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Preface

The standard second course in computer science has traditionally covered the fun-
damental data structures and algorithms, but more recently these topics have been
included in the broader topic of abstract data types. This book is no exception,
with the main focus on the design, use, and implementation of abstract data types.
The importance of designing and using abstract data types for easier modular pro-
gramming is emphasized throughout the text. The traditional data structures are
also presented throughout the text in terms of implementing the various abstract
data types. Multiple implementations using different data structures are used
throughout the text to reinforce the abstraction concept. Common algorithms are
also presented throughout the text as appropriate to provide complete coverage of
the typical data structures course.

Overview

The typical data structures course, which introduces a collection of fundamental
data structures and algorithms, can be taught using any of the different program-
ming languages available today. In recent years, more colleges have begun to adopt
the Python language for introducing students to programming and problem solv-
ing. Python provides several benefits over other languages such as C++ and Java,
the most important of which is that Python has a simple syntax that is easier to
learn. This book expands upon that use of Python by providing a Python-centric
text for the data structures course. The clean syntax and powerful features of the
language are used throughout, but the underlying mechanisms of these features
are fully explored not only to expose the “magic” but also to study their overall
efficiency.

For a number of years, many data structures textbooks have been written to
serve a dual role of introducing data structures and providing an in-depth study
of object-oriented programming (OOP). In some instances, this dual role may
compromise the original purpose of the data structures course by placing more focus
on OOP and less on the abstract data types and their underlying data structures.
To stress the importance of abstract data types, data structures, and algorithms, we
limit the discussion of OOP to the use of base classes for implementing the various
abstract data types. We do not use class inheritance or polymorphism in the main
part of the text but instead provide a basic introduction as an appendix. This
choice was made for several reasons. First, our objective is to provide a “back to

xiii
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basics” approach to learning data structures and algorithms without overwhelming
the reader with all of the OOP terminology and concepts, which is especially
important when the instructor has no plans to cover such topics. Second, different
instructors take different approaches with Python in their first course. Our aim is
to provide an excellent text to the widest possible audience. We do this by placing
the focus on the data structures and algorithms, while designing the examples to
allow the introduction of object-oriented programming if so desired.

The text also introduces the concept of algorithm analysis and explores the
efficiency of algorithms and data structures throughout the text. The major pre-
sentation of complexity analysis is contained in a single chapter, which allows it to
be omitted by instructors who do not normally cover such material in their data
structures course. Additional evaluations are provided throughout the text as new
algorithms and data structures are introduced, with the major details contained in
individual sections. When algorithm analysis is covered, examples of the various
complexity functions are introduced, including amortized cost. The latter is im-
portant when using Python since many of the list operations have a very efficient
amortized cost.

Prerequisites

This book assumes that the student has completed the standard introduction to
programming and problem-solving course using the Python language. Since the
contents of the first course can differ from college to college and instructor to
instructor, we assume the students are familiar with or can do the following;:

e Design and implement complete programs in Python, including the use of
modules and namespaces

e Apply the basic data types and constructs, including loops, selection state-
ments, and subprograms (functions)

e Create and use the built-in list and dictionary structures

e Design and implement basics classes, including the use of helper methods and
private attributes

Contents and Organization

The text is organized into fourteen chapters and four appendices. The basic con-
cepts related to abstract data types, data structures, and algorithms are presented
in the first four chapters. Later chapters build on these earlier concepts to present
more advanced topics and introduce the student to additional abstract data types
and more advanced data structures. The book contains several topic threads that
run throughout the text, in which the topics are revisited in various chapters as
appropriate. The layout of the text does not force a rigid outline, but allows for the
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reordering of some topics. For example, the chapters on recursion and hashing can
be presented at any time after the discussion of algorithm analysis in Chapter 4.

Chapter 1: Abstract Data Types. Introduces the concept of abstract data types
(ADTs) for both simple types, those containing individual data fields, and the more
complex types, those containing data structures. ADTs are presented in terms
of their definition, use, and implementation. After discussing the importance of
abstraction, we define several ADTs and then show how a well-defined ADT can
be used without knowing how its actually implemented. The focus then turns to
the implementation of the ADTs with an emphasis placed on the importance of
selecting an appropriate data structure. The chapter includes an introduction to
the Python iterator mechanism and provides an example of a user-defined iterator
for use with a container type ADT.

Chapter 2: Arrays. Introduces the student to the array structure, which is im-
portant since Python only provides the list structure and students are unlikely to
have seen the concept of the array as a fixed-sized structure in a first course using
Python. We define an ADT for a one-dimensional array and implement it using a
hardware array provided through a special mechanism of the C-implemented ver-
sion of Python. The two-dimensional array is also introduced and implemented
using a 1-D array of arrays. The array structures will be used throughout the text
in place of the Python’s list when it is the appropriate choice. The implementa-
tion of the list structure provided by Python is presented to show how the various
operations are implemented using a 1-D array. The Matrix ADT is introduced and
includes an implementation using a two-dimensional array that exposes the stu-
dents to an example of an ADT that is best implemented using a structure other
than the list or dictionary.

Chapter 3: Sets and Maps. This chapter reintroduces the students to both
the Set and Map (or dictionary) ADTs with which they are likely to be familiar
from their first programming course using Python. Even though Python provides
these ADTs, they both provide great examples of abstract data types that can be
implemented in many different ways. The chapter also continues the discussion of
arrays from the previous chapter by introducing multi-dimensional arrays (those
of two or more dimensions) along with the concept of physically storing these
using a one-dimensional array in either row-major or column-major order. The
chapter concludes with an example application that can benefit from the use of a
three-dimensional array.

Chapter 4: Algorithm Analysis. Introduces the basic concept and importance
of complexity analysis by evaluating the operations of Python’s list structure and
the Set ADT as implemented in the previous chapter. This information will be used
to provide a more efficient implementation of the Set ADT in the following chapter.
The chapter concludes by introducing the Sparse Matrix ADT and providing a more
efficient implementation with the use of a list in place of a two-dimensional array.

XV
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Chapter 5: Searching and Sorting. Introduces the concepts of searching and
sorting and illustrates how the efficiency of some ADTs can be improved when
working with sorted sequences. Search operations for an unsorted sequence are
discussed and the binary search algorithm is introduced as a way of improving this
operation. Three of the basic sorting algorithms are also introduced to further
illustrate the use of algorithm analysis. A new implementation of the Set ADT is
provided to show how different data structures or data organizations can change
the efficiency of an ADT.

Chapter 6: Linked Structures. Provides an introduction to dynamic structures
by illustrating the construction and use of the singly linked list using dynamic
storage allocation. The common operations — traversal, searching, insertion, and
deletion — are presented as is the use of a tail reference when appropriate. Several
of the ADT's presented in earlier chapters are reimplemented using the singly linked
list, and the run times of their operations are compared to the earlier versions.
A new implementation of the Sparse Matrix is especially eye-opening to many
students as it uses an array of sorted linked lists instead of a single Python list as
was done in an earlier chapter.

Chapter 7: Stacks. Introduces the Stack ADT and includes implementations
using both a Python list and a linked list. Several common stack applications
are then presented, including balanced delimiter verification and the evaluation of
postfix expressions. The concept of backtracking is also introduced as part of the
application for solving a maze. A detailed discussion is provided in designing a
solution and a partial implementation.

Chapter 8: Queues. Introduces the Queue ADT and includes three different
implementations: Python list, circular array, and linked list. The priority queue
is introduced to provide an opportunity to discuss different structures and data
organization for an efficient implementation. The application of the queue presents
the concept of discrete event computer simulations using an airline ticket counter
as the example.

