illustrated in
Figure 14.9.

To remove node 41, we will have to do something with its descendants. But
don’t worry, we don’t have to unlink each descendant and add them back to the
tree. Since node 41 contains a single child, all of its descendants will either have
keys that are smaller than 41 or all of them will be larger. In addition, given that
node 41 is the right child of node 12, all of the descendants of node 41 must also
be larger than 12. Thus, we can set the link in the right child field of node 12
to reference node 29, as illustrated in Figure 14.10. Node 29 now becomes the
right child of node 12 and all of the descendants of node 41 will be properly linked
without losing any nodes.

To accomplish this removal in the recursive method, we need only change the
link in the appropriate child field of the parent to reference the child of the node
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Figure 14.9: Incorrectly unlinking the interior node.

being deleted. Selecting the child field of the parent to change is automatically
handled by the assignment performed upon return of the recursive call. All we
have to do is return the appropriate child link in the node being deleted.
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Figure 14.10: Removing an interior node (41) with one child: (a) redirecting the link from
the node’s parent to its child subtree; and (b) the tree after removing 41.

Removing an Interior Node with Two Children

The most difficult case is when the node to be deleted has two children. For exam-
ple, suppose we want to remove node 12 from the binary search tree in Figure 14.1.
Node 12 has two children, both of which are the roots of their own subtrees. If we
were to apply the same approach used with removing an interior node containing
one child, which child do we choose to replace the parent and what happens to the
other child and its subtree? Figure 14.11 illustrates the result of replacing node 12
with its right child. This leaves the left subtree unlinked and thus removed from
the tree. It would be possible to link the left child and its subtree as the left child
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of node 23. But this will increase the height of the tree, which we will see later
causes the tree operations to be less efficient.
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Figure 14.11: Attempting to remove an interior node with two children by replacing the
node with one of its children.

The keys in a binary search tree are arranged such that an inorder traversal
produces a sorted key sequence. Thus, each node has a logical predecessor and
successor. For node 12, its predecessor is node 4 and its successor is node 23, as
illustrated in Figure 14.12. Instead of attempting to replace the node with one
of its two children, we can replace it with one of these nodes, both of which will
either be a leaf or an interior node with one child. Since we already know how to
remove a leaf and a one-child interior node, the one selected to replace node 12
can then easily be removed from the tree. Removing an interior node with two
children requires three steps:

1. Find the logical successor, S, of the node to be deleted, N .

2. Copy the key from node S to node N .

3. Remove node S from the tree.
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Figure 14.12: The logical successor and predecessor of node 12.
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The latter two steps are straightforward. Once we have found the successor,
we can simply copy the data from one node to the other. In addition, since we
already know how to remove a leaf node or an interior node with one child we can
apply the same method to remove the original node containing the successor.

But how do we find the successor of a node and where might it be located in
the tree? We know the successor is the smallest key value from among those that
are larger than the given node. In our example tree, that would be node 23. Based
on the definition of the binary search tree, the smallest key larger than a given
node is either its parent or somewhere in its right subtree. Since node 12 has two
children, the successor will be in its right subtree, which reduces the set of nodes to
be searched. Figure 14.13 illustrates the steps when applied to our sample binary
search tree.

Since we already know how to find the minimum key in a binary search tree as
was implemented in bstMinimum(), we can use this method but apply it to the
right subtree of the node being deleted. This step is illustrated in Figure 14.13(a).
After finding the element that contains the successor key, we copy it to the node
containing the element being removed, as shown in Figure 14.13(b).
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Figure 14.13: The steps in removing a key from a binary search tree: (a) find the node,
N , and its successor, S; (b) copy the successor key from node N to S; (c) remove the
successor key from the right subtree of N ; and (d) the tree after removing 12.
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After copying the element containing the successor key, the node originally
containing the successor has to be removed from the right subtree, as shown in
Figure 14.13(c). This can be done by calling the bstRemove() method and passing
it the root of the subtree. The result of removing the successor node is illustrated
in Figure 14.13(d).

The bstRemove() method is shown in Listing 14.5 along with the remove()
map operation, which uses the recursive helper method to remove an entry from
the tree. The size field is decremented to reflect the change.

Listing 14.5 Delete a key from the binary search tree.

1 class BSTMap :
2 # ...
3 # Removes the map entry associated with the given key.
4 def remove( self, key ):
5 assert key in self, "Invalid map key."
6 self._root = self._bstRemove( self._root, key )
7 self._size -= 1
8
9 # Helper method that removes an existing item recursively.

10 def _bstRemove( self, subtree, target ):
11 # Search for the item in the tree.
12 if subtree is None :
13 return subtree
14 elif target < subtree.key :
15 subtree.left = self._bstRemove( subtree.left, target )
16 return subtree
17 elif target > subtree.key :
18 subtree.right = self._bstRemove( subtree.right, target )
19 return subtree
20 # We found the node containing the item.
21 else :
22 if subtree.left is None and subtree.right is None :
23 return None
24 elif subtree.left is None or subtree.right is None :
25 if subtree.left is not None :
26 return subtree.left
27 else :
28 return subtree.right
29 else
30 successor = self._bstMinimum( subtree.right )
31 subtree.key = successor.key
32 subtree.value = successor.value
33 subtree.right = self._bstRemove( subtree.right, successor.key )
34 return subtree

14.1.5 Efficiency of Binary Search Trees
The time-complexities for the binary search tree operations are listed in Table 14.1.
This evaluation assumes the tree contains n nodes. We begin with the bstSearch()



426 CHAPTER 14 Search Trees

method. In searching for a target key, the function starts at the root node and
works its way down into the tree until either the key is located or a null link is
encountered. The worst case time for the search operation depends on the number
of nodes that have to be examined.

In the previous chapter, we saw that the worst case time of a tree traversal
was linear since it visited every node in the tree. When a null child link is encoun-
tered, the tree traversal backtracks to follow the other branches. During a search,
however, the function never backtracks; it only moves down the tree, following one
branch or the other at each node. Note that the recursive function does unwind
in order to return to the location in the program where it was first invoked, but
during the unwinding other branches are not examined. The search follows a single
path from the root down to the target node or to the node at which the search
falls off the tree.

The worst case occurs when the longest path in the tree is followed in search
of the target and the longest path is based on the height of the tree. Binary trees
come in many shapes and sizes and their heights can vary. But, as we saw in the
previous chapter, a tree of size n can have a minimum height of roughly log n when
the tree is complete and a maximum height of n when there is one node per level.
If we have no knowledge about the shape of the tree and its height, we have to
assume the worst and in this case that would be a tree of height n. Thus, the time
required to find a key in a binary search tree is O(n) in the worst case.

Searching for the minimum key in a binary search tree is also a linear time
operation. Even though it does not compare keys, it does have to navigate through
the tree by always taking the left branch starting from the root. In the worst case,
there will be one node per level with each node linked to its parent via the left
child link.

The bstInsert() method, which implements the algorithm for inserting a
new element into the tree, performs a search to find where the new key belongs in
the tree. We know from our earlier analysis the search operation requires linear
time in the worst case. How much work is done after locating the parent of the
node that will contain the new element? The only work done is the creation of
a new node and returning its link to the parent, which can be done in constant
time. Thus, the insertion operation requires O(n) time in the worst case. The
bstRemove() method also requires O(n) time, the analysis of which is left as an

exercise.

Operation Worst Case

bstSearch(root, k) O(n)

bstMinimum(root) O(n)

bstInsert(root, k) O(n)

bstDelete(root, k) O(n)

traversal O(n)

Table 14.1: Time-complexities for the binary search tree operations.
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14.2 Search Tree Iterators
The definition of the Search Tree ADT specifies an iterator that can be used to
traverse through the keys contained in the tree. The implementation of the iterators
for use with the linear list structures were rather simple. For the sequence types,
we were able to initialize an index variable for accessing the elements that was
incremented after each iteration of the for loop. With a linked list, the iterator
can define and use an external reference that is initialized to the head node and
then advanced through the list with each iteration of the loop.

Traversals can be performed on a binary search tree, but this requires a recursive
solution. We cannot easily advance to the next key without moving down into the
tree and then backing up each time a leaf is encountered. One solution is to have
the iterator build an array of elements by recursively traversing the tree, which
we can then step through as the iterator progresses just as we did with the linear
structures. An iterator using this approach is provided in Listing 14.6.

While this approach works, it requires the allocation of additional storage space,
which can be significant if the tree contains a large number of elements. As an
alternative, we can perform a recursive traversal with the use of a stack. Remember,
recursion simulates the use of a stack without having to directly perform the push
and pop operations. Any recursive function or method can be implemented using a

Listing 14.6 An iterator for the binary search tree using an array.

1 class _BSTMapIterator :
2 def __init__( self, root, size ):
3 # Creates the array and fills it with the keys.
4 self._theKeys = Array( size )
5 self._curItem = 0 # Keep track of the next location in the array.
6 self._bstTraversal( root )
7 self._curItem = 0 # Reset the current item index.
8
9 def __iter__( self ):

10 return self
11
12 # Returns the next key from the array of keys
13 def __next__( self ):
14 if self._curItem < len( self._theKeys ) :
15 key = self._theKeys[ self._curItem ]
16 self._curItem += 1
17 return key
18 else :
19 raise StopIteration
20
21 # Performs an inorder traversal used to build the array of keys.
22 def _bstTraversal( self, subtree ):
23 if subtree is not None :
24 self._bstTraversal( subtree.left )
25 self._theKeys[ self._curItem ] = subtree.key
26 self._curItem += 1
27 self._bstTraversal( subtree.right )
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software stack. For the tree traversal, node references are pushed onto the stack as
it moves down into the tree and the references are popped as the process backtracks.
Listing 14.7 shows the implementation of the iterator using a software stack.

Listing 14.7 An iterator for the binary search tree using a software stack.

1 class _BSTMapIterator :
2 def __init__( self, root ):
3 # Create a stack for use in traversing the tree.
4 self._theStack = Stack()
5 # We must traverse down to the node containing the smallest key
6 # during which each node along the path is pushed onto the stack.
7 self._traverseToMinNode( root )
8
9 def __iter__( self ):

10 return self
11
12 # Returns the next item from the BST in key order.
13 def __next__( self ):
14 # If the stack is empty, we are done.
15 if self._theStack.isEmpty() :
16 raise StopIteration
17 else :
18 # The top node on the stack contains the next key.
19 node = self._theStack.pop()
20 key = node.key
21 # If this node has a subtree rooted as the right child, we must
22 # find the node in that subtree that contains the smallest key.
23 # Again, the nodes along the path are pushed onto the stack.
24 if node.right is not None :
25 self._traverseToMinNode( node.right )
26
27 # Traverses down the subtree to find the node containing the smallest
28 # key during which the nodes along that path are pushed onto the stack.
29 def _traverseToMinNode( self, subtree ):
30 if subtree is not None :
31 self._theStack.push( subtree )
32 self._traverseToMinNode( subtree.left )

14.3 AVL Trees
The binary search tree provides a convenient structure for storing and searching
data collections. The efficiency of the search, insertion, and deletion operations
depend on the height of the tree. In the best case, a binary tree of size n has a
height of log n, but in the worst case, there is one node per level, resulting in a
height of n. Thus, it would be to our advantage to try to build a binary search
tree that has height log n.

If we were constructing the tree from the complete set of search keys, this
would be easy to accomplish. The keys can be sorted in ascending order and then
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using a technique similar to that employed with the linked list version of the merge
sort, the interior nodes can be easily identified. But this requires knowing all of
the keys up front, which is seldom the case in real applications where keys are
routinely being added and removed. We could rebuild the binary search tree each
time a new key is added or an existing one is removed. But the time to accomplish
this would be extreme in comparison to using a simple brute-force search on one
of the sequential list structures. What we need is a way to maintain the optimal
tree height in real time, as the entries in the tree change.

The AVL tree , which was invented by G. M. Adel’son-Velskii and Y. M.
Landis in 1962, improves on the binary search tree by always guaranteeing the
tree is height balanced, which allows for more efficient operations. A binary tree
is balanced if the heights of the left and right subtrees of every node differ by at
most 1. Figure 14.14 illustrates two examples of AVL trees.
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Figure 14.14: Examples of balanced binary search trees.

With each node in an AVL tree, we associate a balance factor , which indicates
the height difference between the left and right branch. The balance factor can be
one of three states:

left high: When the left subtree is higher than the right subtree.

equal high: When the two subtrees have equal height.

right high: When the right subtree is higher than the left subtree.

The balance factors of the tree nodes in our illustrations are indicated by sym-
bols: > for a left high state, = for the equal high state, and < for a right high state.
When a node is out of balance, we will use either << or >> to indicate which subtree
is higher.

The search and traversal operations are the same with an AVL tree as with a
binary search tree. The insertion and deletion operations have to be modified in
order to maintain the balance property of the tree as new keys are inserted and
existing ones removed. By maintaining a balanced tree, we ensure its height never
exceeds 1.44 log n. This height is sufficient for providing O(log n) time operations
even in the worst case.
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14.3.1 Insertions
Inserting a key into an AVL tree begins with the same process used with a binary
search tree. We search for the new key in the tree and add a new node at the child
link where we fall off the tree. When a new key is inserted into an AVL tree, the
balance property of the tree must be maintained. If the insertion of the new key
causes any of the subtrees to become unbalanced, they will have to be rebalanced.

Some insertions are simpler than others. For example, suppose we want to
add key 120 to the sample AVL tree from Figure 14.14(a). Following the insertion
operation of the binary search tree, the new key will be inserted as the right child
of node 100, as illustrated in Figure 14.15(a). The tree remains balanced since the
insertion does not change the height of any subtree, but it does cause a change
in the balance factors. After the key is inserted, the balance factors have to be
adjusted in order to determine if any subtree is out of balance. There is a limited
set of nodes that can be affected when a new key is added. This set is limited to
the nodes along the path to the insertion point. Figure 14.15(b) shows the new
balance factors after key 120 is added.
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Figure 14.15: A simple insertion into an AVL tree: (a) with key 120 inserted; and (b) the
new balance factors.

What happens if we add key 28 to the AVL? The new node is inserted as the
left child of node 30, as illustrated in Figure 14.16(a). When the balance factors
are recalculated, as in Figure 14.16(b), we can see all of the subtrees along the
path that are above node 30 are now out of balance, which violates the AVL
balance property. For this example, we can correct the imbalance by rearranging
the subtree rooted at node 35, as illustrated in Figure 14.16(c).

Rotations

Multiple subtrees can become unbalanced after inserting a new key, all of which
have roots along the insertion path. But only one will have to be rebalanced:
the one deepest in the tree and closest to the new node. After inserting the key,
the balance factors are adjusted during the unwinding of the recursion. The first
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Figure 14.16: An insertion that causes the AVL tree to become unbalanced: (a) the new
key is inserted; (b) the balance factors showing an out-of-balance tree; and (c) the subtree
after node 35 is rearranged.

subtree encountered that is out of balance has to be rebalanced. The root node of
this subtree is known as the pivot node .

An AVL subtree is rebalanced by performing a rotation around the pivot node.
This involves rearranging the links of the pivot node, its children, and possibly
one of its grandchildren. The actual modifications depend on which descendant’s
subtree of the pivot node the new key was inserted into and the balance factors.
There are four possible cases:

� Case 1: This case, as illustrated in Figure 14.17, occurs when the balance
factor of the pivot node (P ) is left high before the insertion and the new
key is inserted into the left child (C) of the pivot node. To rebalance the
subtree, the pivot node has to be rotated right over its left child. The rotation
is accomplished by changing the links such that P becomes the right child of
C and the right child of C becomes the left child of P .
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Figure 14.17: Case 1: a right rotation of the pivot node over its left child.
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� Case 2: This case involves three nodes: the pivot (P ), the left child of the pivot
(C), and the right child (G) of C. For this case to occur, the balance factor
of the pivot is left high before the insertion and the new key is inserted into
either the right subtree of C. This case, which is illustrated in Figure 14.18,
requires two rotations. Node C has to be rotated left over node V and the
pivot node has to be rotated right over its left child. The link modifications
required to accomplish this rotation include setting the right child of G as the
new left child of the pivot node, changing the left child of G to become the
right child of C, and setting C to be the new left child of G.
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Figure 14.18: Case 2: a double rotation with the pivot’s left child rotated left over its
right child and the pivot rotated right over its left child.

� Cases 3 and 4: The third case is a mirror image of the first case and the
fourth case is a mirror image of the second case. The difference is the new key
is inserted in the right subtree of the pivot node or a descendant of its right
subtree. The two cases are illustrated in Figure 14.19.

New Balance Factors

When a new key is inserted into the tree, the balance factors of the nodes along
the path from the root to the insertion point may have to be modified to reflect
the insertion. The balance factor of a node along the path changes if the subtree
into which the new node was inserted grows taller. The new balance factor of a
node depends on its current balance factor and the subtree into which the new
node was inserted. The resulting balance factors are provided here:

current factor left subtree right subtree
> >> =

= > <

< = <<

Modifications to the balance factors are made in reverse order as the recursion
unwinds. When a node has a left high balance and the new node is inserted into
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Figure 14.19: Cases 3 (top) and 4 (bottom) are mirror images of cases 1 and 2.

its left child or it has a right high balance and the new node is inserted into its
right child, the node is out of balance and its subtree has to be rebalanced. After
rebalancing, the subtree will shrink by one level, which results in the balance factors
of its ancestors remaining the same. The balance factors of the ancestors will also
remain the same when the balance factor changes to equal high.

After a rotation is performed, the balance factor of the impacted nodes have
to be changed to reflect the new node heights. The changes required depend on
which of the four cases triggered the rotation. The balance factor settings in cases
2 and 4 depend on the balance factor of the original pivot nodes grandchild (the
right child of node L or the left child of node R). The new balance factors for the
nodes involved in a rotation are provided in Table 14.2.

Figure 14.20 illustrates the construction of an AVL tree by inserting the keys
from the list [60, 25, 35, 100, 17, 80], one key at a time. Each tree in the
figure shows the results after performing the indicate operation. Two double rota-
tions are required to construct the tree: one after node 35 is inserted and one after
node 80 is inserted.

14.3.2 Deletions
When an entry is removed from an AVL tree, we must ensure the balance property
is maintained. As with the insert operation, deletion begins by using the corre-
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original G new P new L new R new G

case 1 · = = · ·
case 2 > < = · =

= = = · =

< = > =

case 3 · = · = ·
case 4 > = · = <

= = · = =

< = · = >

Table 14.2: The new balance factors for the nodes after a rotation.
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Figure 14.20: Building an AVL tree from the list of keys [60, 25, 35, 100, 17, 80].
Each tree shows the results after performing the indicated operation.
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sponding operation from the binary search tree. After removing the targeted entry,
subtrees may have to be rebalanced. For example, suppose we want to remove key
17 from the AVL tree in Figure 14.21(a). After removing the leaf node, the subtree
rooted at node 25 is out of balance, as shown in Figure 14.21(b). A left rotation
has to be performed pivoting on node 25 to correct the imbalance, as shown in
Figure 14.21(c).
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Figure 14.21: A deletion that causes the AVL tree to become unbalanced: (a) the node is
located; (b) the balance factors change showing an out-of-balance tree; and (c) the tree
after a left rotation.