Chapter 9: Advanced Linked Lists. Continues the discussion of dynamic struc-
tures by introducing a collection of more advanced linked lists. These include the
doubly linked, circularly linked, and multi linked lists. The latter provides an
example of a linked structure containing multiple chains and is applied by reimple-
menting the Sparse Matrix to use two arrays of linked lists, one for the rows and
one for the columns. The doubly linked list is applied to the problem of designing
and implementing an Edit Buffer ADT for use with a basic text editor.

Chapter 10: Recursion. Introduces the use of recursion to solve various pro-
gramming problems. The properties of creating recursive functions are presented
along with common examples, including factorial, greatest common divisor, and
the Towers of Hanoi. The concept of backtracking is revisited to use recursion for
solving the eight-queens problem.
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Chapter 11: Hash Tables. Introduces the concept of hashing and the use of hash
tables for performing fast searches. Different addressing techniques are presented,
including those for both closed and open addressing. Collision resolution techniques
and hash function design are also discussed. The magic behind Python’s dictionary
structure, which uses a hash table, is exposed and its efficiency evaluated.

Chapter 12: Advanced Sorting. Continues the discussion of the sorting problem
by introducing the recursive sorting algorithms—merge sort and quick sort—along
with the radix distribution sort algorithm, all of which can be used to sort se-
quences. Some of the common techniques for sorting linked lists are also presented.

Chapter 13: Binary Trees. Presents the tree structure and the general binary
tree specifically. The construction and use of the binary tree is presented along
with various properties and the various traversal operations. The binary tree is
used to build and evaluate arithmetic expressions and in decoding Morse Code
sequences. The tree-based heap structure is also introduced along with its use in
implementing a priority queue and the heapsort algorithm.

Chapter 14: Search Trees. Continues the discussion from the previous chapter
by using the tree structure to solve the search problem. The basic binary search
tree and the balanced binary search tree (AVL) are both introduced along with
new implementations of the Map ADT. Finally, a brief introduction to the 2-3
multi-way tree is also provided, which shows an alternative to both the binary
search and AVL trees.

Appendix A: Python Review. Provides a review of the Python language and
concepts learned in the traditional first course. The review includes a presentation
of the basic constructs and built-in data structures.

Appendix B: User-Defined Modules. Describes the use of modules in creating
well structured programs. The different approaches for importing modules is also
discussed along with the use of namespaces.

Appendix C: Exceptions. Provides a basic introduction to the use of exceptions
for handling and raising errors during program execution.

Appendix D: Classes. Introduces the basic concepts of object-oriented program-
ming, including encapsulation, inheritance, and polymorphism. The presentation
is divided into two main parts. The first part presents the basic design and use
of classes for those instructors who use a “back to basics” approach in teaching
data structures. The second part briefly explores the more advanced features of
inheritance and polymorphism for those instructors who typically include these
topics in their course.
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CHAPTER 1

Abstract Data Types

The foundation of computer science is based on the study of algorithms. An al-
gorithm is a sequence of clear and precise step-by-step instructions for solving a
problem in a finite amount of time. Algorithms are implemented by translating
the step-by-step instructions into a computer program that can be executed by
a computer. This translation process is called computer programming or sim-
ply programming. Computer programs are constructed using a programming
language appropriate to the problem. While programming is an important part
of computer science, computer science is not the study of programming. Nor is
it about learning a particular programming language. Instead, programming and
programming languages are tools used by computer scientists to solve problems.

Introduction

Data items are represented within a computer as a sequence of binary digits. These
sequences can appear very similar but have different meanings since computers
can store and manipulate different types of data. For example, the binary se-
quence 01001100110010110101110011011100 could be a string of characters, an in-
teger value, or a real value. To distinguish between the different types of data, the
term type is often used to refer to a collection of values and the term data type to
refer to a given type along with a collection of operations for manipulating values
of the given type.

Programming languages commonly provide data types as part of the language
itself. These data types, known as primitives, come in two categories: simple
and complex. The simple data types consist of values that are in the most
basic form and cannot be decomposed into smaller parts. Integer and real types,
for example, consist of single numeric values. The complex data types, on the
other hand, are constructed of multiple components consisting of simple types or
other complex types. In Python, objects, strings, lists, and dictionaries, which can




2

CHAPTER 1  Abstract Data Types

1.1.1

contain multiple values, are all examples of complex types. The primitive types
provided by a language may not be sufficient for solving large complex problems.
Thus, most languages allow for the construction of additional data types, known
as user-defined types since they are defined by the programmer and not the
language. Some of these data types can themselves be very complex.

Abstractions

To help manage complex problems and complex data types, computer scientists
typically work with abstractions. An abstraction is a mechanism for separat-
ing the properties of an object and restricting the focus to those relevant in the
current context. The user of the abstraction does not have to understand all of
the details in order to utilize the object, but only those relevant to the current task
or problem.

Two common types of abstractions encountered in computer science are proce-
dural, or functional, abstraction and data abstraction. Procedural abstraction
is the use of a function or method knowing what it does but ignoring how it’s
accomplished. Consider the mathematical square root function which you have
probably used at some point. You know the function will compute the square root
of a given number, but do you know how the square root is computed? Does it
matter if you know how it is computed, or is simply knowing how to correctly use
the function sufficient? Data abstraction is the separation of the properties of a
data type (its values and operations) from the implementation of that data type.
You have used strings in Python many times. But do you know how they are
implemented? That is, do you know how the data is structured internally or how
the various operations are implemented?

Typically, abstractions of complex problems occur in layers, with each higher
layer adding more abstraction than the previous. Consider the problem of repre-
senting integer values on computers and performing arithmetic operations on those
values. Figure 1.1 illustrates the common levels of abstractions used with integer
arithmetic. At the lowest level is the hardware with little to no abstraction since it
includes binary representations of the values and logic circuits for performing the
arithmetic. Hardware designers would deal with integer arithmetic at this level
and be concerned with its correct implementation. A higher level of abstraction
for integer values and arithmetic is provided through assembly language, which in-
volves working with binary values and individual instructions corresponding to the
underlying hardware. Compiler writers and assembly language programmers would
work with integer arithmetic at this level and must ensure the proper selection of
assembly language instructions to compute a given mathematical expression. For
example, suppose we wish to compute x = a + b — 5. At the assembly language
level, this expression must be split into multiple instructions for loading the values
from memory, storing them into registers, and then performing each arithmetic
operation separately, as shown in the following psuedocode:

loadFromMem( R1, 'a' )
loadFromMem( R2, 'b' )
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add RO, R1, R2
sub RO, RO, 5
storeToMem( RO, 'x' )

To avoid this level of complexity, high-level programming languages add an-
other layer of abstraction above the assembly language level. This abstraction
is provided through a primitive data type for storing integer values and a set of
well-defined operations that can be performed on those values. By providing this
level of abstraction, programmers can work with variables storing decimal values
and specify mathematical expressions in a more familiar notation (x = a + b —5)
than is possible with assembly language instructions. Thus, a programmer does
not need to know the assembly language instructions required to evaluate a math-
ematical expression or understand the hardware implementation in order to use
integer arithmetic in a computer program.

Software-Implemented

Big Integers «<— Higher Level

High-Level Language
Instructions

Assembly Language
Instructions

Hardware

R “«—
Implementation Lower Level

Figure 1.1: Levels of abstraction used with integer arithmetic.

One problem with the integer arithmetic provided by most high-level languages
and in computer hardware is that it works with values of a limited size. On 32-bit
architecture computers, for example, signed integer values are limited to the range
—23L...(231 —1). What if we need larger values? In this case, we can provide
long or “big integers” implemented in software to allow values of unlimited size.
This would involve storing the individual digits and implementing functions or
methods for performing the various arithmetic operations. The implementation
of the operations would use the primitive data types and instructions provided by
the high-level language. Software libraries that provide big integer implementations
are available for most common programming languages. Python, however, actually
provides software-implemented big integers as part of the language itself.