As with an insertion, the only subtrees that can become unbalanced are those
along the path from the root to the original node containing the target. Remember,
if the key being removed is in an interior node, its successor is located and copied to
the node and the successor’s original node is removed. In the insertion operation,
at most one subtree can become unbalanced. After the appropriate rotation is
performed on the subtree, the balance factors of the node’s ancestors do not change.
Thus, it restores the height-balance property both locally at the subtree and
globally for the entire tree. This is not the case with a deletion. When a subtree
is rebalanced due to a deletion, it can cause the ancestors of the subtree to then
become unbalanced. This effect can ripple up all the way to the root node. So, all
of the nodes along the path have to be evaluated and rebalanced if necessary.

14.3.3 Implementation
A partial implementation of the Map ADT using a balanced binary search tree is
provided in Listing 14.8. The implementation of the non-helper methods is very
similar to that of the binary search tree version. Since the traversal and search
operations of the AVL tree are identical to those of the binary search tree, the
valueOf() method can use the bstSearch() helper method and the iter
method can create an instance of the BSTMapIterator. Of course, we assume the
implementation of these components are included within the AVLMap class. The
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Listing 14.8 Partial implementation of the avltree.py module.

1 # Constants for the balance factors.
2 LEFT_HIGH = 1
3 EQUAL_HIGH = 0
4 RIGHT_HIGH = -1
5
6 # Implementation of the Map ADT using an AVL tree.
7 class AVLMap :
8 def __init__( self ):
9 self._root = None

10 self._size = 0
11
12 def __len__( self ):
13 return self._size
14
15 def __contains__( self, key ):
16 return self._bstSearch( self._root, key ) is not None
17
18 def add( self, key, value ):
19 node = self._bstSearch( key )
20 if node is not None :
21 node.value = value
22 return False
23 else :
24 (self._root, tmp) = self._avlInsert( self._root, key, value )
25 self._size += 1
26 return True
27
28 def valueOf( self, key ):
29 node = self._bstSearch( self._root, key )
30 assert node is not None, "Invalid map key."
31 return node.value
32
33 def remove( self, key ):
34 assert key in self, "Invalid map key."
35 (self._root, tmp) = self._avlRemove( self._root, key )
36 self._size -= 1
37
38 def __iter__( self ):
39 return _BSTMapIterator( self._root )
40
41 # Storage class for creating the AVL tree node.
42 class _AVLMapNode :
43 def __init__( self, key, value ):
44 self.key = key
45 self.value = value
46 self.bfactor = EQUAL_HIGH
47 self.left = None
48 self.right = None

only change required to the add() and remove() methods is that each method
must call an AVL specific helper method. We provide the implementation for
adding a new element to an AVL tree and leave the removal as an exercise.
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The nodes in an AVL tree must store their balance factor in addition to the
key, data, and two child links. The AVLTreeNode is provided in lines 42–48 of
Listing 14.8. We also create and initialize three named constants to represent the
three balance factor values. By using named constants, we avoid possible confusion
in having to remember what value represents which of the possible balance factors.

The implementation of the insertion operation is divided into several helper
methods for a better modular solution. First, we provide helper methods for per-
forming the left and right rotations, as shown in Listing 14.9. A right rotation on
a given pivot node is performed using avlRotateRight(). The operation is illus-
trated in Figure 14.17. The avlRotateLeft() function handles a left rotation, as
illustrated in the top of Figure 14.19. Both methods return a reference to the new
root node of the subtree after the rotation.

Listing 14.9 Helper functions for performing the AVL tree rotations.

1 class AVLMap :
2 # ...
3 # Rotates the pivot to the right around its left child.
4 def _avlRotateRight( self, pivot ):
5 C = pivot.left
6 pivot.left = C.right
7 C.right = pivot
8 return C
9

10 # Rotates the pivot to the left around its right child.
11 def _avlRotateLeft( self, pivot ):
12 C = pivot.right
13 pivot.right = C.left
14 C.left = pivot
15 return C

When a subtree becomes unbalanced, we have to determine which of the four
possible cases caused the event. Cases 1 and 3 occur when the left subtree of the
pivot node is two levels higher than the right subtree, whereas cases 2 and 4 occur
when the right subtree becomes two levels higher than the left. We divide the cases
into two groups based on which subtree of the pivot node is higher.

The avlLeftBalance() method, provided in Listing 14.10, handles the rota-
tions when the left subtree is higher. To distinguish between the two cases, we have
to examine the balance factor of the pivot node’s left child. Case one occurs when
the left child has a factor of left high (its left child is higher). For this case, the
balance factors are adjusted appropriately and a right rotation is performed using
the avlRightRotate() method, as shown in lines 9–13. Case 3 occurs when the
balance factor of the left child of the pivot node is right high. Note that the case
of the pivot’s left child having equal balance can never occur, so we do not have to
check for this condition. After setting the balance factors, case 3 requires a double
rotation, as shown in lines 16–34. We first perform a left rotation on the right child
(C) of the pivot node. The root node of the subtree resulting from this rotation
becomes the new left child of the pivot node. A right rotation is then performed on
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Listing 14.10 Helper functions used to rebalance AVL subtrees.

1 class AVLMap :
2 # ...
3 # Rebalance a node when its left subtree is higher.
4 def _avlLeftBalance( self, pivot ):
5 # Set L to point to the left child of the pivot.
6 C = pivot.left
7
8 # See if the rebalancing is due to case 1.
9 if C.bfactor == LEFT_HIGH :

10 pivot.bfactor = EQUAL_HIGH
11 C.bfactor = EQUAL_HIGH
12 pivot = _avlRotateRight( pivot )
13 return pivot
14
15 # Otherwise, a balance from the left is due to case 3.
16 else :
17 # Change the balance factors.
18 if G.bfactor == LEFT_HIGH :
19 pivot.bfactor = RIGHT_HIGH
20 C.bfactor = EQUAL_HIGH
21 elif G.bfactor == EQUAL_HIGH :
22 pivot.bfactor = EQUAL_HIGH
23 C.bfactor = EQUAL_HIGH
24 else : # G.bfactor == RIGHT_HIGH
25 pivot.bfactor = EQUAL_HIGH
26 C.bfactor = LEFT_HIGH
27
28 # All three cases set G's balance factor to equal high.
29 G.bfactor = EQUAL_HIGH
30
31 # Perform the double rotation.
32 pivot.left = _avlRotateLeft( L )
33 pivot = _avlRotateRight( pivot )
34 return pivot

the pivot node, resulting in the grandchild (G) of the original pivot node becoming
the new root node. The avlRightBalance() method can be implemented in a
similar fashion. The actual implementation is left as an exercise.

The insert operation for the binary search tree returned a reference to the
existing subtree or the new node, depending on the current invocation of the re-
cursive function. When inserting into an AVL tree, the method must also return
a boolean flag indicating if the subtree grew taller. In order to return both values,
the avlInsert() function, shown in Listing 14.11, returns a tuple with the first
element containing the node reference and the second containing the boolean flag.

Finding the location of the new key and linking its node into the tree uses
the same navigation technique as in the binary search tree. The real difference
between the insertions into a BST and an AVL tree occurs during the unwinding
of the recursion. We have to check to see if the subtree we just visited has grown
taller. A taller child subtree means we have to check to see if the current subtree
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Listing 14.11 Inserting an entry into an AVL tree.

1 class AVLMap :
2 # ...
3 # Recursive method to handle the insertion into an AVL tree. The
4 # function returns a tuple containing a reference to the root of the
5 # subtree and a boolean to indicate if the subtree grew taller.
6 def _avlInsert( self, subtree, key, newitem ):
7 # See if we have found the insertion point.
8 if subtree is None :
9 subtree = _AVLTreeNode( key, newitem )

10 taller = True
11
12 # Is the key already in the tree?
13 elif key == subtree.data :
14 return (subtree, False)
15
16 # See if we need to navigate to the left.
17 elif key < subtree.data :
18 (subtree, taller) = _avlInsert( subtree.left, key, newitem )
19 # If the subtree grew taller, see if it needs rebalancing.
20 if taller :
21 if subtree.bfactor == LEFT_HIGH :
22 subtree.right = _avlLeftBalance( subtree )
23 taller = False
24 elif subtree.bfactor == EQUAL_HIGH :
25 subtree.bfactor = LEFT_HIGH
26 taller = True
27 else : # RIGHT_HIGH
28 subtree.bfactor = EQUAL_HIGH
29 taller = False
30
31 # Otherwise, navigate to the right.
32 else key > subtree.data :
33 (node, taller) = _avlInsert( subtree.right, key, newitem )
34 # If the subtree grew taller, see if it needs rebalancing.
35 if taller :
36 if subtree.bfactor == LEFT_HIGH :
37 subtree.bfactor = EQUAL_HIGH
38 taller = False
39 elif subtree.bfactor == EQUAL_HIGH :
40 subtree.bfactor = RIGHT_HIGH
41 taller = True
42 else : # RIGHT_HIGH
43 subtree.right = _avlRightBalance( subtree )
44 taller = False
45
46 # Return the results.
47 return (subtree, taller)

is out of balance and needs to be rebalanced. Regardless if the subtree is out of
balance, the balance factor of the current subtree’s root node has to be modified
as discussed in the previous section. If a subtree did not grow taller, nothing needs
to be done.
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As the recursion unwinds, the growth status has to be passed back to the parent
of each subtree. There are only three circumstances when a subtree grows taller.
The first is when a new node is created and linked into the tree. Since the child
link in the parent of the new node was originally null, the new node grows from
an empty subtree to a subtree of height one. A subtree can also grow taller when
its children were originally of equal height and one of the child subtrees has grown
taller. In all other instances, the subtree does not grow. Indicating the growth of
a subtree is spread throughout the avlInsert() method as appropriate.

14.4 The 2-3 Tree
The binary search tree and the AVL tree are not the only two tree structures
that can be used when implementing abstract data types that require fast search
operations. The 2-3 tree is a multi-way search tree that can have up to three
children. It provides fast operations that are easy to implement. The tree gets its
name from the number of keys and children each node can contain. Figure 14.22
provides an abstract view of a simple 2-3 tree.

18 33

23 3012 48

45 47 50 5210 15 20 21 24 31

Figure 14.22: A 2-3 tree with integer search keys.

A 2-3 tree is a search tree that is always balanced and whose shape and
structure is defined as follows:

� Every node has capacity for one or two keys (and their corresponding payload),
which we term key one and key two.

� Every node has capacity for up to three children, which we term the left,
middle, and right child.

� All leaf nodes are at the same level.

� Every internal node must contains two or three children. If the node has one
key, it must contain two children; if it has two keys, it must contain three
children.

In addition, the 2-3 tree has a search property similar to the binary search tree, as
illustrated in Figure 14.23. For each interior node, V :
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left
subtree

x y

right
subtree

middle
subtree

keys < x keys > y
x < keys < y 

Figure 14.23: A search property of a 2-3 tree.

� All keys less than the first key of node V are stored in the left subtree of V .

� If the node has two children, all keys greater than the first key of node V are
stored in the middle subtree of V .

� If the node has three children: (1) all keys greater than the first key of node
V but less than the second key are stored in the middle subtree of V ; and (2)
all keys greater than the second key are stored in the right subtree.

The implementation of 2-3 tree assumes the nodes are constructed from the
23TreeNode class as defined in Listing 14.12.

Listing 14.12 Storage class for creating the 2-3 tree nodes.

1 class _23TreeNode( object ):
2 def __init__( self, key, data ):
3 self.key1 = key
4 self.key2 = None
5 self.data1 = data
6 self.data2 = None
7 self.left = None
8 self.middle = None
9 self.right = None

10
11 # Is this a leaf node?
12 def isALeaf( self ):
13 return self.left is None and self.middle is None and self.right is None
14
15 # Are there two keys in this node?
16 def isFull( self ):
17 return self.key2 is not None
18
19 # Does the node contain the given target key?
20 def hasKey( self, target ):
21 if (target == self.key1) or
22 (self.key2 is not None and target == self.key2) :
23 return True
24 else :
25 return False
26

(Listing Continued)
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Listing 14.12 Continued . . .

27 # Returns the data associated with the target key or None.
28 def getData( self, target ):
29 if target == self.key1 :
30 return self.data1
31 elif self.key2 is not None and target == self.key2 :
32 return self.data2
33 else :
34 return None
35
36 # Chooses the appropriate branch for the given target.
37 def getBranch( self, target ):
38 if target < self.key1 :
39 return self.left
40 elif self.key2 is None :
41 return self.middle
42 elif target < self.key2 :
43 return self.middle
44 else :
45 return self.right

The node class contains seven fields, one for each of the two keys and corre-
sponding data and one for each of the three child links. It also defines three acces-
sor methods that compute information related to the given node. The isLeaf()
method determines if the node is a leaf, isFull() determines if the node con-
tains two keys, hasKey() determines if the target key is contained in the node,
getData() returns the data associated with the given key or None if the key is
not in the node, and getBranch() compares a target key to the nodes key(s) and
returns a reference to the appropriate branch that must be followed to find the tar-
get. These methods are included to provide meaningful names for those common
operations.

14.4.1 Searching
Searching a 2-3 tree is very similar to that of a binary search tree. We start at the
root and follow the appropriate branch based on the value of the target key. The
only difference is that we have to compare the target against both keys if the node
contains two keys, and we have to choose from among possibly three branches. As
in a binary search tree, a successful search will lead to a key in one of the nodes
while an unsuccessful search will lead to a null link. That null link will always be
in a leaf node. The reason for this is that if an interior node contains one key, it
always contains two child links, one for the keys less than its key and one for the
keys greater than its key. In a similar fashion, if the node contains two keys, it will
always contain three child links that direct us to one of the value ranges: (1) keys
less than the node’s first key, (2) keys greater than the node’s first key but less than
its second key, and (3) keys greater than the node’s second key. Thus, there is never
an opportunity to take a null link from an interior node as there was in a binary
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search tree. Figure 14.24 illustrates two searches, one that is successful and one
that is not. The search operation for the 2-3 tree is implemented in Listing 14.13.

Listing 14.13 Searching a 2-3 tree.

1 class Tree23Map :
2 # ...
3 def _23Search( subtree, target ):
4 # If we encounter a null pointer, the target is not in the tree.
5 if subtree is None :
6 return None
7 # See if the node contains the key. If so, return the data.
8 elif subtree.hashKey( target ) :
9 return subtree.getData( target )

10 # Otherwise, take the appropriate branch.
11 else :
12 branch = subtree.getBranch( target )
13 return _23Search( branch, target )

34

98

75

125

109 150

55 55

34

98

75

125

109 150

null

(a) Successful search for key 55. (b) Unsuccessful search for key 68.

Figure 14.24: Searching a 2-3 tree.

14.4.2 Insertions
The process of inserting a key into a 2-3 tree is similar to that of a binary search
tree, although it’s more complicated. The first step is to search for the key as if it
were in the tree. As we saw in the previous section, the search for a non-existent
key will lead us to a leaf node. The next step is to determine if there is space in
the leaf for the new key. If the leaf contains a single key, we can easily insert the
key into the node. Consider the partial 2-3 tree illustrated in Figure 14.25 and
suppose we want to insert key value 84. In searching for 84, we end up at the
node containing value 75. Since there is space in this node, 84 can be added as the
node’s second key.

But what if the new key is less than the key stored in the leaf node? Suppose
we want to add key 26 to the tree, as shown in Figure 14.26. The search leads
us to the leaf node containing value 34. When the new key is smaller than the
existing key, the new key is inserted as the first key and the existing one is moved
to become the second key.
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55
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Figure 14.25: Inserting key 84 into a 2-3 tree with space available in the leaf node.
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Figure 14.26: Inserting key 26 into a 2-3 tree with space available in the leaf node.

Splitting a Leaf Node

Things become more complicated when the leaf node is full. Suppose we want to
insert value 80 into our sample tree. The search for the node leads to the leaf node
containing keys 75 and 84, as shown in Figure 14.27. Based on the search property
of the 2-3 tree, the new key belongs in this leaf node, but it’s full. You might be
tempted to create a new leaf node and attach it to the full node as a child. This
cannot be done, however, since all leaf nodes must be at the same level and all
interior nodes must have at least two children. Instead, the node has to be split,
resulting in a new node being created at the same level.

55

75 84

80

26 34

98

● ● ●
55 80

26 34 75

98

● ● ●

84

Before After

Figure 14.27: Inserting a key into a 2-3 tree with a full leaf node.
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The splitting process involves two steps. First, a new node is created, then the
new key is compared to the two keys (75 and 84) in the original node. The smallest
among the three is inserted into the original node and the largest is inserted into
the new node. The middle value is promoted to the parent along with a reference
to the newly created node. The promoted key and reference are then inserted into
the parent node. Figure 14.28 illustrates the three possible cases when splitting a
leaf node. k1 and k2 are the two keys in the original node and x is the new key
that we are trying to insert into the node.

(c) x is the 
     largest key.

k1 k2

x

k1

k2

x

k1 k2

x

x

k1

k2

k1 k2 k1

x

k2

x

(b) x is the 
      middle key.

(a) x is the 
     smallest key.

Figure 14.28: Splitting a leaf node into two nodes: each node gets one key and one key
is promoted to the parent.

When a key is promoted to the parent, it has to be inserted into the parent’s
node in a similar fashion to that of a leaf node. The difference is that a reference
to the newly created node is also passed up to the parent that has to be inserted
into one of the link fields of the parent. Inserting the promoted key and reference
into the parent node is simple if the parent contains a single key. The placement
of the key and reference depends on which child node was split, as illustrated in
Figure 14.29.

(a) Splitting the left child.

kl kn kl kn

kp

kp

(b) Splitting the middle child.

kp

kp

km

p1 p1

km

kl km kn

p1

kl km kn

p1

Figure 14.29: Inserting the promoted key and reference into a parent with one key.
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There are two cases:

1. The left child is split : The existing key p1 in the parent node becomes the
second key and the middle child is moved to become the right child. The
promoted key kp becomes the first key in the parent and the reference to the
new node becomes the middle child. Links that have to be modified are shown
by directed edges in the figure.

2. The middle child is split : The promoted key kp becomes the second key of the
parent and the newly created node becomes the right child.

Splitting a Parent Node

What happens if the node is split and its parent contains three children? For exam-
ple, suppose we want to insert key 42 into the sample tree shown in Figure 14.30.
The node containing keys 26 and 34 has to be split with 34 being promoted to the
parent. But the parent also contains two keys (55 and 80). When the parent node
is full, it has to be split in a similar fashion as a leaf node, resulting in a key and
node reference being promoted to its parent, the grandparent of the child that was
split. The splitting process can continue up the tree until either a non-full parent
node or the root is located.

55 80

26 34 75

98

● ● ●

84

42

34

26 42

55

● ● ●

75 84

98

80

Before After

Figure 14.30: A full parent node has to be split to accommodate a promoted key.

When the parent node is split, a new parent node is created and the two will
become siblings. Splitting a full interior node is very similar to splitting a leaf node.
Two of the three keys, the two in the original parent, p1 and p2, and the promoted
key, kp, have to be distributed between the two parents and one has to be promoted
to the grandparent. The difference is the connections between the parents and
children also have to be changed. The required link modifications depends on
which child was split. There are three cases, as illustrated in Figure 14.31. The
tree configurations on the left show the nodes and keys before the parent is split
and the trees on the right show the resulting configurations. The links that have
to be modified are shown with directed edges.