Abstract Data Types

An abstract data type (or ADT) is a programmer-defined data type that spec-
ifies a set of data values and a collection of well-defined operations that can be
performed on those values. Abstract data types are defined independent of their
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implementation, allowing us to focus on the use of the new data type instead of
how it’s implemented. This separation is typically enforced by requiring interac-
tion with the abstract data type through an interface or defined set of operations.
This is known as information hiding. By hiding the implementation details and
requiring ADTs to be accessed through an interface, we can work with an ab-
straction and focus on what functionality the ADT provides instead of how that
functionality is implemented.

Abstract data types can be viewed like black boxes as illustrated in Figure 1.2.
User programs interact with instances of the ADT by invoking one of the several
operations defined by its interface. The set of operations can be grouped into four
categories:

e Constructors: Create and initialize new instances of the ADT.
e Accessors: Return data contained in an instance without modifying it.

e Mutators: Modify the contents of an ADT instance.

Iterators: Process individual data components sequentially.

User programs interact with
ADTs through their interface

or set of operations. string ADT
\ str() The implementation
User <«——— details are hidden
Program ( upper() as if inside a black box.

Figure 1.2: Separating the ADT definition from its implementation.

The implementation of the various operations are hidden inside the black box,
the contents of which we do not have to know in order to utilize the ADT. There
are several advantages of working with abstract data types and focusing on the
“what” instead of the “how.”

e We can focus on solving the problem at hand instead of getting bogged down
in the implementation details. For example, suppose we need to extract a
collection of values from a file on disk and store them for later use in our
program. If we focus on the implementation details, then we have to worry
about what type of storage structure to use, how it should be used, and
whether it is the most efficient choice.

e We can reduce logical errors that can occur from accidental misuse of storage
structures and data types by preventing direct access to the implementation. If
we used a list to store the collection of values in the previous example, there
is the opportunity to accidentally modify its contents in a part of our code
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where it was not intended. This type of logical error can be difficult to track
down. By using ADTs and requiring access via the interface, we have fewer
access points to debug.

e The implementation of the abstract data type can be changed without having
to modify the program code that uses the ADT. There are many times when
we discover the initial implementation of an ADT is not the most efficient or
we need the data organized in a different way. Suppose our initial approach
to the previous problem of storing a collection of values is to simply append
new values to the end of the list. What happens if we later decide the items
should be arranged in a different order than simply appending them to the
end? If we are accessing the list directly, then we will have to modify our code
at every point where values are added and make sure they are not rearranged
in other places. By requiring access via the interface, we can easily “swap out”
the black box with a new implementation with no impact on code segments
that use the ADT.

o [t’s easier to manage and divide larger programs into smaller modules, al-
lowing different members of a team to work on the separate modules. Large
programming projects are commonly developed by teams of programmers in
which the workload is divided among the members. By working with ADTs
and agreeing on their definition, the team can better ensure the individual
modules will work together when all the pieces are combined. Using our pre-
vious example, if each member of the team directly accessed the list storing
the collection of values, they may inadvertently organize the data in different
ways or modify the list in some unexpected way. When the various modules
are combined, the results may be unpredictable.

Data Structures

Working with abstract data types, which separate the definition from the imple-
mentation, is advantageous in solving problems and writing programs. At some
point, however, we must provide a concrete implementation in order for the pro-
gram to execute. ADTs provided in language libraries, like Python, are imple-
mented by the maintainers of the library. When you define and create your own
abstract data types, you must eventually provide an implementation. The choices
you make in implementing your ADT can affect its functionality and efficiency.

Abstract data types can be simple or complex. A simple ADT is composed
of a single or several individually named data fields such as those used to represent
a date or rational number. The complex ADTs are composed of a collection of
data values such as the Python list or dictionary. Complex abstract data types
are implemented using a particular data structure, which is the physical rep-
resentation of how data is organized and manipulated. Data structures can be
characterized by how they store and organize the individual data elements and
what operations are available for accessing and manipulating the data.
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There are many common data structures, including arrays, linked lists, stacks,
queues, and trees, to name a few. All data structures store a collection of values,
but differ in how they organize the individual data items and by what operations
can be applied to manage the collection. The choice of a particular data structure
depends on the ADT and the problem at hand. Some data structures are better
suited to particular problems. For example, the queue structure is perfect for
implementing a printer queue, while the B-Tree is the better choice for a database
index. No matter which data structure we use to implement an ADT, by keeping
the implementation separate from the definition, we can use an abstract data type
within our program and later change to a different implementation, as needed,
without having to modify our existing code.

General Definitions

There are many different terms used in computer science. Some of these can have
different meanings among the various textbooks and programming languages. To
aide the reader and to avoid confusion, we define some of the common terms we
will be using throughout the text.

A collection is a group of values with no implied organization or relationship
between the individual values. Sometimes we may restrict the elements to a specific
data type such as a collection of integers or floating-point values.

A container is any data structure or abstract data type that stores and orga-
nizes a collection. The individual values of the collection are known as elements
of the container and a container with no elements is said to be empty. The orga-
nization or arrangement of the elements can vary from one container to the next as
can the operations available for accessing the elements. Python provides a number
of built-in containers, which include strings, tuples, lists, dictionaries, and sets.

A sequence is a container in which the elements are arranged in linear order
from front to back, with each element accessible by position. Throughout the text,
we assume that access to the individual elements based on their position within
the linear order is provided using the subscript operator. Python provides two
immutable sequences, strings and tuples, and one mutable sequence, the list. In
the next chapter, we introduce the array structure, which is also a commonly used
mutable sequence.

A sorted sequence is one in which the position of the elements is based on
a prescribed relationship between each element and its successor. For example,
we can create a sorted sequence of integers in which the elements are arranged in
ascending or increasing order from smallest to largest value.

In computer science, the term list is commonly used to refer to any collection
with a linear ordering. The ordering is such that every element in the collection,
except the first one, has a unique predecessor and every element, except the last
one, has a unique successor. By this definition, a sequence is a list, but a list is
not necessarily a sequence since there is no requirement that a list provide access
to the elements by position. Python, unfortunately, uses the same name for its
built-in mutable sequence type, which in other languages would be called an array
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list or vector abstract data type. To avoid confusion, we will use the term list to
refer to the data type provided by Python and use the terms general list or list
structure when referring to the more general list structure as defined earlier.

The Date Abstract Data Type

An abstract data type is defined by specifying the domain of the data elements
that compose the ADT and the set of operations that can be performed on that
domain. The definition should provide a clear description of the ADT including
both its domain and each of its operations as only those operations specified can be
performed on an instance of the ADT. Next, we provide the definition of a simple
abstract data type for representing a date in the proleptic Gregorian calendar.

Defining the ADT

The Gregorian calendar was introduced in the year 1582 by Pope Gregory XIII to
replace the Julian calendar. The new calendar corrected for the miscalculation of
the lunar year and introduced the leap year. The official first date of the Gregorian
calendar is Friday, October 15, 1582. The proleptic Gregorian calendar is an
extension for accommodating earlier dates with the first date on November 24,
4713 BC. This extension simplifies the handling of dates across older calendars
and its use can be found in many software applications.