Splitting the Root Node

When the root node has to be split, as illustrated in Figure 14.32, a new root node
is created into which the promoted key is stored. The original root becomes the
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(a) Splitting the left child.
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(b) Splitting the middle child.
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(c) Splitting the right child.
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Figure 14.31: Inserting the promoted key and reference into a full parent node.

left child and new child node becomes its middle child. Splitting the root node
results in a new level being added to the tree.

Implementation

The 2-3 tree insertion is best implemented recursively. Remember, to insert a new
item, not only do we have to navigate down into the tree to find a leaf node, but we
may also have to split the nodes along the path as we backtrack to the root node.

The implementation of the 2-3 tree insertion is provided in Listing 14.14. The
23Insert() method handles the two special cases involving the root node: the

insertion of the first key, resulting in the creation of the first node, and splitting
the root node, resulting in a new tree level. If the tree is not initially empty, the

34
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80 11149
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49 80
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Figure 14.32: Splitting the root node is a special case.
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Listing 14.14 Insert a new key into a 2-3 tree.

1 class Tree23Map :
2 # ...
3 def _23Insert( self, key, newitem ):
4 # If the tree is empty, a node has to be created for the first key.
5 if self._root is None :
6 self._root = _23TreeNode( key, newitem )
7
8 # Otherwise, find the correct leaf and insert the key.
9 else :

10 (pKey, pData, pRef) = _23Insert( self._root, key, newitem )
11
12 # See if the node was split.
13 if pKey is not None :
14 newRoot = _23TreeNode( pKey, pData )
15 newRoot.left = self._root
16 newRoot.middle = pRef
17 self._root = newRoot
18
19 # Recursive function to insert a new key into the tree.
20 def _23RecInsert( subtree, key, newitem ):
21 # Make sure the key is not already in the tree.
22 if subtree.hasKey( key ) :
23 return (None, None, None)
24
25 # Is this a leaf node?
26 elif subtree.isALeaf() :
27 return _23AddToNode( subtree, key, newitem, None )
28
29 # Otherwise, it's an interior node.
30 else :
31 # Which branch do we take?
32 branch = subtree.getBranch( key )
33 (pKey, pData, pRef) = _23Insert( branch, key, newitem )
34 # If the child was split, the promoted key and reference have to be
35 # added to the interior node.
36 if pKey is None :
37 return (None, None, None)
38 else :
39 return _23AddToNode( subtree, pKey, pData, pRef )

recursive 23RecInsert() method is called to insert the new key. This method
navigates the tree to find the leaf node into which the key is to be inserted. During
the unwinding of the recursion, the function checks to see if the child node was split,
and if it was, adds the promoted key and reference to the current interior node.

The 23AddToNode(), provided in Listing 14.15, is used to insert a key into
both leaf and interior nodes. When the key is inserted into an interior node, the
key argument will contain the promoted key and pRef will contain the promoted
reference. To insert a new key into a leaf node, the key argument contains the new
key and pRef will be None. If there is room for the new key, the function arranges
the keys and the links in the proper order and null references are returned in a
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Listing 14.15 Helper function for inserting a key into a node of the 2-3 tree.

1 # Handles the insertion of a key into a node. If pRef != None, then
2 # the insertion is into an interior node.
3 class Tree23Map :
4 # ...
5 def _23AddToNode( self, subtree, key, data, pRef ):
6 # If the leaf is full, it has to be split.
7 if subtree.isFull() :
8 return self._23SplitNode( subtree, key, data, None )
9 # Otherwise, add the new key in its proper order.

10 else :
11 if key < subtree.key1 :
12 subtree.key2 = subtree.key1
13 subtree.data2 = subtree.data1
14 subtree.key1 = key
15 subtree.data1 = data
16 if pRef is not None : # If interior node, set the links.
17 subtree.right = subtree.middle
18 subtree.middle = pRef
19 else :
20 subtree.key2 = key
21 subtree.data2 = data
22 if pRef is not None : # If interior node, set the links.
23 subtree.right = pRef
24
25 return (None, None, None)

tuple to indicate the node was not split. Otherwise, the node has to be split by
calling 23SplitNode() and the resulting tuple is returned to the parent.

The 23SplitNode(), provided in Listing 14.16, handles the creation of the
new tree node and the distribution of the keys and links to the proper location.
The pRef argument is again used to indicate if we are working with a leaf node or
an interior node. When an interior node is split, the links have to be rearranged
in order to maintain the tree property. The three cases that can occur, which
depends on the child node into which the key is inserted, are all handled by the
function. The promoted key and reference are returned in a tuple for use by the
23TreeInsert() function.

14.4.3 Efficiency of the 2-3 Tree
By definition, a 2-3 tree is height balanced with all leaf nodes at the same level.
In the worst case, all nodes in the 2-3 tree will contain a single key and all interior
nodes will only have two children. From the discussion of the binary search tree,
we know such a structure results in a height of log n for a tree of size n. The
traversal operation must visit every node in the 2-3 tree resulting in a worst case
time of O(n). The search operation used with 2-3 tree is identical to that of the
binary search tree, which we know depends on the height of the tree. Since the
maximum height of a 2-3 tree is log n, the search operation will take no more log n
comparisons, resulting in a worst case time of O(log n).
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Listing 14.16 Helper function that splits a full node.

1 # Splits a non-root node and returns a tuple with the promoted key and ref.
2 class Tree2dMap :
3 # ...
4 # If pRef != None, then an interior node is being split so the new
5 # node N created in the function will also be an interior node. In that
6 # case, the links of the interior node have to be set appropriately.
7
8 def _23SplitNode( self, node, key, data, pRef ):
9 # Create the new node, the reference to which will be promoted.

10 newnode = _23TreeNode( None, None )
11 # See where the key belongs.
12 if key < node.key1 : # left
13 pKey = node.key1
14 pData = node.data1
15 node.key1 = key
16 node.data1 = data
17 newnode.key1 = node.key2
18 newnode.data1 = node.data2
19 if pRef is not None : # If interior node, set its links.
20 newnode.left = node.middle
21 newnode.middle = node.right
22 node.middle = pRef
23 elif key < node.key2 : # middle
24 pKey = key
25 pData = data
26 newnode.key1 = node.key2
27 newnode.data1 = node.data2
28 if pRef is not None : # If interior node, set its links.
29 newnode.left = pRef
30 newnode.middle = node.right
31 else : # right
32 pKey = node.key2
33 pData = node.data2
34 newnode.key1 = key
35 newnode.data1 = data
36 if pRef is not None : # If interior node, set its links.
37 newnode.left = node.right
38 newnode.middle = pRef
39
40 # The second key of the original node has to be set to null.
41 node.key2 = None
42 node.data2 = None
43 # Return the promoted key and reference to the new node.
44 return (pKey, pData, newnode)

The insertion operation, and the deletion which we leave as an exercise, also
works very similarly to that of the binary search tree. The search down the tree
to find a leaf into which the new key can be inserted takes logarithmic time. If the
leaf is full, it has to be split. A node can be split and the keys distributed between
the original node, the new node, and the parent node in constant time. In the
worst case, a node split is required at each level of the tree during the unwinding
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of the recursion. Since the tree can be no higher than log n and each split is a
constant time operation, the worst case time of an insertion is also O(log n).

Exercises
14.1 Prove or explain why the bstRemove() method requires O(n) time in the

worst case.

14.2 Why can new keys not be inserted into the interior nodes of a 2-3 tree?

14.3 Consider the following set of values and use them to build the indicated type
of tree by adding one value at a time in the order listed:

30 63 2 89 16 24 19 52 27 9 4 45

(a) binary search tree (b) AVL tree (c) 2-3 tree

14.4 Repeat Exercise 14.3, but for the following set of keys:

T I P A F W Q X E N S B Z

14.5 Given the following binary trees, indicate which trees are height balanced.

(a) (b) (c)

(d) (e)

14.6 Consider the binary search tree below and show the resulting tree after deleting
each of the following keys: 14, 52, and 39.

3939

525244

22 1919

1414

1717

2323

4141 7878

6060
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14.7 Consider AVL tree below and show the resulting tree after deleting key values
1, 78, and 41.

3939

525244

22 1919

1414

99 1717

2323

4141 7878

6060 838311

14.8 Given the 2-3 tree below, show the resulting tree after inserting key values
112, 80, 90, 41, and 20.

34

98

75

125

109 150

55

Programming Projects
14.1 The binary search tree operations can also be implemented iteratively. Design

and implement an iterative solution for each operation:

(a) search (b) find minimum (c) insert (d) delete

14.2 Design and implement the function bstMaximum(), which finds and returns
the maximum key value in a binary search tree.

14.3 Implement the delete operation for the AVL and 2-3 trees.

14.4 Implement the Set ADT using an AVL search tree and evaluate the time-
complexity of each operation.

14.5 Implement a new version of the Color Histogram ADT (from Chapter 11) to
use a binary search tree for the chains instead of a linked list.

14.6 Design and implement the bstBuild() function, which takes a sequence of
keys and builds a new search tree from those keys. For example, the function
could be used to build the binary search tree in Figure 14.5.

keyList = [60, 25, 100, 35, 17, 80]
buildBST( keyList )



APPENDIX A
Python Review

Python is a modern interpreted programming language that can be used to con-
struct programs using either a procedural or object-oriented paradigm. It provides
many built-in features and has a simple syntax that is easy to learn. In this
appendix, we review the basics of Python in order to provide a refresher of the ma-
terial you learned in your first introductory Python course. This is not a complete
coverage of the language, but it focuses on those concepts that will be important
to the coverage of the material in this text. Python has evolved over the years with
various modifications and the addition of new features with each new version. In
this text, we assume the use of Python version 3.2, which includes some important
differences from the popular earlier versions 2.5 and 2.6. In order to aide those who
learned Python using the earlier versions, we note the major differences throughout
the review.

A.1 The Python Interpreter
Python programs are executed using the Python interpreter, which is a program
that reads and executes instructions written in the Python language. The inter-
preter can execute Python programs in either interactive mode or script mode.
Interactive mode is useful for testing single statements or small code segments. To
use interactive mode, start the interpreter by entering the command:

python

at the prompt in a command-line terminal. The interpreter will display an infor-
mational message similar to the following:

Python 3.1.1 (r311:74480, Oct 26 2009, 21:59:21)
[GCC 4.3.0 20080428 (Red Hat 4.3.0-8)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

453
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The >>> at the bottom of the output is the interactive mode prompt that is used
to enter Python statements to the interpreter. For example, if you enter the
statement:

print( "Hello World" )

the interpreter will respond by executing the print() function and displaying the
contents of the string to the terminal window, followed by another prompt:

>>> print( "Hello World" )
Hello World
>>>

Script mode is used to execute Python programs that are stored in text files.
The source files containing Python programs can be created with any text editor
or integrated development environment (IDE) of your choosing.

total = 0
i = 1
while i <= 100 :

total += i
i += 1

print( "The sum of the first 100 integers is", total )

To execute the program, you would change to the directory containing the file and
enter the command:

python summation.py

at the command-line prompt. This causes the Python interpreter to run in script
mode, which reads the text file and executes the statements contained within the
file. When the summation.py program is executed, the following output is dis-
played to the terminal:

The sum of the first 100 integers is 5050

The first statement to be executed in script mode is the first statement in
the text file at global scope, which include all statements not enclosed within a
function, class, or method. In the summation example, the assignment statement
total = 0 will be the first statement executed.

A.2 The Basics of Python
A programming language is defined by its syntax and semantics, which vary from
one language to the next. But all languages require the use of specific instructions
for expressing algorithms as a program in the given language. The Python language
consists of many different instructions, including those for sequential, selection,
and repetition constructs. In this section, we review the basic syntax used in the
construction of simple sequential instructions.
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Identifiers are used to name things in a programming language. In Python,
identifiers are case sensitive and may be of any length but they may only contain
letters, digits, or the underscore, and they may not begin with a digit. Some
identifiers are reserved and cannot be used by the programmer. The following is a
list of Python’s reserved words:

and as assert break class continue def
del elif else except finally for from
global if import in is lambda nonlocal
not or pass raise return try while
with yield False None True

A.2.1 Primitive Types
A primitive type is a built-in type that is part of the language itself. Python defines
several primitive data types, as described in the following bullets along with sample
literals of each type:

� integer — Numeric values with no fractional part:

-9 50 0x4F 077

� floating-point — Numeric values with a fractional part:

25.45 -17.4 0.34 17.045E-03

� boolean — Logical values of true or false:

True False

� string — An ordered sequence of alphanumeric characters:

'string' "another string" "c"

� list — An ordered sequence of objects in which each element is identified by
an integer subscript:

[0, 1, 2, 3] ['abc', 1, 4.5] []

� tuple — Similar to a list type but the contents of a tuple cannot be changed
once it has been created:

('a', 'b', 'c') (1, 4, 5, 8)

� dictionary – a collection of items in which each item contains a key and a
corresponding value:

{123 : "bob", 456 : "sally"}

Python also has a literal block string in which white space (spaces and newlines)
is maintained.

"""This is a string which
can continue onto a new line. When printed, it will appear
exactly as written between the triple quotes."""

Python inserts newline characters at the end of each line of the text block and adds
blank spaces everywhere they appear within the literal, including at the front of
each line. Single or double quotes can be used for string block literals.
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A.2.2 Statements
The Python syntax, as with all languages, is very specific when it comes to state-
ment structure. The interpreter expects a statement to be contained on a single
line of the text file. Sometimes, however, we need to split a single statement across
several lines in order to produce easily readable code or when following the speci-
fications of a programming style guide. A backslash (\) can be used at the end of
the line to continue the statement onto the next line.

result = (someValue * 5 + anotherValue * 12) \
- (originalValue * 2)

For function calls and method invocations that require pairs of parentheses, the
line can be broken without the use of backslashes. The interpreter will parse the
instructions across lines until the closing parenthesis is encountered. For example,
the following will parse without error:

myFunction( a, b,
"name", avg )

Some constructs in Python are compound statements, which span multiple lines
and consist of a header and a statement block . A statement block, sometimes
simply referred to as a block, is a group of one or more statements, all of which
are indented to the same indentation level, as illustrated by the following code
segment:

while i <= 100 :
total += i
i += 1

Compound statements are easily identified by the requirement of a colon (:)
as part of their syntax. Statement blocks, which can be nested inside other blocks,
begin on the next line following the header of the compound statement. Statement
blocks end at the next blank line or the first statement whose indentation level is
shorter than those in the block. Only statements within a block or the parts of a
statement continued from a previous line may be indented. The number of spaces
used to indent statements within a block is irrelevant, but all statements within
the block must have the same indentation level. Finally, the top-level statements
of a file can have no indentation.

C
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Statement Block Indentation. All statements within a given block
must be indented with either blank spaces or tab characters, but not a

mixture of the two. The alignment of statements as displayed by some text
editors can be misleading. It’s best to use an editor that can insert “soft tabs”
when the Tab key is pressed.
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i Variable Terminology. Even though a variable in Python stores a ref-

erence to an object, it is quite common in programming to use phrases
such as “The value is assigned to x”, “idNum contains 42”, and “name con-
tains a string”. In all such cases, these phases should be understood as
referring to the object referenced by the variable and not the variable itself.

A.2.3 Variables
Computers manipulate and process data. In Python, all data is stored in objects,
which are created from various class definitions. Objects can store a single value
or multiple values. But no matter the size, we must have some means to access
the object after it’s been created. A variable is a named storage location that
associates a name with an object. Variables do not store data themselves, but
instead store references to the objects that contain the data. A reference is simply
the memory address of the location where the object is stored.

Assignments

Variables in Python are created when they are first assigned an object reference.
Consider the following assignment statements:

name = "John Smith"
idNum = 42
avg = 3.45

which creates three variables and assigns references to each of the given literal
values. Note that a reference to an object is commonly illustrated as a directed
edge leading from the variable to the object:


idNum

4242 
avg

3.453.45 
name

“John Smith”“John Smith”

In Python, objects are automatically created for literals and initialized with
the given value. Each unique literal within a program results in a unique object.
A variable itself does not have a type and thus can store a reference to any type
of object. It is the object, that has a data type. A variable cannot be used before
it has been created by an assignment of a reference to some object. Attempting to
do so will generate an error.

As shown in the previous code segment, Python uses a single equal sign (=) for
assigning an object reference to a variable. When an assignment statement is used,
the righthand side is evaluated and a reference to the resulting value is stored in
the variable on the lefthand side. When a new reference is assigned to an existing
variable, the old reference is replaced. For example, suppose we assign a new value
to variable idNum using the assignment statement idNum = 70, which results in the
original reference to value 42 being replaced by a reference to value 70:


idNum

4242 
avg

3.453.45 
name

“John Smith”“John Smith”7070
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If all references to an object are removed—that is, no variable contains a ref-
erence to the object—it is automatically destroyed as part of Python’s garbage
collection.


idNum

4242 
avg

3.453.45 
name

“John Smith”“John Smith”7070 X
Aliases

When one variable is assigned to another (student = name), the reference contained
in the variable on the righthand side is copied to the variable on the lefthand side,
resulting in an alias since both variables refer to the same object:


student


idNum


avg

3.453.45 
name

“John Smith”“John Smith”7070

Null References

A variable can be set such that it does not reference any object, in which case it’s
called a null reference . In Python, the special object None is used to set a null ref-
erence. For example, suppose we execute the assignment statement idNum = None,
after which idNum will be a null reference, as shown here:


student


idNum


avg

3.453.45 
name

“John Smith”“John Smith”

Constants

Some languages support the creation of constant variables. A constant variable,
or simply a constant, is a variable whose value cannot be changed after it has been
assigned an initial value. Python does not support constant variables, but it is
common practice to specify constant variables with all capital letters, as illustrated
in the following example:

TAX_RATE = 0.06
MAX_SIZE = 100

It is important to note, however, that there is no way to enforce the concept
of a constant variable and keep its value from being changed. But by following
the standard convention, you provide information to yourself and others that you
intend for a variable in all caps to be constant throughout the program.

A.2.4 Arithmetic Operators
Python supports the common mathematical operations for both integers and reals:

+ addition * multiplication // floor division
- subtraction / real division % modulo operator

** power
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The numeric type resulting from an arithmetic operation depends on the type
of the two operands. If at least one operand is a floating-point, the result will be a
floating-point and if both operands are integers, the result will be an integer. An
exception is the real division operator (/), which always returns a floating-point.
The floor division operator (//) mathematically computes ba/bc but returns an
integer if both operands are integers and a floating-point if at least one is a floating-
point. The modulo operator (%) returns the remainder left after computing floor
division.

The operators have the expected order of precedence as found in mathematics
but can be overridden using parentheses. All of the operators, except the power
operator (**), are evaluated from left to right. Special care must be taken when
using the power operator with negative literal values. A negative literal on the
left side of the power operator is treated differently than one on the right side.
For example, the Python expression -2 ** 2 is evaluated as -(2 ** 2) while the
expression 2 ** -2 is evaluated as 2 ** (-2).

Python also supports the compound assignment operators that combine an
assignment with an arithmetic operator:

+= -= *= /= %= **= //=

These operators perform the arithmetic operation on both operands and store the
result back in the variable on the lefthand side. For example, the expression x += 1

is equivalent to the arithmetic x = x + 1.

New in Python 3.x: The functionality of the division operator (/) has changed. It now
performs real division and returns a floating-point value even if both operands are integers.
The floor division operator (//) has to be used for integer division.