EELT pate ADT

A date represents a single day in the proleptic Gregorian calendar in which the
first day starts on November 24, 4713 BC.

m Date(month, day, year ): Creates a new Date instance initialized to the
given Gregorian date which must be valid. Year 1 BC and earlier are indicated
by negative year components.

m day(): Returns the Gregorian day number of this date.

m month(): Returns the Gregorian month number of this date.

m year (): Returns the Gregorian year of this date.

m monthName (): Returns the Gregorian month name of this date.

m day0fWeek(): Returns the day of the week as a number between 0 and 6 with
0 representing Monday and 6 representing Sunday.

m numDays ( otherDate ): Returns the number of days as a positive integer be-
tween this date and the otherDate.

m isLeapYear(): Determines if this date falls in a leap year and returns the
appropriate boolean value.
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m advanceBy(days): Advances the date by the given number of days. The date
is incremented if days is positive and decremented if days is negative. The
date is capped to November 24, 4714 BC, if necessary.

m comparable (otherDate ): Compares this date to the otherDate to deter-
mine their logical ordering. This comparison can be done using any of the
logical operators <, <=, >, >=, ==, I=,

m toString (): Returns a string representing the Gregorian date in the format
mm/dd/yyyy. Implemented as the Python operator that is automatically called
via the str() constructor.

The abstract data types defined in the text will be implemented as Python
classes. When defining an ADT, we specify the ADT operations as method pro-
totypes. The class constructor, which is used to create an instance of the ADT, is
indicated by the name of the class used in the implementation.

Python allows classes to define or overload various operators that can be used
more naturally in a program without having to call a method by name. We define
all ADT operations as named methods, but implement some of them as operators
when appropriate instead of using the named method. The ADT operations that
will be implemented as Python operators are indicated in italicized text and a brief
comment is provided in the ADT definition indicating the corresponding operator.
This approach allows us to focus on the general ADT specification that can be
easily translated to other languages if the need arises but also allows us to take
advantage of Python’s simple syntax in various sample programs.

Using the ADT

To illustrate the use of the Date ADT, consider the program in Listing 1.1, which
processes a collection of birth dates. The dates are extracted from standard input
and examined. Those dates that indicate the individual is at least 21 years of age
based on a target date are printed to standard output. The user is continuously
prompted to enter a birth date until zero is entered for the month.

This simple example illustrates an advantage of working with an abstraction
by focusing on what functionality the ADT provides instead of how that function-
ality is implemented. By hiding the implementation details, we can use an ADT
independent of its implementation. In fact, the choice of implementation for the
Date ADT will have no effect on the instructions in our example program.

Class Definitions. Classes are the foundation of object-oriented

programing languages and they provide a convenient mechanism for
defining and implementing abstract data types. A review of Python classes
is provided in Appendix D.

NOTE
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Listing 1.1 The checkdates.py program.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

# Extracts a collection of birth dates from the user and determines
# 1f each individual is at least 21 years of age.
from date import Date

def main():

# Date before which a person must have been born to be 21 or older.
bornBefore = Date(6, 1, 1988)

# Extract birth dates from the user and determine if 21 or older.
date = promptAndExtractDate()
while date is not None :
if date <= bornBefore :
print( "Is at least 21 years of age: ", date )
date = promptAndExtractDate()

# Prompts for and extracts the Gregorian date components. Returns a
# Date object or None when the user has finished entering dates.
def promptAndExtractDate():

print( "Enter a birth date." )
month = int( input("month (0 to quit): ") )
if month == :
return None
else :
day = int( input("day: ") )
year = int( input("year: ") )
return Date( month, day, year )

# Call the main routine.
main()

1.2.3

Preconditions and Postconditions

In defining the operations, we must include a specification of required inputs and
the resulting output, if any. In addition, we must specify the preconditions and
postconditions for each operation. A precondition indicates the condition or
state of the ADT instance and inputs before the operation can be performed. A
postcondition indicates the result or ending state of the ADT instance after the
operation is performed. The precondition is assumed to be true while the postcon-
dition is a guarantee as long as the preconditions are met. Attempting to perform
an operation in which the precondition is not satisfied should be flagged as an er-
ror. Consider the use of the pop (i) method for removing a value from a list. When
this method is called, the precondition states the supplied index must be within
the legal range. Upon successful completion of the operation, the postcondition
guarantees the item has been removed from the list. If an invalid index, one that
is out of the legal range, is passed to the pop () method, an exception is raised.
All operations have at least one precondition, which is that the ADT instance
has to have been previously initialized. In an object-oriented language, this pre-
condition is automatically verified since an object must be created and initialized

9
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via the constructor before any operation can be used. Other than the initialization
requirement, an operation may not have any other preconditions. It all depends
on the type of ADT and the respective operation. Likewise, some operations may
not have a postcondition, as is the case for simple access methods, which simply
return a value without modifying the ADT instance itself. Throughout the text,
we do not explicitly state the precondition and postcondition as such, but they are
easily identified from the description of the ADT operations.

When implementing abstract data types, it’s important that we ensure the
proper execution of the various operations by verifying any stated preconditions.
The appropriate mechanism when testing preconditions for abstract data types is
to test the precondition and raise an exception when the precondition fails. You
then allow the user of the ADT to decide how they wish to handle the error, either
catch it or allow the program to abort.

Python, like many other object-oriented programming languages, raises an ex-
ception when an error occurs. An exception is an event that can be triggered
and optionally handled during program execution. When an exception is raised
indicating an error, the program can contain code to catch and gracefully handle
the exception; otherwise, the program will abort. Python also provides the assert
statement, which can be used to raise an AssertionError exception. The assert
statement is used to state what we assume to be true at a given point in the pro-
gram. If the assertion fails, Python automatically raises an AssertionError and
aborts the program, unless the exception is caught.

Throughout the text, we use the assert statement to test the preconditions
when implementing abstract data types. This allows us to focus on the implemen-
tation of the ADTs instead of having to spend time selecting the proper exception
to raise or creating new exceptions for use with our ADTs. For more information
on exceptions and assertions, refer to Appendix C.

Implementing the ADT

After defining the ADT, we need to provide an implementation in an appropriate
language. In our case, we will always use Python and class definitions, but any
programming language could be used. A partial implementation of the Date class is
provided in Listing 1.2, with the implementation of some methods left as exercises.

Date Representations

There are two common approaches to storing a date in an object. One approach
stores the three components—month, day, and year—as three separate fields. With
this format, it is easy to access the individual components, but it’s difficult to
compare two dates or to compute the number of days between two dates since the
number of days in a month varies from month to month. The second approach
stores the date as an integer value representing the Julian day, which is the number
of days elapsed since the initial date of November 24, 4713 BC (using the Gregorian
calendar notation). Given a Julian day number, we can compute any of the three
Gregorian components and simply subtract the two integer values to determine
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which occurs first or how many days separate the two dates. We are going to use
the latter approach as it is very common for storing dates in computer applications
and provides for an easy implementation.

(RS (W'l Bl Partial implementation of the date . py module.

1 # Implements a proleptic Gregorian calendar date as a Julian day number.

O ~NOOTLh WN

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

class Date :

# Creates an object instance for the specified Gregorian date.
def __init__( self, month, day, year ):
self._julianDay = 0
assert self._isValidGregorian( month, day, year ), \
"Invalid Gregorian date."