A.2.5 Logical Expressions
Decisions in a programming language are made based on the boolean result (true
or false) of a logical expression. Logical expressions are constructed using logical
operators, which can be divided into two groups: relational operators and boolean
operators.

Relational Operators

The relational operators are used to determine if a given relationship exists be-
tween pairs of values. For example, we may want to determine if a student has a
failing grade where failing is any average below 60. The logical expression for that
evaluation would be written as,

avg >= 60

the result of which is either True or False. The relational operators can be used
with any of the built-in types. The numeric values are compared by relative mag-



460 APPENDIX A Python Review

nitude while strings are compared lexicographically, character by character from
left to right. The Python relational operators are shown here:

a > b Is a greater than b a >= b Is a greater than or equal to b
a < b Is a less than b a <= b Is a less than or equal to b
a == b Is a equal to b a != b Is a not equal to b

Boolean Operators

The boolean operators are applied to boolean values. They allow for the construc-
tion of not only boolean expressions but also more complex logical expressions by
combining multiple relational and boolean expressions. For example, consider the
following logical expression:

avg >= 80 and avg <= 90

which determines if the given value is in the range [80 . . . 90]. The Python boolean
operators are described next:

not a A unary operator that inverts the boolean value of its operand.
a and b True if and only if both a and b are True.
a or b True if a is True, b is True, or both a and b are True.

The logical operators are evaluated from left to right based on their order of
precedence which can be overridden using parentheses. The relational operators
have the highest precedence followed by the boolean operators in the order listed.

New in Python 3.x: The <> operator, which in earlier versions could be used in place of
!=, is no longer available.

Object References

Python provides the is and is not operators for comparing references, or the
addresses stored in variables. For example, in the code segment:

name1 = "Smith"
name2 = "Jones"
result = name1 is name2

result is set to False since the two variables point to two different objects. If we
modify the segment as follows:

name2 = name1
result = name1 is name2

result is now set to True since the two variables refer to the same object and
are thus aliases. The is not operator returns the inverse of the is operator and
is equivalent to applying the boolean not operator. For example, the following
logical expressions are equivalent:



A.2 The Basics of Python 461

result = name1 is not name2
result = not (name1 is name2)

We test for a null reference with the use of the special value None.

result = name1 is None
result = name2 is not None

A.2.6 Using Functions and Methods
While Python is an object-oriented language, it provides both a class structure
for object-oriented programming and a function structure for procedural program-
ming. A function is a stand-alone group of statements, sometimes called a sub-
program, that performs a specific task. A function is used by invoking it via a
function call . For example:

y = abs( x )

computes the absolute value of variable x and stores the result in y. When a
function is called during execution, the flow of execution jumps to the function,
executes its instructions, and then returns to the point where the function was
called. A function call consists of the function name and an argument list enclosed
within parentheses:

func( arg1, arg2, ..., argN )

Arguments are simply values that are passed to the function for use by that
function. The number of arguments passed to a function depends on the specific
function. When multiple arguments are passed to a function, they are separated
with commas and passed in the order specified by the function header. If a function
requires no arguments, the parentheses are still required.

Some functions may return a value. This value can be used or ignored depend-
ing on the purpose of the function. If a function returns a value, the function call
can be used anywhere a value of the given type can be used. For example, since
the abs() function returns a numeric value, it can be used as part of an arithmetic
expression:

y = x * z + abs( x )

As indicated earlier, all values in Python are stored in objects that are created
or instantiated from classes. Once an object has been created, it can then be used.
Objects are automatically instantiated or created for all literal values within a
program. But we can also explicitly create objects by calling the constructor of
the corresponding class for the given type of object. For example, we can create a
string object by calling the constructor of the str class:

name = str( "Jane Green" )
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As you are probably guessing, there is no need to use the str() constructor
explicitly to create a string object since we can just specify a literal string in our
code and have the interpreter automatically create an object for us. But the str()
constructor can also be used to create string representations of other data types,
both literal values and those referenced by variables:

x = 45
intStr = str( x ) # '45'
floatStr = str( 56.89 ) # '56.89'
boolStr = str( False ) # 'False'

Since Python’s built-in types are represented as classes, they each have a con-
structor that can be used for creating objects of the given type. The following is a
list of the constructors for the simple types:

int( x ) integer bool( x ) boolean
float( x ) floating-point str( x ) string

These constructors can also be used to convert between the various types. For
example, we can convert the string representation of a numeric value to the given
numeric type using the appropriate constructor:

i = int( "85" ) # 85
f = float( '3.14' ) # 3.14

Operations can be performed on objects by invoking a method defined for the
class of the given type. We have already seen the arithmetic operators used with
the numeric types. But methods can also be defined for use with objects. The dot
operator is used to apply a method to a given object. For example, we can create
a new string that is the lowercase version of an existing string using the lower()
method defined by the str class:

name = "Jane Green"
newStr = name.lower()

A method is very similar to a function with one major difference. A function
is a stand-alone subroutine that can be used independent of an object, whereas a
method is defined by a class and must be applied to an object of that class.

A.2.7 Standard Library
Python is a relatively small language but provides the necessary components for
creating powerful programs. The built-in types, which are part of the language
itself, have class definitions defined directly by the language. In addition, there
are a number of built-in functions such as print(), input(), and abs(), that are
also provided directly by the language. Additional functionality is available from
various components in the Python Standard Library.

The Standard Library contains a number of functions and class definitions in
which related components are organized into individual files called modules. While
built-in functions and methods can be used directly within your program, those
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defined within a module must be explicitly included in your program. To use a
function or class from the standard library, you include an import statement at
the top of your program. For example, to use a function defined in the standard
math module, you would include the statement:

from math import *

at the top of your program file. The import statement loads the contents of the
named module and makes all definitions within a single module available for use
in your Python program. For example, after importing the math module, we can
use the sqrt() function, which is defined in the module:

y = sqrt( x )

You can import individual components of a module and make them available
within the current file using:

from math import sqrt

which includes the module, but only makes the sqrt() function available for use in
your program. Python has a second variation to the import statement that works
very much like the from/import version:

import math

but in this case, the components defined in the module are loaded into their own
namespace. Namespaces will be discussed in more detail later in this appendix. For
now, simply note that after using this form of the import statement, the included
components have to be referred to by both module name and component name
and separated by a dot:

y = math.sqrt( x )

A.3 User Interaction
User interaction is very common in computer programs. In GUI (graphical user
interface)-based programs, the interaction is managed through widgets or controls
displayed within a windowed environment. In text-based programs, user input
originates from the keyboard and output is written to the terminal.

A.3.1 Standard Input
In Python, there is a single function for extracting data from the user via the
keyboard. The input() function waits for the user to type a sequence of characters
followed by the Enter key.

name = input( "What is your name? " )
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The string argument passed to the input() function is a user prompt , which
tells the user what information we are looking for. When the previous statement
is executed, the Python interpreter will display the string on a new line in the
terminal followed by the cursor:

What is your name?

and then it waits for the user to enter data. After the user enters a sequence of
characters and presses Enter , the data is returned as a string and assigned to
the variable name, which can then be used within the program.

The input() function can only extract strings. But what if we need to extract
an integer or real value? In that case, the numeric value will be extracted as a
string of digits that must be converted to a numeric value using the appropriate
numeric type constructor. In the following example:

userInput = input( "What is your gpa? " )
gpa = float( userInput )

we extract a floating-point value from the user by passing the input string to the
float constructor, which converts the numeric string representation to a real value.
This code segment can be written by nesting the two function calls:

gpa = float( input("What is your gpa?") )

New in Python 3.x: In previous versions of Python, there were two functions for ex-
tracting data from the user: input() and raw input(). The input() function has been
changed to provide the functionality of raw input() and raw input() has been removed
from the language.

A.3.2 Standard Output
In Python, as you have seen in a number of examples, the print() function is used
to display information to the terminal. When the following is executed:

print( "Hello World!!" )

the string is displayed in the terminal followed by a line feed, which moves the cur-
sor to the next line. The print() function can only output strings but Python will
implicitly convert any of the built-in types to strings using the str() constructor.
For example, when the following code segment is executed:

avg = (exam1 + exam2 + exam3) / 3.0
print( "Your average is" )
print( avg )

the floating-point value stored in avg will be converted to a string and displayed
to the terminal. The result is:

Your average is
85.732
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New in Python 3.x: The print statement has been changed to a function and now
requires parentheses. In addition, keyword arguments have been added to the function
for changing the default behavior.

Multiple arguments can be supplied to the print() function. In that case,
each argument is printed one after the other separated by a single blank space:

print( "Your average is", avg )

which produces as output:

Your average is 85.732

The default behavior of the print() function produces a line feed after the last
argument is printed. This can be suppressed by including the keyword argument
end to the argument list. For example, the following code segment:

print( "Your average is", end = ' ' )
print( avg )

produces as output:

Your average is 85.732

because the first call to the print() function does not produce a line feed after
the string is printed since it was suppressed by including the keyword argument
end = '\n'. The default value for the argument is end = '\n', which produces a
line feed after the last argument.

Escape Sequences

Escape sequences are used in Python to represent or encode special characters
such as newlines, tabs, and even the quote characters. An escape sequence is a
two-character sequence consisting of a backslash (\) followed by a letter or symbol.
Consider the following example:

print( "Start a newline here.\nusing the \\n character." )

which produces:

Start a newline here.
using the \n character.

The common escape sequences are shown here:

\\ Backslash (\) \n Newline \" Double quote (”)
\' Single quote (’) \t Horizontal tab
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Formatted Output

Python overloads the modulus operator (%) for use with strings to produce format-
ted output. Consider the following example:

output = "Your average is %5.2f" % avgGrade
print( output )

which creates a new string using the format string from the left side of the % opera-
tor and replacing the field format specifier (%5.2f) with the value of the avgGrade
variable. The resulting string is then printed to standard output:

Your average is 85.73

It is common to nest the formatted string operation within the print() function
when used to produce standard output:

print( "Your average is %5.2f" % avgGrade )

More than one field format specifier can be used in the format definition. In
this case, the replacement values must be provided as a tuple:

print( "Origin: (%d, %d)\n" % (pointX, pointY) )

The replacement values are associated with the field format specifiers in the order
listed and must be of the appropriate type. The following code segment shows the
use of the formatted output to produce a report containing dollar amounts aligned
on the decimal point:

print( "Wages: %8.2f" % wages )
print( "State Taxes: %8.2f" % stateTaxes )
print( "Fed Taxes: %8.2f" % fedTaxes )
print( "Pay: %8.2f" % takeHome )

There are different field format specifiers for the various primitive data types
and several optional arguments that can be used to tweak the output. A field
format specifier has the general structure:

%[flags][width][.precision]code

� flags — Indicates zero fills or optional justification and is one of the following:

0 Fill preceding blank spaces within the field with zeroes.
+ Right-justify the value within the field.
- Left-justify the value within the field.

� width — Is an integer value indicating the number of spaces in the field used
when formatting the replacement value.

� precision — Is the number of digits to be printed after the decimal place
when printing a floating-point value.
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� code — Indicates the type of data that is to replace the field specifier. It can
be one of the following:

%s String %x Hexadecimal integer
%d Decimal or integer %X Same as %x but uppercase
%i Same as %d %e Scientific notation
%f Floating-point %E Uppercase version of %e
%c Character %g Same as %e
%u Unsigned integer %G Uppercase version of %g
%o Octal integer %% Prints a literal %

A.4 Control Structures
To this point, we have reviewed statements that are executed in sequence, one after
the other. Sometimes, however, it may be necessary to change the flow of control
and only execute a statement or block of statements if some condition is met or to
execute the same statement or block of statements multiple times.

A.4.1 Selection Constructs
Selection statements allow you to choose whether to execute a statement or block
of statements based on the result of a logical expression. Python provides several
forms of the if construct for making decisions and selecting certain statements
for execution. The if construct can take several forms. The if-then form is used
to select a statement or block of statements if and only if some condition is met.
Consider the following example:

if value < 0 :
print( "The value is negative." )

in which the print() function is executed if value is negative; otherwise, the
statement is skipped.

The If-Else Statement

The if-else form of the if construct is used to execute a block of statements if a
condition is true and a different block of statements if the condition is false. This
form is identified by the inclusion of an else clause. In the following example:

if value < 0 :
print( "The value is negative." )

else:
print( "The value is positive." )

a value is tested to determine if it is negative or positive and an appropriate message
is displayed.
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Nested If Statements

There is no restriction on the type of statements that can be included within the
blocks executed by the if statement. Sometimes, it may be necessary to nest an
if statement within another if statement:

if num1 < num2 :
if num1 < num3 :
smallest = num1

else:
smallest = num3

else:
if num2 < num3 :
smallest = num2

else:
smallest = num3

The if statement and its corresponding else clause must be aligned properly
to produce the correct result. In the following example, the else clause must
be aligned with the second if statement to produce the message “Passing but
marginal” when the average grade is in the range [60 . . . 70].

if avg < 70.0 :
if avg < 60.0 :
print( "Failing" )

else :
print( "Passing but marginal." )

If the else were aligned with the first if statement, as shown below, the message
would be incorrectly printed for averages greater than or equal to 70.

if avg < 70.0 :
if avg < 60.0 :
print( "Failing" )

else :
print( "Passing but marginal." )

Multiway Branching

A special form of the if construct can be used with selections that tests a series of
conditions and performs an action for the one which results in true. For example,
suppose we need to determine the letter grade to be assigned for a given average
using the common ten-point scale. This can be accomplished using a series of
nested if statements as shown below on the left:
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if avgGrade >= 90.0 :
letterGrade = "A"

else :
if avgGrade >= 80.0 :
letterGrade = "B"

else :
if avgGrade >= 70.0 :
letterGrade = "C"

else :
if avgGrade >= 60.0 :
letterGrade = "D"

else:
letterGrade = "F"

if avgGrade >= 90.0 :
letterGrade = "A"

elif avgGrade >= 80.0 :
letterGrade = "B"

elif avgGrade >= 70.0 :
letterGrade = "C"

elif avgGrade >= 60.0 :
letterGrade = "D"

else:
letterGrade = "F"

But as more and more conditions are nested, the structure becomes more com-
plex and the blocks continue to be indented further and further, which can make
it difficult to read the code. Python provides a third form of the if construct that
can be used to implement a series of conditions or multiway branches, as shown
above on the right. The else part can be omitted if there is no default part to the
multiway branch. The if, elif, and else clauses must be aligned to the same
indentation level.

A.4.2 Repetition Constructs
There are many occasions when we need to execute one or more statements multiple
times until some condition is met. For example, suppose we want to compute the
wages for a number of employees given the number of hours each worked. While
the wage computation is the same for each employee, it is has to be performed
for multiple employees. Thus, we can have the computer repeat the data extrac-
tion and computation for each employee until the data has been processed for all
employees. Python has two repetition constructs: while and for.

The While Loop

Loops can generally be categorized as either count-controlled or event-controlled .
In a count-controlled loop the body of the loop is executed a given number of times
based on values known before the loop is executed the first time. With event-
controlled loops, the body is executed until some event occurs. The number of it-
erations cannot be determined until the program is executed.

The while loop is a general looping construct that can be used for many types
of loops. Consider the following count-controlled loop, which sums the first 100
integers by repeatedly executing the body of the loop 100 times:

theSum = 0
i = 1 # initialization
while i <= 100 : # condition
theSum += i
i += 1 # modification

print( "The sum =", theSum )
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The while loop, which is a compound statement, consists of two parts: a con-
dition and a loop body. The body of the loop contains one or more statements that
are executed for each iteration of the loop. The number of iterations is determined
by the condition, which is constructed using a logical expression. The body of the
while loop is executed while the condition is true.

Since logical expressions are constructed by comparing and examining the val-
ues of one or more variables, the variables must be altered in order to change the
condition. Thus, every loop must contain an initialization and modification com-
ponent. The initialization is performed before the condition is examined and the
body is executed. It is used to initialize the loop variable upon which the loop
condition is based. At some point within the loop body, the loop variable must be
modified so the loop condition can change.

As an example of an event-controlled loop, consider the problem of entering
multiple exam grades from the user and then computing the average grade. We
need to enter multiple grades but we don’t know how many will be entered. To
accommodate this unknown, we can repeatedly execute the body of the loop until
the user enters a special value, known as the sentinel value. In the following
solution for this problem, the sentinel value is any negative number. The event
of entering the special value terminates the loop, thus leading to the name event-
controlled loop.

total = 0
count = 0
value = int( input("Enter the first grade: ") )
while value >= 0 :

total += value
count += 1
value = int( input("Enter the next grade (or < 0 to quit): ") )

avg = total / count
print( "The average grade is %4.2f" % avg )

Python also provides the break and continue jump statements for use in loops.
The break statement is used to break out of or terminate the innermost loop in
which it is used. The continue statement immediately jumps back to the top of
the loop and starts the next iteration from the point of the condition evaluation.

When using real values (floats) with logical expressions, you may get results
you do not expect due to the imprecision of real number arithmetic on computers.
Consider the following code segment:

total = 0.0
i = 0
while i < 10 :
total += 0.1
i += 1

if total == 1.0 :
print( "Correct" )

else :
print( "Not correct" )
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which adds the fractional value 1
10 ten times to variable total. Since total has

an initial value of 0, mathematically, it should equal 1 after the loop terminates
and the program should print the string "Correct". But due to the imprecision of
floating-point numbers, total contains a value close to 1 but not equal to 1 and
thus the program will print the string "Not Correct".

The For Loop

The for statement in Python is part of the built-in iterator mechanism used to
traverse the individual items stored in a sequence or collection. The individual
items in the given collection are assigned, one at a time, to the loop variable.
After each assignment, the body of the loop is executed in which the loop variable
is commonly used to perform some action on each item. The loop body will be
executed once for each item in the collection. Consider the following code segment:

count = 0
for letter in theString :
if letter >= "A" and letter <= "Z" :
count += 1

print( "The string contained %d uppercase characters." % count )

which traverses over the individual characters of the string "John Smith", one at
a time, to count the number of uppercase letters contained in the string. Python’s
for statement is equivalent to the foreach constructs found in other languages.
Thus, when reading code containing a for loop, it’s best to read the “for” clause
as “for each”. Consider the loop in the previous code segment, which we would
read as “for each letter in theString do the following” where “do the following”
represents the statements in the loop body.

Python also provides the range() function, which can be used with the for
statement to construct count-controlled loops. Consider the following code seg-
ment, which prints the range of integers from 1 to 10, one per line:

for i in range( 1, 11 ) :
print( i )

The range() function specifies a sequence of integer values over which the for
loop can traverse. There are several forms of the range() function depending on
the number of arguments supplied. Consider the following examples:

# Third argument indicates the increment amount; default is 1.
for i in range( 0, 31, 5 ) : # 0, 5, 10, 15, 20, 25, 30
print( i )

# We can decrement through the range of values.
for i in range( 30, 0, -5 ) : # 30, 25, 20, 15, 10, 5
print( i )

# A single argument will iterate through the range, starting at 0.
for i in range( 5 ) : # 0, 1, 2, 3, 4
print( i )
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A.5 Collections
Python provides several data types that can be used to store and manage data
collections: the string, tuple, list and dictionary.