# The first line of the equation, T = (M - 14) / 12, has to be changed
# since Python's implementation of integer division is not the same
# as the mathematical definition.
tmp = 0
if month < 3 :
tmp = -1
self._julianDay = day - 32075 + \
(1461 * (year + 4800 + tmp) // 4) + \
(367 * (month - 2 - tmp * 12) // 12) -\
(3 * ((year + 4900 + tmp) // 100) // 4)

# Extracts the appropriate Gregorian date component.
def month( self ):
return (self._toGregorian())[0] # returning M from (M, d, y)

def day( self ):
return (self._toGregorian())I[1] # returning D from (m, D, y)

def year( self ):
return (self._toGregorian())I[2] # returning Y from (m, d, Y)

# Returns day of the week as an int between O (Mon) and 6 (Sun).
def dayOfWeek( self ):
month, day, year = self._toGregorian()
if month < 3 :
month = month + 12
year = year -1
return ((13 * month + 3) // 5 + day + \
year + year // 4 - year // 100 + year // 400) % 7

# Returns the date as a string in Gregorian format.
def __str__( self ):

month, day, year = self._toGregorian()

return "%02d/%02d/%04d" % (month, day, year)

# Logically compares the two dates.
def __eq__( self, otherDate ):
return self._julianDay == otherDate._julianDay

(Listing Continued)

11
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(B A Continued . . .

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

def __1t__( self, otherDate ):
return self._julianDay < otherDate._julianDay

def __le__( self, otherDate ):
return self._julianDay <= otherDate._julianDay

# The remaining methods are to be included at this point.

# Returns the Gregorian date as a tuple: (month, day, year).
def _toGregorian( self ):

A = self. julianDay + 68569
B=4xA// 146097
A=A - (146097 * B + 3) // 4

year = 4000 x (A + 1) // 1461001
A=A - (1461 * year // 4) + 31
month = 80 x A // 2447

day = A - (2447 x month // 80)

A = month // 11

month = month + 2 - (12 x A)
year = 100 * (B - 49) + year + A
return month, day, year

Constructing the Date

We begin our discussion of the implementation with the constructor, which is shown
in lines 5-19 of Listing 1.2. The Date ADT will need only a single attribute to store
the Julian day representing the given Gregorian date. To convert a Gregorian date
to a Julian day number, we use the following formula! where day 0 corresponds to
November 24, 4713 BC and all operations involve integer arithmetic.

T=M - 14) / 12

jday = D - 32075 + (1461 * (Y + 4800 + T) / 4) +
(367 * M -2 -T * 12) / 12) -
(3 = ((Y + 4900 + T) / 100) / 4)

Before attempting to convert the Gregorian date to a Julian day, we need
to verify it’s a valid date. This is necessary since the precondition states the
supplied Gregorian date must be valid. The _isValidGregorian() helper method
is used to verify the validity of the given Gregorian date. This helper method,
the implementation of which is left as an exercise, tests the supplied Gregorian
date components and returns the appropriate boolean value. If a valid date is
supplied to the constructor, it is converted to the equivalent Julian day using the
equation provided earlier. Note the statements in lines 13-15. The equation for
converting a Gregorian date to a Julian day number uses integer arithmetic, but

!Seidelmann, P. Kenneth (ed.) (1992). Ezplanatory Supplement to the Astronomical Almanac,
Chapter 12, pp. 604—606, University Science Books.
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Comments. Class definitions and methods should be properly com-

mented to aide the user in knowing what the class and/or methods do.
To conserve space, however, classes and methods presented in this book
do not routinely include these comments since the surrounding text provides
a full explanation.

NOTE

the equation line T = (M - 14) / 12 produces an incorrect result in Python due to
its implementation of integer division, which is not the same as the mathematical
definition. By definition, the result of the integer division -11/12 is 0, but Python
computes this as | —11/12.0| resulting in -1. Thus, we had to modify the first line
of the equation to produce the correct Julian day when the month component is
greater than 2.

Protected Attributes and Methods. Python does not provide a tech-

nique to protect attributes and helper methods in order to prevent their
use outside the class definition. In this text, we use identifier names, which
begin with a single underscore to flag those attributes and methods that
should be considered protected and rely on the user of the class to not at-
tempt a direct access.

CAUTION

The Gregorian Date

To access the Gregorian date components the Julian day must be converted back
to Gregorian. This conversion is needed in several of the ADT operations. Instead
of duplicating the formula each time it’s needed, we create a helper method to
handle the conversion as illustrated in lines 5970 of Listing 1.2.

The _toGregorian() method returns a tuple containing the day, month, and
year components. As with the conversion from Gregorian to Julian, integer arith-
metic operations are used throughout the conversion formula. By returning a tuple,
we can call the helper method and use the appropriate component from the tuple
for the given Gregorian component access method, as illustrated in lines 22-29.

The dayOfWeek () method, shown in lines 32-38, also uses the _toGregorian()
conversion helper method. We determine the day of the week based on the Gre-
gorian components using a simple formula that returns an integer value between 0
and 6, where 0 represents Monday, 1 represents Tuesday, and so on.

The toString operation defined by the ADT is implemented in lines 41-43 by
overloading Python’s __str__ method. It creates a string representation of a date in
Gregorian format. This can be done using the string format operator and supplying
the values returned from the conversion helper method. By using Python’s __str__
method, Python automatically calls this method on the object when you attempt
to print or convert an object to a string as in the following example:

13
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1.3

firstDay = Date( 9, 1, 2006 )
print( firstDay )

Comparing Date Objects

We can logically compare two Date instances to determine their calendar order.
When using a Julian day to represent the dates, the date comparison is as simple
as comparing the two integer values and returning the appropriate boolean value
based on the result of that comparison. The “comparable” ADT operation is
implemented using Python’s logical comparison operators as shown in lines 46-53
of Listing 1.2. By implementing the methods for the logical comparison operators,
instances of the class become comparable objects. That is, the objects can be
compared against each other to produce a logical ordering.

You will notice that we implemented only three of the logical comparison op-
erators. The reason for this is that starting with Python version 3, Python will
automatically swap the operands and call the appropriate reflective method when
necessary. For example, if we use the expression a > b with Date objects in our
program, Python will automatically swap the operands and call b < a instead since
the __1t__ method is defined but not __gt__. It will do the same for a >= b and
a <= b. When testing for equality, Python will automatically invert the result
when only one of the equality operators (== or !=) is defined. Thus, we need only
define one operator from each of the following pairs to achieve the full range of
logical comparisons: < or >, <= or >=, and == or !=. For more information on
overloading operators, refer to Appendix D.

Overloading Operators. User-defined classes can implement meth-

ods to define many of the standard Python operators such as +, *, %,
and ==, as well as the standard named operators such as in and not in.
This allows for a more natural use of the objects instead of having to call
specific named methods. It can be tempting to define operators for every
class you create, but you should limit the definition of operator methods for
classes where the specific operator has a meaningful purpose.

TIP

Bags

The Date ADT provided an example of a simple abstract data type. To illustrate
the design and implementation of a complex abstract data type, we define the Bag
ADT. A bag is a simple container like a shopping bag that can be used to store a
collection of items. The bag container restricts access to the individual items by
only defining operations for adding and removing individual items, for determining
if an item is in the bag, and for traversing over the collection of items.
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The Bag Abstract Data Type

There are several variations of the Bag ADT with the one described here being a
simple bag. A grab bag is similar to the simple bag but the items are removed
from the bag at random. Another common variation is the counting bag, which
includes an operation that returns the number of occurrences in the bag of a given
item. Implementations of the grab bag and counting bag are left as exercises.

Define  FCL

A bag is a container that stores a collection in which duplicate values are allowed.
The items, each of which is individually stored, have no particular order but they
must be comparable.

m Bag(): Creates a bag that is initially empty.

length (): Returns the number of items stored in the bag. Accessed using
the 1len() function.

m contains (item): Determines if the given target item is stored in the bag
and returns the appropriate boolean value. Accessed using the in operator.

m add(item): Adds the given item to the bag.

m remove(item): Removes and returns an occurrence of item from the bag.
An exception is raised if the element is not in the bag.

m iterator (): Creates and returns an iterator that can be used to iterate over
the collection of items.