A.5.1 Strings
Python also provides several built-in collection classes. Strings are very common
and fundamental in most programming languages. In Python, strings are im-
mutable objects of the built-in str class, which store the sequence of characters
comprising the string. A number of basic operations can be performed on strings,
some of which are described in this section. Two strings can be concatenated using
the plus operator. For example:

strvar = 'This is '
fullstr = strvar + "a string"

results in the string "This is a string" being assigned to variable fullstr. To
concatenate a string with a non-string value, you must first create a string repre-
sentation of the non-string using the str() constructor:

result = "The value of x is " + str( x )

Python provides the built-in len() function that can be applied to any of the
built-in collections. When used with a string, it returns the number of characters
contained in the string.

print( "Length of the string = ", len(name) )

In an earlier section, we saw that the individual characters of a string can be
accessed by traversing the sequence using an iterator. An individual character of a
string can also be accessed by specifying an integer subscript or index representing
its position within the string. Consider the following example, which prints the
first and last character of a string:

msg = "This is a string!"
print( "The first character is", msg[0] )
print( "The last character is", msg[-1] )

Both positive and negative subscripts can be used. A positive subscript rep-
resents the offset of the character from the front of the string while a negative
subscript indicates the offset from the end of the string, as illustrated here:


name

0 1 2 3 4 5 7 8 9

J o h n S m i t h

6

-10 -9 -8 -7 -6 -5 -3 -2 -1-4

The subscript must be within the valid range for the given string; otherwise, an
exception will be raised, resulting in an error.

Printing a dashed line is a common operation in text-based applications. One
way to do it is as a string literal:
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print( "---------------------------------------------" )

But Python provides a string repeat operator for duplicating or repeating a string
that produces the same results:

print( "-" * 45 )

A.5.2 Lists
A Python list is a built-in collection type that stores an ordered sequence of object
references in which the individual items can be accessed by subscript. A list can
be created and filled using a comma-separated sequence within square brackets.
For example, the first statement in the code segment:

gradeList = [ 85, 90, 87, 65, 91 ]
listA = [] # two empty lists
listB = list()

creates a five-element list containing the specified integers and stores a reference
to the list in the gradeList variable. The resulting gradeList is illustrated here:

8585 9090 8787 6565 9191
gradeList

0 1 2 3 4

Element Access

List elements are referenced using the same square bracket subscript notation,
used with strings. As with strings, the elements are numbered in sequential order,
with the first element having index zero. Negative subscripts can also be used to
reference the elements starting from the end.

print( 'First item = ', gradeList[0] )
print( 'Last item = ', gradeList[-1] )

A list can be printed using the print() function, as can most Python data
types, or it can be converted to a string. Consider the following code segment:

aString = str( gradeList )
print( gradeList )

which produces the following output [95, 90, 87, 65, 91]. The elements of a list
can also be accessed by traversing the list using the iterator mechanism:

for element in gradeList :
print( element )
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List Modification

The contents of a specific element of the list can be modified using the subscript
notation with the variable name on the left side of an assignment statement. For
example, the following code segment replaces grade 65 with 71:

gradeList[3] = 71
print( gradeList ) # prints [95, 90, 87, 65, 91]

New items can be appended to the end of the list using the append() method.
The following code segment creates a list of 1,000 random values by appending
each value to the end of an initially empty list:

import random

valueList = list()
for i in range( 1000 ) :

valueList.append( random.random() )

The extend() method, which takes a list as its argument, can be used to append
multiple items to the end of a list. For example, the following code segment:

listA = [ 0, 1, 2, 3 ]
listB = listA.extend( [ 4, 5, 6 ] )
print( listB )

produces as output [0, 1, 2, 3, 4, 5, 6 ]. The entire contents of the argu-
ment are appended to the end of the list for which the method was invoked. The
insert() list method can be used to insert items anywhere within a list. Consider
the code:

values = [ 0, 1, 2, 3, 4 ]
values.insert( 1, 8 )
print( values )

which produces the output [0, 8, 1, 2, 3, 4]. The insert() method inserted
value 8 before the current item at position 1. The remaining items were shifted
down to make room for the new item. Python provides several methods for deleting
items from a list. The first approach uses the remove() method, which allows you
to delete an item by value:

theList = [ 10, 11, 12, 13 ]
theList.remove( 11 )
print( theList ) # prints [10, 12, 13]
print( len(theList) ) # prints 3

To remove an item by index, you can use the pop() method, which retrieves
and then removes the item at the given index. In the following code segment, we
use the pop(1) method to retrieve and remove the item at index position 1:

x = theList.pop( 1 )
print( "list =", theList ) # prints list = [10, 13]
print( "x =", x ) # prints x = 12
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The items following the removed item are shifted down and the size of the list
shrinks by one. You can omit the index position for pop() and the item in the last
element will be retrieved and removed.

theList.pop()
print( theList ) # prints [10]

Searching the List

Several methods and operators are provided that can be used to search the list.
The index() method can be used to search for an item within the list. It returns
the element index of the first occurrence within the list. If the list does not contain
the given value, an exception is raised.

theList = [ 10, 11, 12, 13 ]
pos = theList.index( 13 )
print( pos ) # prints 3

A.5.3 Tuples
Another built-in collection type for creating an ordered sequence of objects is the
tuple. Tuples are exactly like lists, except they are immutable. A tuple is created
using a pair of parentheses instead of square brackets.

t = ( 0, 2, 4 ) # 3 element tuple
a = ( 2, ) # 1 element tuple
b = ( 'abc', 1, 4.5, 5 ) # 4 element mixed tuple

You have already seen the use of tuples when multiple values were passed as
data fields in a formatted string that were listed within parentheses, as shown
below. That was actually a tuple. Many of the operators used with lists can also
be used with tuples, but there are no additional methods defined for tuples.

print( "(%d, %d)" % (x, y) )

A.5.4 Dictionaries
The Python dictionary is a built-in class that stores a collection of entries in which
each entry contains a key and a corresponding value, sometimes called a payload. A
dictionary can be created and filled using a sequence of comma-separated key:value
pairs listed within curly braces or empty dictionaries can be created using empty
braces, or the dict() constructor:

states = { 'MS' : 'Mississippi', 'VA' : 'Virginia',
'AL' : 'Alabama', 'DC' : 'Washington' }

classLevel = { 0 : 'Freshman', 1 : 'Sophomore',
2 : 'Junior', 3: 'Senior' }

emptyA = { }
emptyB = dict()
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Element Access

The items stored in a dictionary are accessed based on the key part of the key/value
pair. Accessing an entry in the dictionary also uses the subscript notation, but
unlike a list or tuple, the subscript value is one of the keys in the dictionary.

print( 'The state name is', states['MS'] )

When using the subscript notation to access an entry in the dictionary, the given
key must exist or an exception is raised. As an alternative, the get() method can
be used, which returns the value associated with the given key if it exists or returns
None if the key does not exist:

print( states.get( 'MS' ) ) # prints Mississippi
print( states.get( 'MD' ) ) # prints None

The collection can be traversed using Python’s iterator mechanism provided
through the for statement. The traversal is made over the keys in the dictionary.
To access the corresponding value, simply use the subscript notation.

for key in classLevel :
print( key, '=', classLevel[key] )

You can obtain a list of the keys or values stored in the dictionary using the
appropriate method:

keyList = states.keys()
valueList = states.values()

Dictionary Modification

The value associated with a key in the dictionary can be changed using the dictio-
nary subscript notation with the variable name on the right side of an assignment
statement. For example, the following code segment corrects the entry for DC in
the states dictionary and then prints the contents of the dictionary:

states['DC'] = 'District of Columbia'
print( states )

which results in:

{'VA': 'Virginia', 'AL': 'Alabama', 'MS': 'Mississippi',
'DC': 'District of Columbia'}

New entries can also be added to a dictionary using the dictionary subscript
notation. Thus, if the key exists, its corresponding value is modified; if the key
does not exist, a new key/value pair is added to the dictionary:

states['OR'] = 'Oregon'
states['VT'] = 'Vermont'
print( len(states) ) # prints 6
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An existing entry can be removed from a dictionary using the pop() method
or the del operator. The given key must exist in the dictionary:

states.pop( 'AL' )
del states['VT']

The in and not in operators can be used to determine if a dictionary contains
a given key. These can also be used with strings, tuples, and lists.

if abbv not in states :
print( abbv, "is not a valid state abbreviation" )

if 100 in gradeList :
print( "Student received at least one perfect score." )

A.6 Text Files
Data files stored on a secondary device such as a hard drive or USB stick can be
used for the input of data into a program and the output of data from a program.
For example, if we want to produce and print a report, we need we need to write
the information to a file and then print the file. The data needed to produce that
report may itself be stored in a file on disk. We would have to extract the data
from the file, process it, and then produce the report.

In most languages, files are treated as I/O streams (input/output streams) in
which data flows into or out of a program. Internally, standard input, in which
data is extracted from the keyboard, is treated as an input stream and standard
output, in which data is written to the terminal, is treated as an output stream.

There are two main types of data files that can be used with Python: text files
and binary files. A text file contains a sequence of characters from the printable
range of the ASCII code. This typically includes the ASCII values in the range
[32 . . . 126] and ASCII values 13 and 9, which are used for newlines and tabs.
Examples of text files include those created by any text editor such as the source
files containing your Python programs. A binary file contains a sequence of binary
numbers representing data values as they would be stored in memory. Examples
of binary files include those created by word processors, spreadsheet applications,
and databases. Binary files cannot be read and displayed by text editors since
they contain byte values outside the printable range. In this section, we limit our
discussion to text files since they are very common and easy to work with.

A.6.1 File Access
Files are a built-in type in Python that are represented by objects. This means no
additional modules are required in order to access a file from within your program.
Before a file can be used, it must first be opened and an object created to represent
the file. A text file is opened using the open() function:

infile = open( "records.txt", "r" )
outfile = open( "report.txt", "w" )
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The function takes two string arguments. The first is the name of the file and
the second indicates the mode in which the file is to be opened. The modes are:

’r’ — Open the file for reading
’w’ — Open the file for writing

New in Python 3.x: Python now includes multiple classes for working with files. The
file() constructor no longer exists and cannot be used to open a file. Instead, you must
use the open() function, which creates and returns an appropriate file object based on
the supplied arguments.

If the file can be opened, the function creates a file object and returns a reference
to that newly created object. This object is then used to access the file. A file
opened for reading must exist and be accessible to the user running the program.
If a file is opened for writing and it does not exist, a new file is created; but if the
file exists, it will be erased and a new file created. If the file cannot be opened, an
error is generated.

When you are finished using the file, it should be closed. By closing the file, the
system will flush the buffers and unlink the external file from the internal Python
object. A file cannot be used after it has been closed. To reuse the file, you must
first reopen it. Python files are closed by calling the close() method defined for
file objects:

infile.close()
outfile.close()

A.6.2 Writing to Files
Python provides several methods for outputting data to a text file. The easiest
way to write text to a text file is with the write() method defined for file objects:

outfile.write( "Student Report\n" )
outfile.write( "-" * 40 + "\n" )

The write() method writes the given string to the output file represented by
the given file object. To output other value types, you must first convert them
to strings. Formatted output can also be written to a file using the string format
operator:

outfile.write( "%4d %6.2f\n" % (idNum, avgGrade) )

Note that the write() method does not add a linefeed or newline character
after the string is written to the file. This must be done explicitly by including a
newline character (\n) as part of the output string.
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A.6.3 Reading from Files
Python provides two methods for extracting data from a text file, both of which
extract data as strings. To extract other types of data from a text file, you must
explicitly convert the extracted string(s) as was done with the input() function.
The readline() method is used to extract an entire line from a text file. The end
of a line is indicated by a newline character (\n). The extracted text is returned
as a string:

line = infile.readline()

If the file is empty or the end of file has been reached, the readline() method
returns an empty string ("") to flag this result:

infile = open( "data.txt", "r" )
line = infile.readline()
while line != "" :

print( line )
line = infile.readline()

infile.close()

The readline() method leaves the newline character at the end of the string
when the line is extracted from the file. The rstrip() string method can be used
to strip the white space from the end:

line = infile.readline()
stripped = line.rstrip()

To read individual characters from a text file, simply pass an integer value to
the readline() method indicating the number of characters to be extracted:

ch = infile.readline( 1 ) # read a single character

Python provides the readlines() method that can be used to extract the entire
contents of an open file and store it into a string list:

lines = infile.readlines()

An alternate approach to processing the entire contents of a text file is with the
use of the file iterator. Consider the following example, which extracts the input
file, one line at a time, and then writes it to the output file:

infile.open( "myreport.txt", "r" )
for line in infile:

print( line )
infile.close()

The previous examples dealt with the extraction of strings from a text file. But
what if we need to extract numeric values? Since Python only provides methods
for extracting strings, we must handle the conversions explicitly. Consider the
following sample text file containing three pieces of information for a student:
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100
Smith, John
92.4

The first line is an integer identification number, the second is the name of the
student stored as a text string, and the last line is the student’s average computed
as a floating-point value. To extract the information, each line must be read as a
string and the two numeric values must be explicitly converted to the appropriate
numeric type.

idNum = int( infile.readline() )
name = (infile.readline()).rstrip()
avg = float( infile.readline() )

Typically, the newline character should be removed from strings that are part
of data records. Otherwise, problems can occur when processing the strings, as
would be the case when performing a string comparison. The removal of the
newline character can be combined with the extraction as shown in the above code
segment, or performed as two separate operations.

A.7 User-Defined Functions
Python allows users to define their own functions that can be used like any other
built-in or library function. Functions allow for the subdivision of larger problems
into smaller parts and for the reuse of code. In this section, we review the creation
and use of user-defined functions.

A.7.1 The Function Definition
A Python function contains a header and body. The function header is specified
using the def keyword while the function body is given as a statement block. The
header consists of a name by which the function can be called and a parenthesized
comma-separated list of formal parameters. Consider the following code segment:

def sumRange( first, last ):
total = 0
i = first
while i <= last :
total = total + i
i = i + 1

return total

that defines the function sumRange(), which requires two arguments. The function
sums the range of values specified by the first and last numeric arguments and
returns the result. A user-defined function is called like any other function in
Python, as illustrated in the following code segment:

theSum = sumRange( 1, 100 )
print( "The sum of the first 100 integers is", theSum )



A.7 User-Defined Functions 481

Function Arguments

When a function is called, the flow of execution jumps to the function. The argu-
ments specified in the function call are copied to the function parameters in the
order specified. The function is then executed beginning with the first statement
in the function body. When a return statement is executed or the end of the
function body is reached, execution returns to the point where the function was
called.

In Python, arguments are passed by value. Since every value is an object, it
is the object reference that is copied to a function parameter and not the object
itself. For example, suppose we call sumRange() with two variables:

start = 5
end = 25
theSum = sumRange( start, end )

Inside the function, variables first and last are local variables that contain aliases
to variables start and end, respectively.


start

55


end

2525

sumRange( start, end )

The local scope
for this method
invocation.

 first

 last

Python is a dynamically typed language and every operator in Python is a
polymorphic operation. So, what keeps us from passing floating-point values into
the sumRange() function? For example, the function call sumRange(1.37, 15.78)

would be valid. So long as all operations within the function can be applied to the
given values, the program will execute correctly. If an operation cannot be applied
to a given argument type, an exception will be raised to indicate the invalid type.
This flexibility is a powerful feature of Python. It allows a single function to be
applied to different object types without having to define multiple versions.

Returning Values

As indicated earlier, the return statement can be used to terminate a function,
but it’s also used to return a value, or more specifically an object reference, back to
the program where the function was called. For example, the sumRange() function
returns the total that results from summing the range of values using the statement
return total.

Most value-returning functions return a single value. But Python does not
limit you to only returning a single value. Multiple values can be returned by
specifying a comma-separated list as part of the return statement. For example,
the following function prompts the user for their first and last names and then
returns both strings:

def promptForName():
first = input( "What is your first name? " )
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last = input( "What is your last name? " )
return first, last

A function that returns multiple values can only be called as part of a multi-
variable assignment statement:

firstName, lastName = promptForRange()

The multiple values returned by a function are assigned to the variables in
the order they are listed in the return statement. Thus, if we execute the above
function call and enter data as follows:

What is your first name? John
What is your last name? Smith

the string 'John' will be assigned to firstName and 'Smith' will be assigned to
lastName. Note that when multiple values are returned by a function, Python
actually returns a tuple with the values stored as elements. Thus, some books will
show the assignment of the returned values using the following equivalent notation:

(firstName, lastName) = promptForRange()

Default and Keyword Arguments

Python allows functions to be defined with default argument values. For example,
we can add a third parameter to the sumRange() function to be used as the step
value and assign a default value to the argument:

def sumRange( first, last, step = 1 ):
total = 0
i = first
while i <= last :

total = total + i
i = i + step

return total

If the value of the third argument is omitted when calling the function:

theSum = sumRange( 1, 100 )

the default value is assigned to the parameter before the function is executed. If a
value is specified in the function call for the third argument:

theSum = sumRange( 1, 100, 2 )

then that value is used instead of the default value. When defining functions with
default arguments, all arguments following the first one with a default value, must
be assigned default values. Otherwise, Python would have no way of knowing
which argument is supposed to receive the default value.

The arguments specified in a function call are passed to the parameters of a
function in the order they were specified. Python also allows you to specify the
argument order by using keyword arguments. Consider the following function call:
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theSum = sumRange( last = 100, step = 3, first = 1 )

in which we directly specify which argument is supposed to receive which value. As
we’ve seen earlier, keyword arguments can be used with the print() function to
change the separation string that gets inserted when printing multiple arguments
and to change the string printed at the end of the function call.

A.7.2 Variable Scope
Variables are classified by their scope, which indicates where the variable was
created and where it can be used. Python has four scope classifications. The
built-in scope includes the variables and literal values defined as part of the
language, which can be used anywhere within a program. The global scope includes
the variables created at the top level of a source file or module (outside of all
functions and classes). Unlike other languages in which a global variable can be
used anywhere within a program, each module in Python creates its own global
scope. The local scope includes the variables created within a function or method
and are local to the given subroutine. Function and method arguments are local
variables. And finally, the instance scope includes the variables defined as data
attributes of a class. These will be discussed more in Appendix D.

Variables only exist within the scope in which they were created. The built-
in and global scopes exist during the entire life of the program. Variables in the
instance scope exist during the lifetime of the object for which they were defined.
A local variable, however, only exists during the time in which the function is being
executed. Each execution of a function creates a new local scope, which is then
destroyed when the function terminates.

A.7.3 Main Routine
Every program must have a unique starting point: a first statement to be executed.
In Python, the first statement to be executed is the first statement at file level
(outside of all functions and class definitions). The statements within a function are
not executed until the function is called, even though the statements are interpreted
and converted to byte code as they are read. Thus, you can refer to one function
from within another before the former has been defined. For example, consider the
following code segment:

def run():
value = int( input("Enter a value: ") )
print( "The double of your value is ", doubleIt( value ) )

def doubleIt( num ):
return num * 2

run()

But this is not the case when calling a function from a statement at file level.
When a Python source file or module is loaded by the interpreter, all statements at
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i Use of a Main Routine. In the text, we only use a main() function
when the driver module contains multiple functions as illustrated by

the diceroll.py program below. If the driver module does not contain mul-
tiple functions, as illustrated by the driver.py module, we omit the main()
function and list all executable statements at the file level.

file level are executed during the loading process. If a function is called at file level
before the function has been defined, as illustrated in the following code segment,
the interpreter does not know about the function and has no way of executing it:

callIt( 5 )

def callIt( num ):
return pow( num, 2 )

The order in which functions are listed within a file is not important, but the
order of executable statements at file level is. When subdividing a program into
various functions using a top-down design, it is good programming practice to
place all executable statements within functions and to specify one function as the
driver, as illustrated in the following code segment. With this approach, the driver
function, which is commonly named main() due to that name being used in other
languages, can be defined first with the remaining definitions following it. At the
bottom of the file, a single file-level statement (not including constant variables) is
used to call the driver function.

# diceroll.py - simulate the rolling of two dice.
from random import *

# Minimum number of sides on a die.
MIN_SIDES = 4

# Our very own main routine for a top-down design.
def main():
print( "Dice roll simulation." )
numSides = int( input("How many sides should the die have? ") )
if numSides < MIN_SIDES :
numSides = MIN_SIDES

value = rollDice( numSides )
print( "You rolled a", value )

# Simulate the rollowing of two nSided dice.
def rollDice( nSides ):
die1 = randint( 1, nSides + 1 )
die2 = randint( 1, nSides + 1 )
return die1 + die2

# Call the main routine which we defined first.
main()
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User-Defined Modules

As you learned earlier, Python includes a standard library containing modules of
functions and class definitions that can be used in our programs. By using mod-
ules, the language itself can remain relatively small while still providing extended
functionality.

B.1 Structured Programs
Python programs can quickly become very large and unmanageable, especially
if the entire user code is placed within a single source file. To help structure
and manage large programs, Python allows the user to create their own modules.
A module, which is a text file that contains Python source code and has a .py
extension, can be used to group class definitions and related functions.

Typically, a large program consists of a top-level source file and one or more
supplemental modules. The top-level file acts as the driver , which contains the
statements for the main flow of execution, and the modules contain related com-
ponents, which act as tools that are imported and used as needed.

The code segment below illustrates the use of modules in organizing a struc-
tured program. It consists of three Python source files: a top-level driver (grades.py),
and two supplemental modules (iomod.py, and compmod.py). (Note, this is a small
simple program used for illustration purposes. In practice, a short program like
this would more likely be placed in a single module.)

# grades.py ----------------------------------------------------------

# The driver module which contains the statements creating the main
# flow of execution.
import iomod
import compmod

gradeList = iomod.extractGrades()
avgGrade = compmod.computeAverage( gradeList )
iomod.printReport( gradeList, avgGrade )
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# iomod.py -----------------------------------------------------------

# A module containing the routines used to extract and print grades.
def extractGrades():
gradeList = list()
grade = int( input("Enter the first grade: ") )
while grade >= 0 :
gradeList.append( grade )
grade = int( input("Enter the next grade (or < 0 to quit): ") )

return gradeList

def printReport( theList, avgGrade ):
print( "The average grade for the ", len(theList),

"grades entered is", avgGrade )

# compmod.py ---------------------------------------------------------

# A module which defines a function for computing the average grade.
def computeAverage( theList ):
total = 0
for grade in theList :
total += grade

return total / len(theList)

To execute the program, you would enter the command:

python grades.py

at the command-line prompt since the driver program is the main file containing
the starting point of execution. The Python interpreter will include each mod-
ule specified within an import statement. In this example, that includes both
iomod.py and compmod.py as indicated at the top of grades.py. The interpreter
will only import a module once, even if it is encountered multiple times. Thus,
you should always import a module within a source file if any component of that
module is needed. Let the interpreter worry about omitting the module if it has
already been included.

B.2 Namespaces
All identifiers in Python live within a namespace , the context in which identifiers
are defined. You can think of a namespace as a container or index in which various
identifiers are stored. When an identifier is referenced in a Python program, a
search is performed in a particular namespace to determine if that identifier is
valid. The namespace concept allows programmers to create duplicate names,
each existing in a different namespace.

In Python, each module constitutes its own namespace. Any identifier defined
within a module may be freely used within that same module. But what about
identifiers defined within other modules? It depends how they are imported. When
the plain import statement is used:

import math
y = math.sqrt( x )
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the contents of the module are made available for use in the current module,
but they are not made part of the current module’s namespace. That’s why the
identifiers have to be referenced using the dot/module name notation. When the
from/import version of the import statement is used:

from math import *
z = pow( x, 3 )

the contents of the module are made available to the current module just like with
the plain version. But the identifiers from the imported module are included in the
namespace of the current module, which can then be used as if they were defined
within the current module.

The from/import version of the import statement has two forms. When the
asterisk is used as in the previous example, everything in the module is included
and made available. Instead of including everything, you can specify individual
components to be included:

from math import sqrt, pow
x = sqrt( x )
z = pow( x, 3 )

You may be asking, why are there two ways to import modules. Why not just
use the from/import version and make all identifiers available within the current
module? The short answer is, there are times when different module authors
may use the same name for a function or class, yet provide different functionality.
Identifiers are unique within a given namespace; there can be only one instance of
each identifier. In Python, unlike other languages, an identifier can be redefined at
any time with the new definition replacing the original. Consider the code segment
below which illustrates a simple program consisting of a top-level driver (main.py)
and two supplemental modules (modA.py and modB.py).

# main.py ---------------------------------------------------------

import modA
import modB

x = int( raw_input( "Enter value one: " ) )
y = int( raw_input( "Enter value two: " ) )
v = modA.userFnct( x, y )
w = modB.userFnct( x, y )

# modA.py ---------------------------------------------------------

from math import *

def userFnct( x, y ):
d = sqrt( x * x + y * y )
return d

# modB.py ---------------------------------------------------------

def userFnct( x, y ):
return x + y
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The driver needs to reference both instances of userFnct() from within its
namespace. By using the plain import statement, both versions of userFnct()
will be imported and made available within the main.py driver. We can then
include the module name as part of the reference:

v = modA.userFnct( x, y )
w = modB.userFnct( x, y )

to direct the interpreter to a specific version of the function. Had we imported the
two versions of userFnct() into the current namespace using the from/import
statement, then only the version defined within modB.py would be available since
the second definition of the function would have redefined the original from modA.py.
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Exceptions

Unforeseen errors can occur in a program during run time due to faulty code or
invalid input. Consider the following sample code segment, which attempts to
access a non-existent element of a list:

myList = [ 12, 50, 5, 17 ]
print myList[ 4 ]

When this code is executed, the program aborts and the following message is
displayed:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: list index out of range

The last line in the message provides information as to the type of run-time error
that caused the program to abort. In this case, there are only four elements in the
list numbered 0, 1, 2, 3 and thus subscript 4 is out of range.

Python, like many other high-level programming languages, raises an exception
when an error occurs. An exception is an event that can be triggered and option-
ally handled during program execution. When an exception is raised indicating an
error, the program can contain code to catch the exception and gracefully handle
it. When an exception is not handled, the program will abort as was the case in
our example above.

C.1 Catching Exceptions
Consider the following example in which we want to extract an integer value from
the user with the input() function:

value = int( input("Enter an integer value: ") )
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What happens if the user entered 4x at the prompt instead of an actual numeric
value? Python raises an exception which causes the program to abort with the
following message printed to the terminal.

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: invalid literal for int() with base 10: '4x'

Since Python cannot convert the string "4x" to an integer value, it raises an
exception. Instead of having the program abort due to the exception, we can
provide code to detect and catch the exception and request that the user try again.

while True:
try:
value = int( input("Enter an integer value: ") )
break

except ValueError :
print( "You must enter an integer value. Try again." )

The try block flags the code in which we want to catch any exceptions that
may be raised during execution. The except block indicates the action to take
when the given type of exception is raised within the corresponding try block. If
no exception is raised, execution flows normally and the except block is skipped.
When an exception is raised, the normal flow of execution is interrupted. If an
except block is provided for the type of exception raised, execution jumps to
the first statement within that except block. On the other hand, if there is no
corresponding except block, the program terminates.

C.2 Raising Exceptions
Python automatically raises exceptions when an error occurs during program ex-
ecution for various language constructs and library modules. But you can also
raise an exception when you detect an error in your code. Consider the following
function, which accepts two arguments and returns the minimum of the two:

def min( arg1, arg2 ):
if arg1 is None or arg2 is None :
raise TypeError( "arguments to min() cannot be None" )

if arg1 < arg2 :
return arg1

else :
return arg2

If we define this function as accepting two comparable values other than None
and return the minimum of the two, we need to make sure the arguments are valid.
That is, neither argument is null. If one or both of the arguments is null, then we
raise a TypeError exception to flag an error using the raise statement. Consider
the function call:

y = min( x, None )
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which results in an error and the exception being raised. The program aborts with
the following message:

Traceback (most recent call last):
File "temp.py", line 10, in <module>
y = min( x, None )

File "temp.py", line 3, in min
raise TypeError( "arguments to min() cannot be None" )

TypeError: arguments to min() can not be None

Note the error message displayed in the last line of the output. This message
comes from the second argument to the raise statement. When raising an excep-
tion, an optional string can be given to provide a descriptive error message to aide
the programmer in debugging the code.

New in Python 3.x: The raise statement now requires the optional string message be
included as an argument to the constructor of the exception class. In prior versions, the
class name and the message could be separated by a comma.

C.3 Standard Exceptions
Python provides a number of built-in exceptions that can be raised by the language
and its library modules. In Python, exceptions are defined as classes from which
an object is created. The name of the class is given as an argument to the raise
statement. Some of the more common exceptions are described next:

IndexError Used when a list or tuple index is out of range.

KeyError Raised when a dictionary key is not found in
a dictionary.

NotImplementedError Used in user-defined methods (especially in
abstract classes) to indicate the method is be-
ing used but has not yet been implemented.

RuntimeError Raised to flag an error when no other excep-
tion type is appropriate.

TypeError Raised when an incorrect data type is supplied
to an operator or method.

ValueError Raised when the correct data type is supplied,
but it is not an appropriate value.

C.4 Assertions
Python also provides the assert statement, which can be used to raise the special
AssertionError exception. The assert statement is used to state what we assume
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to be true at a given point in the program. If the assertion fails, Python raises an
AssertionError and aborts the program, unless the exception is caught.

The assert statement combines the testing of a condition with raising an
exception. The difference between making an assertion and raising an exception is
that the assert statements can be deactivated at run time. Consider the min()
function defined earlier rewritten to use the assert statement:

def min( arg1, arg2 ):
assert arg1 is not None and arg2 is not None, \

"arguments to min() cannot be None"
if arg1 < arg2 :
return arg1

else :
return arg2

There are two forms of the assert statement, though both test the given
condition and raise the AssertionError exception when the condition fails. The
difference is the inclusion of the optional description, which provides information
to the programmer as to the cause of the error.

assert value > 0
assert value > 0, "A positive value is required."

Exceptions should be raised in those instances where you expect errors may
occur during execution that can be properly handled without aborting the pro-
gram. For example, when checking for valid user input or verifying a successful
network connection to a server, the program does not have to be aborted when the
operation fails. Instead, you can catch the exception, inform the user, and provide
an alternate course of action. This may not be the case, however, when a precon-
dition fails due to a logical error in the program. For example, if the programmer
incorrectly attempts to access a list element by supplying an out-of-range index,
it may be impossible to recover from such an error. In this case, the program
should abort as the proper course of action. Thus, assertions are best used for
debugging a program and testing preconditions while exceptions are best used to
catch recoverable errors.

As we stated earlier, assert statements can be deactivated at run time in the
final product to prevent them from being executed. Since assertions are made to
help debug and catch programming errors, once you have fully tested the program,
we would not expect these errors to occur. By turning them off, the execution speed
of the program can be improved in the final production environment. In addition,
the end user of the program will have little use for the debug information.

When implementing abstract data types, it’s important that we ensure the
proper execution of the various operations by verifying any stated preconditions.
The appropriate mechanism is to state assertions for the preconditions and allow
the user of the ADT to decide how they wish to handle the error. In most cases,
the appropriate step is to allow the program to abort. Thus, in the text, we focus
on stating assertions and omit further discussion of catching those exceptions.
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Python supports both the procedural and object-oriented programming paradigms.
Whereas the procedural paradigm is focused on the creation of functions, the
object-oriented paradigm is centered around the use of objects and classes. An
object is a software entity that stores data. A class is the blueprint that describes
the data stored in an object and defines the operations that can be performed on
the object. Objects are created or instantiated from classes, and each object is
known as an instance of the class from which it was created.

D.1 The Class Definition
Python, like all object-oriented programming languages, allow programmers to
define their own classes. A class definition is a compound statement consisting of
a header and a body. The class header contains the keyword class followed by an
identifier used to name the class. The body of the class definition contains one or
more method definitions, all of which must be indented to same indentation level.

Suppose we want to define a class to represent a point or coordinate in the
two-dimensional Cartesian coordinate system. The objects will need to store two
values, one for the x-coordinate and one for the y-coordinate. We will also have to
decide what operations we want to be able to perform on the objects created from
the new class. We can begin with a framework for the new class:

class Point :
# The methods are defined in the body one after the other.

Notice that our class is named Point, which starts with an uppercase letter.
While this is not a requirement of the syntax, it is common programming practice
in order to distinguish a class name from variables and functions.

A method is a service or operation that can be performed on an object created
from the given class. A method is very similar to a function with several exceptions:
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(1) a method is defined as part of a class definition; (2) a method can only be used
with an instance of the class in which it is defined; and (3) each method header
must include a parameter named self, which must be listed first.

New in Python 3.x: All classes are automatically derived from the object base class
even if it’s not explicitly stated in the header definition.

D.1.1 Constructors
All classes should define a special method known as the constructor , which defines
and initializes the data to be contained in the object. The constructor is automat-
ically called when an instance of the class is created. In Python, the constructor
is named init and is usually listed first in the class definition:

class Point:
def __init__( self, x, y ):
self.xCoord = x
self.yCoord = y

Data Attributes

The data contained in an object is known as the object’s data fields or data
attributes. The attributes are simply variables, like any other variable in Python,
but are stored in the object itself. An object’s attributes are accessed using the dot
notation and appending the attribute name to the self reference. Any variables
not prepended by the self reference are local to the method in which they are
defined.

Since variables in Python are created when they are first assigned a value, the
constructor is responsible for creating and initializing the data attributes. The
constructor of our Point class needs to create two attributes, one for each of
the coordinate components. This is done by the two assignment statements, which
create and initialize the attributes named xCoord and yCoord. They are initialized
respectively to the values of the two parameters, x and y. (Note that Python also
allows default arguments to be defined for methods just as it does for functions.)

Object Instantiation

An instance of a user-defined class is created by invoking the constructor. This is
done by specifying the name of the class along with any required arguments as if
it were a function call. For example, the following statements create two objects
from our Point class and assigns them to the variables pointA and pointB:

pointA = Point(5, 7)
pointB = Point(0, 0)
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The results are illustrated in Figure D.1. Note that we never call the init
method directly. Instead, Python allocates memory for the object, then automati-
cally calls the init method for the given class to initialize the new object. The
attributes of an object are also known as instance variables since new attributes
are created for each instance of the class. In our example, we created two objects
and each object has its own variables named xCoord and yCoord.


xCoord 55

yCoord 77

pointA


xCoord 00

yCoord 00

pointB

Figure D.1: Sample Point objects.

The self Reference

You may have noticed that the constructor was defined with three parameters,
but we supplied only two arguments when creating the objects. When a method
is executed, Python must know on which object the method was invoked in or-
der to know which attributes to reference. As indicated earlier, self is a special
parameter that must be included in each method definition and it must be listed
first. When a method is called, this parameter is automatically filled with a ref-
erence to the object on which the method was invoked. If the method defines
additional parameters, explicit arguments must be passed to the method as part
of the method call.

D.1.2 Operations
So far, we can create a new object, but we can’t do anything with it. Next, we
need to define additional operations that can be performed on our Point objects.
Let’s start by adding two methods that can be used to extract the individual x-
and y-components of the point contained in the object. (Note that we only show
the two new methods, but assume the constructor defined earlier is still part of the
class as indicated by the # ... comment line.)

class Point :
# ...
def getX( self ):
return self.xCoord

def getY( self ):
return self.yCoord

We can use the new methods to extract and print the coordinates of one of the
objects we just created:
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x = pointA.getX()
y = pointA.getY()
print( "(" + str(x) + ", " + str(y) + ")" )

When the getX() method is called, Python creates a local variable for the self
parameter and assigns it a copy of the reference stored in pointA, as illustrated by
Figure D.2. The body of the method is then executed. Since the instance variable
is prepended with the self reference and self is an alias for pointA, the value in
the xCoord attribute of pointA will be returned.

xCoord 55

yCoord 77


pointA xCoord 00

yCoord 00


pointBpointA.getX()

 self

The local scope for this
method invocation.

Figure D.2: Use of the self reference.

Any object that stores data is said to have a state. The object’s state is
the current set of values that it contains. Objects are divided into two distinct
categories: mutable and immutable. An immutable object is one in which the
state cannot be changed once it has been created. If the data fields of the object
can be changed after the object has been created, the object is said to be mutable .

So far, the objects created from our Point class are immutable because we have
no way of changing the coordinates stored in the objects. We can add a method to
adjust or shift a point along both the x- and y-axes, which now makes our objects
mutable since we have a way to modify the data attributes:

class Point :
# ...
def shift( self, xInc, yInc ):
self.xCoord += xInc
self.yCoord += yInc

If we apply this new method to our pointA object with the method call
pointA.shift(4, 12), local variables are created for all three parameters and
assigned the corresponding values, as illustrated in the top of Figure D.3. After
the method is executed, the data attributes of the pointA object are modified, as
illustrated in the bottom of Figure D.3.

Finally, we add a method to our class that can be used to compute the Euclidean
distance between two instances of the Point class:

class Point :
# ...
def distance( self, otherPoint ):
xDiff = self.xCoord - otherPoint.xCoord
yDiff = self.yCoord - otherPoint.yCoord
return math.sqrt( xDiff ** 2 + yDiff ** 2 )
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xCoord 55

yCoord 77


pointA xCoord 00

yCoord 00


pointBpointA.shift(4, 12)


self

44 1212

xInc yInc


xCoord 99

yCoord 1919

pointA


xCoord 00

yCoord 00

pointB

Figure D.3: The local scope (top) when calling pointA.shift(4,12) and the result after
the call (bottom).

The distance is computed between the self point and the otherPoint, which is
passed as an argument. Figure D.4 illustrates the local variables that are created
when applying the method with the call d = pointA.distance( pointB ).


xCoord 99

yCoord 1919

pointA


xCoord 00

yCoord 00

pointBpointA.distance(pointB)


otherPointself



Figure D.4: The local scope when calling pointA.distance(pointB).

D.1.3 Using Modules
A class definition is typically placed within its own module or combined with other
common classes in a single module. This helps to organize and manage programs
that consist of multiple classes. When a class is needed, it can be imported from
the module just like we would do with any of the standard modules. For example,
suppose the Point class is defined in the point.py module, as shown in Listing D.1.
To use the Point class as illustrated by the earlier examples, we must first import
it from the point.py module:

from point import Point

# Create two point objects.
pointA = Point(5,7)
pointB = Point(0,0)

# Get and print the coordinates of pointA.
x = pointA.getX()
y = pointA.getY()
print( "(" + str(x) + ", " + str(y) + ")" )

# Shift pointA and compute the distance between the two points.
pointA.shift(4, 12)
d = pointA.distance( pointB )
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Listing D.1 The point.py module.