You may have noticed our definition of the Bag ADT does not include an
operation to convert the container to a string. We could include such an operation,
but creating a string for a large collection is time consuming and requires a large
amount of memory. Such an operation can be beneficial when debugging a program
that uses an instance of the Bag ADT. Thus, it’s not uncommon to include the
__str__operator method for debugging purposes, but it would not typically be used
in production software. We will usually omit the inclusion of a __str__ operator
method in the definition of our abstract data types, except in those cases where it’s
meaningful, but you may want to include one temporarily for debugging purposes.

Examples

Given the abstract definition of the Bag ADT, we can create and use a bag without
knowing how it is actually implemented. Consider the following simple example,
which creates a bag and asks the user to guess one of the values it contains.

15
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myBag = Bag()
myBag.add( 19

)
myBag.add( 74 )
myBag.add( 23 )
myBag.add( 19 )
myBag.add( 12 )

value = int( input("Guess a value contained in the bag.") )
if value in myBag:

print( "The bag contains the value", value )
else :

print( "The bag does not contain the value", value )

Next, consider the checkdates.py sample program from the previous section
where we extracted birth dates from the user and determined which ones were
for individuals who were at least 21 years of age. Suppose we want to keep the
collection of birth dates for later use. It wouldn’t make sense to require the user to
re-enter the dates multiple times. Instead, we can store the birth dates in a bag as
they are entered and access them later, as many times as needed. The Bag ADT
is a perfect container for storing objects when the position or order of a specific
item does not matter. The following is a new version of the main routine for our
birth date checking program from Listing 1.1:

#pgm: checkdates2.py (modified main() from checkdates.py)
from linearbag import Bag
from date import Date

def main():
bornBefore = Date( 6, 1, 1988 )
bag = Bag()

# Extract dates from the user and place them in the bag.
date = promptAndExtractDate()
while date is not None :

bag.add( date )

date = promptAndExtractDate()

# Iterate over the bag and check the age.
for date in bag :
if date <= bornBefore :
print( "Is at least 21 years of age: ", date )

Why a Bag ADT?

You may be wondering, why do we need the Bag ADT when we could simply
use the list to store the items? For a small program and a small collection of
data, using a list would be appropriate. When working with large programs and
multiple team members, however, abstract data types provide several advantages
as described earlier in Section 1.1.2. By working with the abstraction of a bag,
we can: a) focus on solving the problem at hand instead of worrying about the
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implementation of the container, b) reduce the chance of introducing errors from
misuse of the list since it provides additional operations that are not appropriate
for a bag, c¢) provide better coordination between different modules and designers,
and d) easily swap out our current implementation of the Bag ADT for a different,
possibly more efficient, version later.

Selecting a Data Structure

The implementation of a complex abstract data type typically requires the use of
a data structure for organizing and managing the collection of data items. There
are many different structures from which to choose. So how do we know which to
use? We have to evaluate the suitability of a data structure for implementing a
given abstract data type, which we base on the following criteria:

1. Does the data structure provide for the storage requirements as specified by
the domain of the ADT? Abstract data types are defined to work with a
specific domain of data values. The data structure we choose must be capable
of storing all possible values in that domain, taking into consideration any
restrictions or limitations placed on the individual items.

2. Does the data structure provide the necessary data access and manipulation
functionality to fully implement the ADT? The functionality of an abstract
data type is provided through its defined set of operations. The data structure
must allow for a full and correct implementation of the ADT without having
to violate the abstraction principle by exposing the implementation details to
the user.

3. Does the data structure lend itself to an efficient implementation of the oper-
ations? An important goal in the implementation of an abstract data type is
to provide an efficient solution. Some data structures allow for a more effi-
cient implementation than others, but not every data structure is suitable for
implementing every ADT. Efficiency considerations can help to select the best
structure from among multiple candidates.

There may be multiple data structures suitable for implementing a given ab-
stract data type, but we attempt to select the best possible based on the context
in which the ADT will be used. To accommodate different contexts, language
libraries will commonly provide several implementations of some ADTSs, allowing
the programmer to choose the most appropriate. Following this approach, we in-
troduce a number of abstract data types throughout the text and present multiple
implementations as new data structures are introduced.

The efficiency of an implementation is based on complexity analysis, which is
not introduced until later in Chapter 3. Thus, we postpone consideration of the
efficiency of an implementation in selecting a data structure until that time. In
the meantime, we only consider the suitability of a data structure based on the
storage and functional requirements of the abstract data type.
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We now turn our attention to selecting a data structure for implementing the
Bag ADT. The possible candidates at this point include the list and dictionary
structures. The list can store any type of comparable object, including duplicates.
Each item is stored individually, including duplicates, which means the reference
to each individual object is stored and later accessible when needed. This satisfies
the storage requirements of the Bag ADT, making the list a candidate structure
for its implementation.

The dictionary stores key/value pairs in which the key component must be
comparable and unique. To use the dictionary in implementing the Bag ADT, we
must have a way to store duplicate items as required by the definition of the ab-
stract data type. To accomplish this, each unique item can be stored in the key
part of the key/value pair and a counter can be stored in the value part. The
counter would be used to indicate the number of occurrences of the corresponding
item in the bag. When a duplicate item is added, the counter is incremented; when
a duplicate is removed, the counter is decremented.

Both the list and dictionary structures could be used to implement the Bag
ADT. For the simple version of the bag, however, the list is a better choice since
the dictionary would require twice as much space to store the contents of the bag
in the case where most of the items are unique. The dictionary is an excellent
choice for the implementation of the counting bag variation of the ADT.

Having chosen the list, we must ensure it provides the means to implement the
complete set of bag operations. When implementing an ADT, we must use the
functionality provided by the underlying data structure. Sometimes, an ADT op-
eration is identical to one already provided by the data structure. In this case, the
implementation can be quite simple and may consist of a single call to the corre-
sponding operation of the structure, while in other cases, we have to use multiple
operations provided by the structure. To help verify a correct implementation
of the Bag ADT using the list, we can outline how each bag operation will be
implemented:

e An empty bag can be represented by an empty list.
e The size of the bag can be determined by the size of the list.

e Determining if the bag contains a specific item can be done using the equivalent
list operation.

e When a new item is added to the bag, it can be appended to the end of the
list since there is no specific ordering of the items in a bag.

e Removing an item from the bag can also be handled by the equivalent list
operation.

e The items in a list can be traversed using a for loop and Python provides for
user-defined iterators that be used with a bag.

From this itemized list, we see that each Bag ADT operation can be imple-
mented using the available functionality of the list. Thus, the list is suitable for
implementing the bag.
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1.3.3 List-Based Implementation

The implementation of the Bag ADT using a list is shown in Listing 1.3. The
constructor defines a single data field, which is initialized to an empty list. This
corresponds to the definition of the constructor for the Bag ADT in which the
container is initially created empty. A sample instance of the Bag class created from
the example checkdates?2.py program provided earlier is illustrated in Figure 1.3.

(RS (WY The 1inearbag.py module.

1 # Implements the Bag ADT container using a Python list.

2 class Bag :

3 # Constructs an empty bag.

4 def __init__( self ):

5 self._theItems = list()

6

7 # Returns the number of items in the bag.

8 def __len__( self ):

9 return len( self._theltems )

10

11 # Determines if an item is contained in the bag.

12 def __contains__( self, item ):

13 return item in self._theItems

14

15 # Adds a new item to the bag.