1 # Implements the Point class for representing points in the
2 # 2-D Cartesian coordinate system.
3
4 import math
5
6 class Point :
7 # Creates a point object.
8 def __init__( self, x, y ):
9 self.xCoord = x

10 self.yCoord = y
11
12 # Returns the x coordinate of the point.
13 def getX( self ):
14 return self.xCoord
15
16 # Returns the y coordinate of the point.
17 def getY( self ):
18 return self.yCoord
19
20 # Shifts the point by xInc and yInc.
21 def shift( self, xInc, yInc ):
22 self._xCoord += xInc
23 self._yCoord += yInc
24
25 # Computes the distance between this point and the otherPoint.
26 def distance( self, otherPoint ):
27 xDiff = self.xCoord - otherPoint.xCoord
28 yDiff = self.yCoord - otherPoint.yCoord
29 return math.sqrt( xDiff ** 2 + yDiff ** 2 )

While any form of the import statement can be used, in this text we will always
use the from/import version and explicitly indicate the class to be imported from
the given module.

D.1.4 Hiding Attributes
Object-oriented programming allows for the encapsulation of data and the oper-
ations that can be performed on that data. In other words, the data attributes of
an object and the methods that are defined for use with the object are combined
in a single definition and implementation. The class definition in turn provides an
interface to a user-defined type.

The data attributes contained in an object are usually hidden from the client
or user code that is outside the class. Only the methods defined by the class for
use with the object should directly access the data attributes. This prevents the
accidental corruption of the data that can occur when directly accessed by code
outside the class. Sometimes we may also need to protect methods from outside
use such as with a helper method . Helper methods are like any other method,
but they are commonly used in the implementation of a class to allow for the
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subdivision of a larger method into smaller parts or to reduce code repetition by
defining a single method that can be called from within other methods as needed.

While most object-oriented languages provide a mechanism to hide or protect
the data attributes from outside access, Python does not. Instead, the designer of
a class in Python is supposed to indicate what data attributes and methods are
suppose to be protected. It’s then the responsibility of the user of the class not
to violate this protection. In this text, we use identifier names that begin with a
single underscore to flag those attributes and methods that should be protected
and trust the user of the class to not attempt a direct access to those members.

The class definition in Listing D.2 illustrates the use of the single underscore
to indicate protected attributes. It defines a line segment, which is specified by
Point objects that represent the endpoints. Several operations are also defined for
use with a line segment.

Listing D.2 The line.py module.

1 # Implements a LineSegment class constructed from Point objects.
2
3 from point import Point
4
5 class LineSegment :
6 # Creates a line segment object.
7 def __init__( self, fromPoint, toPoint ):
8 self._pointA = fromPoint
9 self._pointB = toPoint

10
11 # Gets the starting point of the line segment.
12 def endPointA( self ):
13 return self._pointA
14
15 # Gets the ending point of the line segment.
16 def endPointB( self ):
17 return self._pointB
18
19 # Gets the length of the line segment.
20 def length( self ):
21 return self._pointA.distance( self._pointB )
22
23 # Determines if the line is parallel to the y-axis.
24 def isVertical( self ):
25 return self._startPoint.getX() == self._endPoint.getX()
26
27 # Gets the slope of the line.
28 def slope( self ):
29 if self.isVertical() : # not defined for a vertical line.
30 return None
31 else :
32 run = self._pointA.getX() - self._pointB.getX()
33 rise = self._pointA.getY() - self._pointB.getY()
34 return rise / run
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You will note that we directly accessed the attributes of the otherPoint object
from within the distance() method implemented earlier but we used the getX()
and getY() methods to access the same values within the Line class. The reason
for this is that otherPoint is an instance of the same class as the method we were
implementing. In that case, it’s acceptable to directly access its attributes without
violating the protection. In the case of the Line class, however, isVertical() and
slope() are not part of the Point class. Thus, we must access the values stored in
the attributes of the two points by using the getX() and getY() access methods
or we would violate the protection in this case.

D.2 Overloading Operators
In Python, we can define and implement many of the standard Python operators
such as +, *, and == as part of our user-defined classes. This allows for a more
natural use of the objects instead of having to call specific methods by name. For
example, suppose we want to include an operation for comparing two Point objects
to determine if they are the equal. Instead of including a named method such as
isEqual(), we can implement the special method eq :

class Point :
# ...
def __eq__( self, rhsPoint ):
return self.xCoord == rhsPoint.xCoord and \

self.yCoord == rhsPoint.yCoord

which Python automatically calls when a Point object is used on the lefthand side
of the equality operator (==):

if pointA == pointB :
print( "The points are equal." )

If we need to determine if a point is at the origin, we can also use the equality
operator by first creating an unnamed Point object whose coordinates are both
set to zero:

if pointA == Point(0, 0) :
print( "The point is at the origin." )

We can overload any of the operators by including a special method in our class
definition. Table D.1 provides a list of the operators and the corresponding special
methods that must be defined. Some of the special methods are actually called
when an instance of the class is passed to a built-in function. Suppose we define
the str method as part of our Point class:

class Point :
# ...
def __str__( self ):
return "(" + str(x) + ", " + str(y) + ")"
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Operation Class Method

str( obj ) __str__( self )

len( obj ) __len__( self )

item in obj __contains__( self, item )

y = obj[ndx] __getitem__( self, ndx )

obj[ndx] = value __setitem__( self, ndx, value )

obj == rhs __eq__( self, rhs )

obj < rhs __lt__( self, rhs )

obj <= rhs __le__( self, rhs )

obj != rhs __ne__( self, rhs )

obj > rhs __gt__( self, rhs )

obj >= rhs __ge__( self, rhs )

obj + rhs __add__( self, rhs )

obj - rhs __sub__( self, rhs )

obj * rhs __mul__( self, rhs )

obj / rhs __truediv__( self, rhs )

obj // rhs __floordiv__( self, rhs )

obj % rhs __mod__( self, rhs )

obj ** rhs __pow__( self, rhs )

obj += rhs __iadd__( self, rhs )

obj -= rhs __isub__( self, rhs )

obj *= rhs __imul__( self, rhs )

obj /= rhs __itruediv__( self, rhs )

obj //= rhs __ifloordiv__( self, rhs )

obj %= rhs __imod__( self, rhs )

obj **= rhs __ipow__( self, rhs )

Table D.1: Methods for overloading the common Python operators.

Now we can convert a Point object to a string or use the object directly within
the print() function just as we would with an int or float object:

msg = "The initial point is " + str(pointA)
print( "Point B = ", pointB )

The str method is automatically called when you attempt to print an object
or convert the object to a string. If the str method is not overloaded by a user-
defined class, the default action is to print the object type and its reference address.

Finally, suppose we also want to allow the subtraction operator to be used in
computing the distance between two points. We can define the sub special
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method and have it call the distance() method:

class Point :
# ...
def __sub__( self, rhsPoint ):
return self.distance( rhsPoint )

We could choose to only overload the subtraction operator for use in computing
the distance instead of providing both a named method and an operator. In that
case, we would provide the code for computing the distance directly within the
sub method definition:

class Point :
# ...
def __sub__( self, rhsPoint ):
xDiff = self.xCoord - rhsPoint.xCoord
yDiff = self.yCoord - rhsPoint.yCoord
return math.sqrt( xDiff ** 2 + yDiff ** 2 )

D.3 Inheritance
Python, like all object-oriented languages, supports class inheritance . Instead
of creating a new class from scratch, we can derive a new class from an existing one.
The new class automatically inherits all data attributes and methods of the existing
class without having to explicitly redefine the code. This leads to a hierarchical
structure in which the newly derived class becomes the child of the original
or parent class. Figure D.5 illustrates a hierarchical diagram of derived classes
representing the relationship between different types of bibliography entries. The
parent-child relationship produced from the derivation of a new class is known
as an is-a relationship in which the derived class is a more specific version of
the original. In the hierarchical class diagram shown in Figure D.5, a book is-a
publication and a chapter is-a more specific component of a book.

PublicationPublication

BookBook ArticleArticle WebPageWebPage

ChapterChapter

objectobject

Figure D.5: Hierarchical class diagram representing types of bibliography entries.
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Note the inclusion of the object class at the top of the hierarchy. This is a
Python built-in class from which every class is derived, whether explicitly stated
or not. Thus, all of the classes defined earlier in the appendix were derived from
the object class even though it was not indicated in the class definition.

Inheritance allows us to reuse existing code without having to duplicate similar
code. After inheriting the properties of the parent class, the new child class can
be tailored to a specific purpose by adding new functionality or modifying the
existing functionality of the parent class. To add new functionality, the child class
can define new data attributes and methods while the functionality of existing
methods can be overridden to provide new functionality as needed by the child.

D.3.1 Deriving Child Classes
To illustrate inheritance, we are going to define and implement the classes shown
in Figure D.5, which can be used to build a bibliography. The idea behind this
example is that publication references can be created for each source cited in a
document and stored in a list structure. The collection of sources can then be
printed at the end of the document to create the bibliography. Each class in our
example will be used to store information related to a specific type of bibliography
entry. Every entry will contain at least three pieces of information: a unique
user-defined string code for identifying a specific entry, and the title and author of
the corresponding publication. Additional information will be maintained for each
entry, but it varies depending on the type of entry.

We start with the Publication base class used to store the minimum amount
of information for each bibliography entry:

class Publication :
def __init__( self, code, title, author ):
self._code = code
self._title = title
self._author = author

# Gets the unique identification code for this entry.
def getCode( self ):
return self._code

# Returns a string containing a formatted bibliography entry.
def getBibEntry( self ):
return '[' + self.getCode() + '] "' \

+ self._title + '" by ' + self._author

Note the inclusion of the syntax ( object ) following the class name. This tells
Python that the Publication class is derived from the object class. We could
have omitted this explicit derivation as we did in the classes defined earlier in the
appendix, but we included it for illustration of the default parent class.

In the Publication class, we only define the three data fields that are common
to the different types of bibliography entries. The only information that we will
need to obtain from each entry is the unique code value, which can be accessed
using getCode(), and a string containing a correctly formatted bibliography entry.
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The latter is obtained using the getBibEntry() method. Note that we have this
method returning a string that contains the code, title, and author, which can
be used as part of each entry. But this operation will have to be overridden by
each entry type in order to produce a correctly formatted representation for the
given type.

Next, we define the Book class, which will be used to represent book sources
within our bibliography. It is derived from the Publication class since it is a
more specific type of publication. A book entry will contain two additional pieces
of information in addition to that contained in the Publication class: the name
of the publisher and the year of publication.

class Book( Publication ):
def __init__( self, code, title, author, publisher, year ):

super().__init__( code, title, author )

self._publisher = publisher
self._year = year

def getBibEntry( self ) :
return super().getBibEntry() \

+ ', ' + self._publisher + ', ' + self._year

A constructor is also defined for this class that includes parameters for all of
the data to be contained in a book entry. Each class is responsible for initializing
its own data attributes. Thus, note the first line in the body of the constructor
that is used to call the constructor of the parent class. That constructor requires
three arguments: code, title, and author. After the parent class creates and
initializes its own attributes, we can then create and initialize two new attributes
needed by the child class.

The child class also overrides the getBibEntry() method from the parent
class in order to build and return a string containing the bibliography entry for a
book source. Our implementation calls the parent’s version of the getBibEntry()
method in order to format the code, title, and author part of the bibliography
entry for a book.

D.3.2 Creating Class Instances
So what happens when we create an instance of the Book class? Consider the
following code segment:

pub = Publication( "Test80", "Just a test", "Rob Green" )
book = Book( "Smith90", "The Year that Was", "John Smith",

"Bookends Publishing", 1990 )

which creates an instance of the Publication class and an instance of the Book
class. The pub object only contains the three data fields defined by the Publication
class, while the book object contains all five fields, the three from the parent
class and the two defined in the Book class. Figure D.6 illustrates the contents
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of the two objects. In addition, the book object also inherits all of the parent’s
methods. But since we have provided new definitions for the constructor and the
getBibEntry() method, the only method actually inherited from the parent is the
getCode() method.


codepub 

title 

author 

Test80Test80

Just a TestJust a Test

Rob GreenRob Green

code 

title 

author 

Smith90Smith90

The Year that WasThe Year that Was

John SmithJohn Smith


book

publisher 

year 

Bookends PublishingBookends Publishing

19901990

Publication

Book
Figure D.6: The data attributes of the Publication and Book objects.

D.3.3 Invoking Methods
The methods available to objects of each class are shown in Figure D.7. Note
that the getBibEntry() method of the Publication class is inherited and made
available to the Book class.

Publication

Publication.__init__
Publication.getCode()
Publication.getBibEntry()

Book

Book.__init__
Publication.getCode()
Book.getBibEntry()

Figure D.7: The methods available for use with Publication and Book objects.

What happens if we use the getBibEntry() method on the book object as an
argument to the print() function?

print( book.getBibEntry() )

It will print the bibliography entry shown here:

[Smith90] "The Year that Was" by John Smith, Bookends Publishing, 1990.

which it does by calling the getBibEntry() method defined by the Book class.
That method first calls the parent’s getBibEntry() method and then concate-
nates the result of that call with the publisher and year data needed to form a
book entry. The methods of a child class can access the data attributes of the
parent class. It’s up to the designer of the class to ensure they do not modify the
attributes incorrectly.
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Next, we extend the Book class by defining the Chapter class, which is used
to represent a single chapter within a book. It adds two additional attributes to
the three already defined by the Book class and the two defined by the Publication
class.

class Chapter( Book ):
def __init__( self, code, title, author, publisher, year

chapter, pages ):
super().__init__( code, title, author, publisher, year )

self._chapter = chapter
self._pages = pages

def getBibEntry( self ) :
return super().getBibEntry() + ', Chapter ' \

+ str(self._chapter) + ' pp. ' + pages + '. ' \
+ self._publisher + ', ' + self._year

Again, the constructor of the child class must call the parent’s constructor with
the use of the super() function. This time, the five fields needed by the Book class
are passed as arguments to the constructor. The two new fields defined by the
child class are then created and initialized with the values from the appropriate
arguments. A partial implementation of the remaining bibliography entry classes
are defined below in a similar fashion to those defined earlier.

class Article( Publication ):
def __init__( self, code, title, author, journal, volume,

number, year ):

super().__init__( code, title, author )

self._journal = journal
self._volume = volume
self._number = number
self._year = year

def getBibEntry( self ) :
......

class WebPage( Publication ):
def __init__( self, code, title, author, url, modified ):

super().__init__( code, title, author )

self._url = url
self._modified = modified

def getBibEntry( self ):
......
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D.4 Polymorphism
The third concept related to object-oriented programming is that of polymor-
phism . It is a very powerful feature in which the decision as to the specific
method to be called is made at run time. Suppose we add the str method
to our Publication class and simply have it call and return the result of the
getBibEntry() method as shown here:

# New version with a __str__ method added.
class Publication( object ) :
def __init__( self, code, title, author ):
self._code = code
self._title = title
self._author = author

# Gets the unique identification code for this entry.
def getCode( self ):
return self._code

# Returns a string containing a formatted bibliography entry.
def getBibEntry( self ):
return '[' + self.getCode() + '] "' \

+ self._title + '" by ' + self._author

def __str__( self ):
return self.getBibEntry()

Remember, when an object is used within the print() function, the str
operator method is automatically called for that object. So what happens if we
print the pub and book objects created earlier?

print( pub )
print( book )

This results in the following output:

[Test80'] "Just a Test" by Rob Green
[Smith90] "The Year that Was" by John Smith, Bookends Publishing, 1990

But how is that possible since we did not define a str method for the Book
class? It has to do with polymorphism. Since the str method is defined by the
parent class, it will be inherited by the child class. Thus, when the str method
is executed via the print function:

print( book )

Python looks at the list of methods available to instances of the Book class and
finds the getBibEntry() method defined for that class and executes it. Thus, the
str method correctly calls the getBibEntry() method of the child class, even

though the str method was defined in the parent class.
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A
abs(), 461, 462
abstract data type, 3

activities calendar, 32
array, 35, 47
bag, 15, 153, 165
big integer, 191
color histogram, 335
color image, 124
color map, 154
counter, 29
counting bag, 30
date, 7
deque, 246
edit buffer, 266
expression tree, 382
fraction, 32
grab bag, 29
grayscale image, 66
hash map, 325
histogram, 330
Life grid, 59
line segment, 31
map, 76, 153, 191, 276, 412
matrix, 52
Maze, 211
Morse code tree, 406
multi-array, 81
multi-chain, 276
n-queens board, 303
polygon, 31
polynomial, 181
postfix calculator, 219
priority queue, 230
queue, 222
Reversi game logic, 66
search tree, 440
set, 70, 96, 147, 190
sparse Life grid, 122, 153
sparse matrix, 153, 174, 190, 260

stack, 194
student file reader, 24
student file writer, 30
time, 30
todo list, 246
vector, 65, 191, 276

abstraction, 2
accessor, 4
activation record, 284
activities calendar, 32
add(), 53, 74, 95, 113, 118, 120, 122, 147,

149, 152, 165, 167, 186, 329, 330,
400, 420, 436

addChar(), 273
addToSortedList(), 360, 368
ADT, see abstract data type
advanceBy(), 28
Agent class, 244
aggregate method, 111
airline ticket counter, 237
algorithm, 1, 97
algorithm analysis, 97

average case, 107, 108
best case, 107, 108
worst case, 107, 108

alias, 458
amortized cost, 111, 112
ancestors, 372
append(), 44, 110–113, 115, 120, 196, 474
appendTerm(), 185, 186

array, 33–40, 47–52, 80–89
hardware, 34, 37
multi-dimensional, 80
one-dimensional, 33
three-dimensional, 80
two-dimensional, 47

Array class, 37, 39, 50, 52, 65, 88
array.py, 39, 50, 86
Array2D class, 50, 52, 56, 62, 117
arrayheap.py, 396
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ArrayIterator class, 40
arrayqueue.py, 227
asGregorian(), 29
assertion, 491
asymptotic, see complexity analysis
average case, 108
AVL tree, 428–440
avlInsert(), 438, 440
avlLeftBalance(), 437
AVLMap class, 435
avlRightBalance(), 438
avlRightRotate(), 437
avlRotateLeft(), 437
avlRotateRight(), 437
avltree.py, 436
AVLTreeNode class, 437

B
backtracking, 208
bag, 14, 15, 20, 153, 165

counting bag, 30
grab bag, 29
linked list, 165
sequence, 19
simple, 15

Bag class, 19, 21, 22, 96, 165, 167–169
BagIterator class, 21, 22, 168, 169
BagListNode class, 165

balance factor, 429
balanced binary tree, 429
bar(), 283
base case, 279
base class, 502, 503
basic operations, 104
best case, 108
big integer, 191
big-O, 99
BigInteger class, 192
bin sort, 354
binary file, 477
binary search, 129

recursive, 290
sequential, 129

binary search tree, 412–426
binary tree, 373–380
binarySearch(), 130
binaryset.py, 148
BinTreeNode class, 376

block indentation, 456
Book class, 504–507
bounded priority queue, 230

bpriorityq.py, 236
breadth-first traversal, 380
breakLine(), 268, 273, 274
brute-force, 207
BST, see binary search tree
bstBuild(), 452
bstInsert(), 418, 426
BSTMapIterator class, 435
bstMaximum(), 452
bstMinimum(), 424
bstRemove(), 420, 421, 425, 426, 451
bstSearch(), 414, 415, 417, 425, 435

bubble sort, 132
bubbleSearch(), 134
buildhist.py, 331, 332
buildMaze(), 214
buildTree(), 383, 390

built-in scope, 483

C
calendar, 29
call tree, 281
cell, 57, 208
CellPosition class, 216–218

cellular automata, 57
Chapter class, 506
checkdates.py, 9, 16
checkdates2.py, 19, 20
child class, 502
child node, 371
circular array, 224
circular linked list, 253
class inheritance, 502
class variables, 62
classes, 493

Agent, 244
Array, 37, 39, 50, 52, 65, 88
Array2D, 50, 52, 56, 62, 117
AVLMap, 435
Bag, 19, 21, 22, 96, 165, 167–169
BigInteger, 192
Book, 504–507
Chapter, 506
ColorImage, 124, 154
Date, 7, 10, 14, 28, 29
DListNode, 248
EditBuffer, 269, 275, 276
EditBufferNode, 272
ExpressionTree, 382, 390, 394, 410
GrayscaleImage, 124
LifeGrid, 61, 62, 64
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Line, 500
ListNode, 156, 157, 159
Map, 78, 95, 276, 415
math, 463
Matrix, 56, 57, 64, 115, 118, 120, 121
MaxHeap, 396, 403
Maze, 216, 217, 219
MultiArray, 86, 88, 96, 216, 217
object, 494, 503
Passenger, 241
Point, 31, 493–497, 499–501
Polynomial, 181, 190, 191
PolyTermNode, 182
Publication, 503–507
Queue, 222
ReversiGameLogic, 122
RGBColor, 123, 124
Set, 73, 75, 95, 113, 121, 150–152
SparseLifeGrid, 123
SparseMatrix, 115, 118–122, 175, 178,

190, 262
Stack, 197
StopIteration, 21, 22, 263
str, 461, 462, 472
StudentFileReader, 24, 26
StudentMListNode, 259
StudentRecord, 26, 28, 30
TicketAgent, 241, 242
TicketCounterClass, 246
TicketCounterSimulation, 242–245
Time, 30
TriangleArray, 96

clear(), 40, 51
clearCell(), 62
close(), 27, 478
closed addressing, 322
closed hashing, 322
clusters, 315
collection, 6, 472
collision, 312
color histogram, 334, 335
color image, 124
color map, 154
ColorImage class, 124, 154
column-major order, 82
comparable, 14
comparison sort, 339, 353
comparison-based search, 309
complete binary tree, 375
complex ADT, 5
complex data type, 1

complex iterators, 262
complexity analysis, 97
complexity cases, 107
compmod.py, 485, 486
composite data type, 1
compound key, 125
compound statements, 456
compute(), 220
computeFactors(), 88, 96
computeIndex(), 89
computeOp(), 386, 410

computer program, 1
computer programming, 1
computer simulations, 237
configure(), 62
constant of proportionality, 99, 100
constant time, 100
constant variable, 62, 458
constructor, 4, 494
container, 6
contains(), 165
control structures, 467
count-controlled, 469
counter, 29
counting bag, 30
cubic time, 104

D
data abstraction, 2
data attributes, 494
data structure, 5
data type, 1
Date(), 29
date, 7–14
date(), 29
Date class, 7, 10, 14, 28, 29
date.py, 11
dayOfWeek(), 13
dayOfWeekName(), 29
dayOfYear(), 29
decision tree, 405
default argument, 482
defining functions, 480
degree(), 184
deleteChar(), 273
depth, 374
depth-first traversal, 380
deque, 246
dequeue(), 224, 358
derived class, 502
descendent, 372
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diceroll.py, 484
dict(), 475
dictionary, see map
difference(), 95, 121, 153
direct access, 310
discrete event simulation, 238
distance(), 500, 502
distribution sort, 339, 353
divide and conquer, 129
DListNode class, 248
dominant term, 102
double hashing, 318
doubly linked list, 247
draw(), 59, 64, 218, 219
driver.py, 484
driver program, 485
dummy node, 366
dynamic data, 167

E
edges, 369
edit buffer, 266
EditBuffer class, 269, 275, 276
editbuffer.py, 269
EditBufferNode class, 272
Eight-Queens problem, 299
element access, 40, 51, 175
elements, 6
empirical analysis, 368
empty bag, 18
empty container, 6
empty stack, 194
encapsulation, 498
enqueue(), 228
escape sequences, 465
eval(), 381
evalStr(), 386
evalTree(), 386

evaluate(), 184, 383
event-controlled, 469
evolve(), 59, 61
ex1(), 104, 105
ex3(), 106
ex6(), 107
ex7(), 107
exception, 10, 489
exitFound(), 217

exp(), 297, 307
exponential time, 104
expression tree, 380, 382
ExpressionTree class, 382, 390, 394, 410

exptree.py, 383
ExpTreeNode class, 383

extend(), 44, 75, 110, 114, 474
external reference, 159

F
fact(), 281
factorial, 280
fetchAll(), 28
fetchRecord(), 24, 28
Fibonacci sequence, 283
FIFO, 221
file(), 478
findNeg(), 108
findNextElement(), 263

findOrderedPosition(), 143
findPath(), 217, 219
findPosition(), 79, 117, 118, 120, 149
findSlot(), 329, 330

findSmallest(), 128
findSortedPosition(), 143, 152
first-in, first-out, 221
foo(), 282, 283
formatted output, 466
fraction, 32
full binary tree, 375
function, 461, 480

G
game of Life, 57
game tree, 297
gameoflife.py, 60, 61, 64, 123
general list, 7
get(), 476
getBibEntry(), 504, 505, 507
getBranch(), 442
getCode(), 503, 505
getCodeSeq(), 410
getData(), 442
getLine(), 272
getX(), 496, 500
getY(), 500
global scope, 483
global variable, 483
grab bag, 29
grabItem(), 29
grades.py, 485, 486
grayscale image, 66
GrayscaleImage class, 124
Gregorian calendar, 7, 10
Gregorian date, 13
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H
handleArrival(), 244
handleBeginService(), 244
handleEndService(), 244
handleXYZ(), 244

hash(), 328
hash chains, 321
hash code, 311
hash function, 311
hash map, 325
hash table, 311–330

closed hashing, 311
double hashing, 317
linear probing, 312
open hashing, 321
quadratic probing, 317

hashing, 311
hashmap.py, 326
hasKey(), 442
head reference, 158
heap, 390–404

order property, 390
shape property, 391

heapsort, 400
height, 374
height-balance property, 435
helper method, 12, 217, 498
hierarchical structure, 369
histogram, 330, 331
home position, 316
htSearch(), 314

I
idNum(), 241
immutable object, 496
import modules, 485–488, 498
index(), 475
infix, 203
information hiding, 4
inorder traversal, 378
input(), 462–464, 479, 489
insert(), 44, 121, 142, 149, 474
insertion sort, 138
insertionSort(), 140
insertNode(), 275

instance, 493
instance scope, 483
instance variable, 483, 495
instantiated, 493
interface, 4
interior node, 372

intersect(), 95, 121, 153
interset(), 95
iomod.py, 485, 486
is-a relationship, 502
isEmpty(), 196, 227, 236
isEqual(), 500
isEquinox(), 29
isFinished(), 242
isFree(), 241
isFull(), 227, 410, 442
isLeaf(), 442
isLeapYear(), 28
isSolstice(), 29
isSubsetOf(), 75, 95, 113, 114, 150, 152,

153
isValidGregorian(), 12, 29

isValidSource(), 201, 219
isVertical(), 500
isWeekday(), 29
iterator, 4, 20–23, 168, 427

J
Julian calendar, 7

K
key, 76, 125
keyArray(), 95
keyword arguments, 482
knapsack problem, 308
Knight’s tour, 308

L
last-in first-out, 193
leaf node, 372
left child, 373
len(), 15, 42, 52, 70, 86, 88, 472
length(), 88, 92
letterGrade(), 332
level, 373
level order traversal, 380
lexicographical order, 339
Life grid, 59
life grid, 59
life.py, 63
LifeGrid class, 61, 62, 64
LIFO, 194
Line class, 500
line.py, 499
line segment, 31
linear probe, 312
linear search, 126
linear time, 104
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linearbag.py, 19, 21
linearmap.py, 78
linearSearch(), 127
linearset.py, 73, 114
linked list, 157, 182, 196, 228, 234, 358

circularly linked, 253
doubly linked, 247
multi-linked, 259
singly linked, 159
sorted, 171

linked structure, 157
list, 7, 41–46, 108–110
list(), 41
ListNode class, 156, 157, 159
literal, 455
llistbag.py, 166, 168
llistqueue.py, 229
llistsparse.py, 176
lliststack.py, 197
load factor, 319
local scope, 483
local variable, 279, 483
logarithmic time, 102, 106
logical expressions, 459
logical operators, 14
loop variable, 470
lower(), 462

M
main(), 24, 281–283, 332, 484
main.py, 488
map, 75–77, 153, 191, 276, 412

2-3 tree, 440
AVL tree, 428
binary search tree, 412
hash table, 325
unsorted list, 77

map(), 154
Map class, 78, 95, 276, 415
MapEntry class, 78, 79, 328
maphist.py, 333
MapIterator class, 96
markPath(), 217
markTried(), 217
math class, 463
matrix, 52–57
Matrix class, 56, 57, 64, 115, 118, 120,

121
matrix.py, 55
MatrixElement class, 117–119, 153, 174,

175, 178

MatrixElementNode class, 175
max-heap, 390
MaxHeap class, 396, 403
Maze, 211
maze, 206–218
Maze class, 216, 217, 219
maze.py, 215
merge sort, 339
mergeLinkedLists(), 365

mergeSort(), 345
mergeSortedLists(), 144, 151, 153, 341, 343,

346
mergeVirtualLists(), 342, 346
mergeVirtualSeq(), 343, 344, 367
method, 493
min(), 128, 492
min-heap, 390
modA.py, 488
modB.py, 488
module, 485
modules, 462

array.py, 39, 50, 86
arrayheap.py, 396
arrayqueue.py, 227
avltree.py, 436
binaryset.py, 148
bpriorityq.py, 236
buildhist.py, 331, 332
checkdates.py, 9, 16
checkdates2.py, 19, 20
compmod.py, 485, 486
date.py, 11
diceroll.py, 484
driver.py, 484
editbuffer.py, 269
exptree.py, 383
gameoflife.py, 60, 61, 64, 123
grades.py, 485, 486
hashmap.py, 326
iomod.py, 485, 486
life.py, 63
line.py, 499
linearbag.py, 19, 21
linearmap.py, 78
linearset.py, 73, 114
llistbag.py, 166, 168
llistqueue.py, 229
llistsparse.py, 176
lliststack.py, 197
main.py, 488
maphist.py, 333
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matrix.py, 55
maze.py, 215
modA.py, 488
modB.py, 488
point.py, 497, 498
polynomial.py, 183
priorityq.py, 233
pylistqueue.py, 223
pyliststack.py, 196
simpeople.py, 241, 242
simulation.py, 243
solvemaze.py, 213
sparsematrix.py, 116
studentfile.py, 24, 26, 27
studentreport.py, 24, 25
summation.py, 454
time.py, 29

monthName(), 28
Morse Code, 404–407
Morse Code tree, 407
Morse code tree, 406
move(), 294
moveDocEnd(), 272
moveDocHome(), 272
moveDown(), 272
moveLeft(), 273, 275
moveLineEnd(), 273
moveLineHome(), 273
moveRight(), 273, 275
moveUp(), 267, 272
multi-array, 81
multi-chain, 276
multi-dimensional array, 80, 81
multi-linked list, 259
MultiArray class, 86, 88, 96, 216, 217
multiply(), 122
multiway branching, 468
mutable object, 496
mutator, 4

N
n-queens board, 303, 304
namespace, 486
next(), 263
node link, 157
nodes, 157, 369
noop, 74
null reference, 458
numCols(), 51, 56
numDays(), 28
numDims(), 89

numerical order, 339
numLiveNeighbors(), 62, 64
numOf(), 30
numRows(), 51, 56, 175

O
object, 493
object class, 494, 503
object references, 460
one-dimensional array, 33, 35
open(), 27, 477, 478
open addressing, 322
open hashing, 322
operand stack, 204
operations, 4
operator overloading, 14, 40, 51, 74, 175,

500
order of magnitude, 99

P
palindrome, 307
parent class, 502
parent node, 371
partitionSeq(), 349, 351
Pascal’s triangle, 307
Passenger class, 241
path, 371
payload, 411
peek(), 195, 196, 198
perfect binary tree, 375
pivot key, 347
pivot node, 431
Point class, 31, 493–497, 499–501
point.py, 497, 498
pointA.shift(), 496
polygon, 31
polymorphism, 507
polynomial, 179, 181
Polynomial class, 181, 190, 191
polynomial.py, 183
polynomial time, 103
PolyTermNode class, 182
pop(), 9, 45, 149, 195, 196, 198, 474, 475,

477
postcondition, 9
postfix, 203
postfix calculator, 219
postorder traversal, 379
precondition, 9
prefix, 203
preorder traversal, 377
primary clustering, 315
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primary key, 367
primitive type, 1, 455
print(), 105, 454, 462, 464–467, 473, 483,

501, 505, 507
printCalendar(), 29, 121
printChart(), 332
printList(), 288, 289, 307
printListStack(), 287, 289
printReport(), 24, 25
printResults(), 244
printRev(), 278, 279, 307
priority queue, 230

array of queues, 235
bounded, 235
heap, 398
linked list, 234
sequence, 232
unbounded, 232

priorityq.py, 233
private classes

23TreeNode, 441
ArrayIterator, 40
AVLTreeNode, 437
BagIterator, 21, 22, 168, 169
BagListNode, 165
BinTreeNode, 376
BSTMapIterator, 435
CellPosition, 216–218
ExpTreeNode, 383
MapEntry, 78, 79, 328
MapIterator, 96
MatrixElement, 117–119, 153, 174,

175, 178
MatrixElementNode, 175
QueueNode, 234
SetIterator, 95
SparseMatrixIterator, 263
StackNode, 197

probe sequence, 315
probing, 312
procedural abstraction, 2
programming, 1
promoted, 445
properties of recursion, 279
protected, 13
Publication class, 503–507
push(), 195–197
pylistqueue.py, 223
pyliststack.py, 196
Python interpreter, 453
Python list, see list

pythonMergeSort(), 341

Q
quadratic probing, 317
quadratic time, 104, 105
queue, 221–237

circular array, 224
linked list, 228
sequence, 222

Queue class, 222
QueueNode class, 234

queuing system, 237
quick sort, 347
quickSort(), 349

R
radix sort, 354
random number generator, 239
range(), 38, 105, 244, 471
raw input(), 464
reader, 24
readline(), 479
readlines(), 479
recBinarySearch(), 291
recBuildTree(), 390

recMergeSort(), 342–346
recQuickSort(), 349, 351
recursion, 277
recursive call tree, 281
recursive calls, 278
recursive case, 279
recursive function, 277
recursive unwinding, 279
reference, 457
rehash, 319
remove(), 19, 29, 121, 149, 167, 420, 425,

436, 474
removeAll(), 189
removeNode(), 274

repetition statements, 469
report, 23, 89
reset(), 218, 219
return address, 284
Reversi game logic, 66
ReversiGameLogic class, 122
RGBColor class, 123, 124
right child, 373
root node, 370
rotation, 431
row-major order, 82
rstrip(), 479
run(), 244
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run time, 100
run time stack, 284

S
sales report, 89
saveElements(), 20
scaleBy(), 178
search key, 125, 310
search tree, 440

2-3 tree, 440
AVL tree, 428
binary search tree, 412

searchFor(), 276
searching, 125

binary search, 129
linear search, 126
search trees, 411
smallest value, 128
sorted sequences, 127, 129
specific item, 126
unsorted sequences, 126

secondary clustering, 317
secondary key, 367
selection sort, 136
selection statements, 467
selectionSort(), 137
sentinel value, 470
separate chaining, 321
sequence, 6, 41
sequence search, 125
sequential search, see linear search
Set(), 95
set, 70, 96, 147, 190

efficiency, 113
sorted list, 147
union, 114
unsorted list, 72, 113

Set class, 73, 75, 95, 113, 121, 150–152
setCell(), 62
SetIterator class, 95

setWall(), 213
short-circuit evaluation, 149
siblings, 372
sift-down, 394
sift-up, 392
siftDown(), 403
siftUp(), 403
simpeople.py, 241, 242
simple ADT, 5
simple data type, 1
simple add(), 187

simulation.py, 243
singly linked list, 159
size(), 227
slice(), 122
slope(), 500
solve(), 219
solvemaze.py, 213
solveNQueens(), 308
sort(), 132, 353
sort key, 131
sorted linked list, 171
sorted lists, 142
sorted sequence, 6
sortedLinearSearch(), 128
sorting, 131

bubble sort, 132
heap sort, 400
insertion sort, 138, 359
linked list, 358
merge sort, 339, 362
quick sort, 347
radix sort, 354
selection sort, 136
sequences, 131

sparse Life grid, 122, 153
sparse matrix, 115, 153, 174, 190, 260

array of linked lists, 175
efficiency, 120
evaluation, 178
list, 115
multi-linked list, 261

SparseLifeGrid class, 123
SparseMatrix class, 115, 118–122, 175,

178, 190, 262
sparsematrix.py, 116
SparseMatrixIterator class, 263

splitInHalf(), 189
splitLinkedList(), 363

sqrt(), 463
stable sort, 367
stack, 193–206

linked list, 196
Python list, 195

stack applications, 198
stack base, 193
Stack class, 197
stack top, 193
StackNode(), 197
StackNode class, 197

standard input, 463, 464
standard output, 464
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startService(), 242
statement block, 456
StopIteration class, 21, 22, 263
stopService(), 242
storage class, 26
str(), 8, 31, 462, 464, 472
str(), 29, 95
str class, 461, 462, 472
string operations, 105
structured program, 485
student file reader, 24
student file writer, 30
student records, 23
studentfile.py, 24, 26, 27
StudentFileReader class, 24, 26
StudentMListNode class, 259
StudentRecord class, 26, 28, 30
studentreport.py, 24, 25
subarray, 41
subtract(), 122
subtree, 372
summation.py, 454
sumRange(), 480–482
super(), 506

T
tail node, 158
tail recursion, 290
tail reference, 169
termMultiply(), 187

text editor, 263
text file, 477
three-dimensional array, 80
tic-tac-toe, 297
TicketAgent class, 241, 242
TicketCounterClass class, 246
TicketCounterSimulation class, 242–245
time, 30
Time class, 30
time.py, 29
time-complexity, 99
todo list, 246
toGregorian(), 13

Towers of Hanoi, 292
transpose(), 64, 122, 190
tree, see binary tree
tree size, 374
tree traversal, 376
treeHeight(), 410
treeSize(), 410
TriangleArray class, 96

tuple, 26
two-dimensional array, 47, 61, 80
2-3 tree, 440
23AddToNode(), 448
23Insert(), 447
23RecInsert(), 448
23SplitNode(), 449
23TreeInsert(), 449
23TreeNode class, 441

type, see data type

U
unbounded priority queue, 230
union(), 75, 95, 114, 151, 153
upper bound, 100
user-defined types, 2
userFnct(), 488

V
validMove(), 217

valueOf(), 95, 329, 415, 435
variable, 457
variable scope, 483
vector, 65, 191, 276

W
width, 374
worst case, 108
wrapper function, 344
write(), 478
writer, 24
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