16 def add( self, item ):

17 self._theltems.append( item )

18

19 # Removes and returns an instance of the item from the bag.
20 def remove( self, item ):
21 assert item in self._theItems, "The item must be in the bag."
22 ndx = self._theltems.index( item )
23 return self._theltems.pop( ndx )
24
25 # Returns an iterator for traversing the list of items.
26 def __iter__( self, item ):
D

Most of the implementation details follow the specifics discussed in the previous
section. There are some additional details, however. First, the ADT definition
of the remove() operation specifies the precondition that the item must exist
in the bag in order to be removed. Thus, we must first assert that condition
and verify the existence of the item. Second, we need to provide an iteration
mechanism that allows us to iterate over the individual items in the bag. We delay

theltems B |

Bag 0 1 2 3 4

Figure 1.3: Sample instance of the Bag class implemented using a list.
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1.4

the implementation of this operation until the next section where we discuss the
creation and use of iterators in Python.

A list stores references to objects and technically would be illustrated as shown
in the figure to the right. To conserve space and reduce the clutter that can result
in some figures, however, we illustrate objects in the text as boxes with rounded
edges and show them stored directly o 1 2 3 a4

within the list structure. Variables theltems E

will be illustrated as square boxes IHRERERER
with a bullet in the middle and the Bag

name of the variable printed nearby.

lterators

Traversals are very common operations, especially on containers. A traversal iter-
ates over the entire collection, providing access to each individual element. Traver-
sals can be used for a number of operations, including searching for a specific item
or printing an entire collection.

Python’s container types—strings, tuples, lists, and dictionaries—can be tra-
versed using the for loop construct. For our user-defined abstract data types, we
can add methods that perform specific traversal operations when necessary. For
example, if we wanted to save every item contained in a bag to a text file, we could
add a saveElements () method that traverses over the vector and writes each value
to a file. But this would limit the format of the resulting text file to that specified
in the new method. In addition to saving the items, perhaps we would like to
simply print the items to the screen in a specific way. To perform the latter, we
would have to add yet another operation to our ADT.

Not all abstract data types should provide a traversal operation, but it is appro-
priate for most container types. Thus, we need a way to allow generic traversals to
be performed. One way would be to provide the user with access to the underlying
data structure used to implement the ADT. But this would violate the abstraction
principle and defeat the purpose of defining new abstract data types.

Python, like many of today’s object-oriented languages, provides a built-in it-
erator construct that can be used to perform traversals on user-defined ADTs. An
iterator is an object that provides a mechanism for performing generic traversals
through a container without having to expose the underlying implementation. Iter-
ators are used with Python’s for loop construct to provide a traversal mechanism
for both built-in and user-defined containers. Consider the code segment from the
checkdates2.py program in Section 1.3 that uses the for loop to traverse the
collection of dates:

# Iterate over the bag and check the ages.
for date in bag :
if date <= bornBefore :
print( "Is at least 21 years of age: ", date )



1.4.1

1.4 lterators

Designing an lterator

To use Python’s traversal mechanism with our own abstract data types, we must
define an iterator class, which is a class in Python containing two special methods,
_iter__ and _next__. Iterator classes are commonly defined in the same module
as the corresponding container class.

The implementation of the _BagIterator class is shown in Listing 1.4. The
constructor defines two data fields. One is an alias to the list used to store the
items in the bag, and the other is a loop index variable that will be used to iterate
over that list. The loop variable is initialized to zero in order to start from the
beginning of the list. The __iter__ method simply returns a reference to the object
itself and is always implemented to do so.

(RS (WCR KB The Baglterator class, which is part of the 1inearbag.py module.

1 # An iterator for the Bag ADT implemented as a Python list.

2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

class _BagIterator :

def __init__( self, thelList ):
self._bagItems = thelList
self._curltem = 0

def __iter__( self ):
return self

def __next__( self ):
if self._curItem < len( self._bagItems )
item = self._bagItems[ self._curltem ]
self._curltem += 1
return item
else :
raise StopIteration

The _next__ method is called to return the next item in the container. The
method first saves a reference to the current item indicated by the loop variable.
The loop variable is then incremented by one to prepare it for the next invocation
of the __next__ method. If there are no additional items, the method must raise a
StopIteration exception that flags the for loop to terminate. Finally, we must
add an __iter__ method to our Bag class, as shown here:

def __iter__( self ):
return _BagIterator( self._theltems )

This method, which is responsible for creating and returning an instance of the
_BaglIterator class, is automatically called at the beginning of the for loop to
create an iterator object for use with the loop construct.
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1.4.2

Using Iterators

With the definition of the BagIterator class and the modifications to the Bag
class, we can now use Python’s for loop with a Bag instance. When the for loop

for item in bag :
print( item )

is executed, Python automatically calls the __iter__ method on the bag object
to create an iterator object. Figure 1.4 illustrates the state of the BagIterator
object immediately after being created. Notice the bagItems field of the iterator
object references _theltems field of the bag object. This reference was assigned
by the constructor when the BagIterator object was created.

bagVector curltem
o o
_Baglterator

theltems E

0 1 2 3 4

Bag

Figure 1.4: The Bag and _BagIterator objects before the first loop iteration.

The for loop then automatically calls the __next__ method on the iterator
object to access the next item in the container. The state of the iterator object
changes with the _curItem field having been incremented by one. This process
continues until a StopIteration exception is raised by the __next__ method when
the items have been exhausted as indicated by the _curItem. After all of the items
have been processed, the iteration is terminated and execution continues with the
next statement following the loop. The following code segment illustrates how
Python actually performs the iteration when a for loop is used with an instance
of the Bag class:

# Create a BagIterator object for myBag.
iterator = myBag.__iter__()

# Repeat the while loop until break is called.
while True :
try:

# Get the next item from the bag. If there are no
# more items, the StopIteration exception is raised.
item = iterator.__next__()
# Perform the body of the for loop.
print( item )

# Catch the exception and break from the loop when we are done.
except StopIteration:
break
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Application: Student Records

Most computer applications are written to process and manipulate data that is
stored external to the program. Data is commonly extracted from files stored on
disk, from databases, and even from remote sites through web services. For exam-
ple, suppose we have a collection of records stored on disk that contain information
related to students at Smalltown College. We have been assigned the task to ex-
tract this information and produce a report similar to the following in which the
records are sorted by identification number.

LIST OF STUDENTS

ID NAME CLASS GPA

10015 Smith, John Sophomore 3.01
10167 Jones, Wendy Junior 2.85
10175 Smith, Jane Senior 3.92
10188 Wales, Sam Senior 3.25
10200 Roberts, Sally Freshman 4.00
10208 Green, Patrick Freshman 3.95
10226 Nelson, Amy Sophomore  2.95
10334 Roberts, Jane Senior 3.81
10387 Taylor, Susan Sophomore  2.15
10400 Logan, Mark Junior 3.33
10485 Brown, Jessica Sophomore 2.91

Number of students: 11

Our contact in the Registrar’s office, who assigned the task, has provided some
information about the data. We know each record contains five pieces of infor-
mation for an individual student: (1) the student’s id number represented as an
integer; (2) their first and last names, which are strings; (3) an integer classification
code in the range [1...4] that indicates if the student is a freshman, sophomore,
junior, or senior; and (4) their current grade point average represented as a floating-
point value. What we have not been told, however, is how the data is stored on
disk. It could be stored in a plain text file, in a binary file, or even in a database.
In addition, if the data is stored in a text or binary file, we will need to know how
the data is formatted in the file, and if it’s in a relational database, we will need
to know the type and the structure of the database.

Designing a Solution

Even though we have not yet been told the type of file or the format used to store
the data, we can begin designing and implementing a solution by working with
an abstraction of the input source. No matter the source or format of the data,
the extraction of data records from external storage requires similar steps: open
a connection, extract the individual records, then close the connection. To aide
in our effort, we define a Student File Reader ADT to represent the extraction of
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data from an external file or database. In computer programming, an object used
to input data into a program is sometimes referred to as a reader while an object
used to output data is referred to as a writer.

DRI student File Reader ADT

A student file reader is used to extract student records from external storage. The
five data components of the individual records are extracted and stored in a storage
object specific for this collection of student records.

m StudentFileReader(filename ): Creates a student reader instance for ex-
tracting student records from the given file. The type and format of the file
is dependent on the specific implementation.

m open(): Opens a connection to the input source and prepares it for extracting
student records. If a connection cannot be opened, an exception is raised.

m close(): Closes the connection to the input source. If the connection is not
currently open, an exception is raised.

m fetchRecord(): Extracts the next student record from the input source and
returns a reference to a storage object containing the data. None is returned
when there are no additional records to be extracted. An exception is raised
if the connection to the input source was previously closed.

m fetchAll(): The same as fetchRecord(), but extracts all student records
(or those remaining) from the input source and returns them in a Python list.

Creating the Report

The program in Listing 1.5 uses the Student File Reader ADT to produce the
sample report illustrated earlier. The program extracts the student records from
the input source, sorts the records by student identification number, and produces
the report. This program illustrates some of the advantages of applying abstraction
to problem solving by focusing on the “what” instead of the “how.”

By using the Student File Reader ADT, we are able to design a solution and
construct a program for the problem at hand without knowing exactly how the
data is stored in the external source. We import the StudentFileReader class
from the studentfile.py module, which we assume will be an implementation of
the ADT that handles the actual data extraction. Further, if we want to use this
same program with a data file having a different format, the only modifications
required will be to indicate a different module in the import statement and possibly
a change to the filename specified by the constant variable FILE_NAME.

The studentreport.py program consists of two functions: printReport () and
main(). The main routine uses an instance of the ADT to connect to the external
source in order to extract the student records into a list. The list of records is then
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B NI The studentreport.py program.

1 # Produces a student report from data extracted from an external source.
2 from studentfile import StudentFileReader

3

4 # Name of the file to open.
5 FILE_NAME = "students. txt"

6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

def main():

# Extract the student records from the given text file.
reader = StudentFileReader( FILE_NAME )

reader.open()
studentList = reader.fetchAll()

reader.close()

# Sort the list by id number. Each object is passed to the lambda
# expression which returns the idNum field of the object.
studentlList.sort( key = lambda rec: rec.idNum )

# Print the student report.
printReport( studentList )

# Prints the student report.
def printReport( thelList ):

# The class names associated with the class codes.
classNames = ( None, "Freshman", "Sophomore", "Junior", "Senior" )

# Print the header.
print( "LIST OF STUDENTS".center(50) )
print( "" )
print( "%-5s5 %-255 %-10
print( "%5s %255 %10s %4s" % ('
# Print the body.
for record in thelist :
print( "%5d %-255 %-10s %4.2f" % \
(record.idNum, \
record.lastName + ', ' + record.firstName,
classNames[record.classCode], record.gpa) )
# Add a footer.
print( "-" *x 50 )
print( "Number of students:", len(thelList) )

%)

%-4s" % ('ID', 'NAME', 'CLASS', 'GPA' ) )
! *5, r_ *25’ r_ * 10’ T *4))

41 # Executes the main routine.
42 main()

sorted in ascending order based on the student identification number. The actual
report is produced by passing the sorted list to the printReport () function.

Storage Class

When the data for an individual student is extracted from the input file, it will
need to be saved in a storage object that can be added to a list in order to first
sort and then print the records. We could use tuples to store the records, but we
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avoid the use of tuples when storing structured data since it’s better practice to
use classes with named fields. Thus, we define the StudentRecord class

class StudentRecord :
def __init__( self ):
self.idNum = 0
self.firstName = None
self.lastName = None
self.classCode = 0
self.gpa = 0.0

to store the data related to an individual student. You may notice there is only a
constructor with no additional methods. This is a complete class as defined and
represents a storage class. The constructor is all that’s needed to define the two
data fields for storing the two component values.

Storage classes should be defined within the same module as the class with
which they will be used. For this application, the StudentRecord class is defined
at the end of the studentfile.py module. Some storage classes may be intended
for internal use by a specific class and not meant to be accessed from outside the
module. In those cases, the name of the storage class will begin with a single
underscore, which flags it as being private to the module in which it’s defined.
The StudentRecord class, however, has not been defined as being private to the
module since instances of the storage class are not confined to the ADT but in-
stead are returned to the client code by methods of the StudentFileReader class.
The storage class can be imported along with the StudentFileReader class when
needed.

You will note the data fields in the storage class are public (by our notation)
since their names do not begin with an underscore as they have been in other
classes presented earlier. The reason we do not include a restrictive interface for
accessing the data fields is that storage objects are meant to be used exclusively
for storing data and not as an instance of some abstract data type. Given their
limited use, we access the data fields directly as needed.

Implementation

The implementation of the Student File Reader ADT does not require a data
structure since it does not store data but instead extracts data from an external
source. The ADT has to be implemented to extract data based on the format in
which the data is stored. For this example, we are going to extract the data from

Python Tuples. The tuple can be used to store structured data, with

each element corresponding to an individual data field. This is not
good practice, however, since the elements are not named and you would
have to remember what piece of data is stored in each element. A better
practice is to use objects with named data fields. In this book, we limit the
use of tuples for returning multiple values from methods and functions.

CAUTION
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a text file in which the records are listed one after the other. The five fields of the
record are each stored on a separate line. The first line contains the id number,
the second and third contain the first and last names, the fourth line contains
the classification code, and the grade point average follows on the fifth line. The
following text block illustrates the format for a file containing two records:

10015
John
Smith

2

3.01
10334
Jane
Roberts
4

3.81

Listing 1.6 provides the implementation of the ADT for extracting the records
from the text file in the given format. The constructor simply initializes an instance
of the class by creating two attributes, one to store the name the text file and the
other to store a reference to the file object after it’s opened. The open() method
is responsible for opening the input file using the name saved in the constructor.
The resulting file object is saved in the inputFile attribute so it can be used in
the other methods. After the records are extracted, the file is closed by calling the
close() method.

B RN The studentfile.py module.

1 # Implementation of the StudentFileReader ADT using a text file as the
2 # input source in which each field is stored on a separate line.

3

~

5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22

class StudentFileReader :

# Create a new student reader instance.

def __init__( self, inputSrc ):
self._inputSrc = inputSrc
self._inputFile = None

# Open a connection to the input file.
def open( self ):
self._inputFile = open( self._inputSrc, "r" )

# Close the connection to the input file.
def close( self ):
self._inputFile.close()
self._inputFile = None

# Extract all student records and store them in a list.
def fetchAll( self ):
theRecords = 1list()
student = self.fetchRecord()
(Listing Continued)
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(B K Continued . . .

23 while student != None :

24 theRecords.append( student )

25 student = self.fetchRecord()

26 return theRecords

27

28 # Extract the next student record from the file.

29 def fetchRecord( self ):

30 # Read the first line of the record.

31 line = self._inputFile.readline()

32 if line == ""

33 return None

34

35 # If there is another record, create a storage object and fill it.
36 student = StudentRecord()

37 student.idNum = int( line )

38 student.firstName = self._inputFile.readline().rstrip()
39 student.lastName = self._inputFile.readline().rstrip()
40 student.classCode = int( self._inputFile.readline() )
41 student.gpa = float( self._inputFile.readline() )

42 return student

43

44 # Storage class used for an individual student record.
45 class StudentRecord :
46 def __init__( self ):

47 self.idNum = 0

48 self.firstName = None
49 self.lastName = None
50 self.classCode = 0

51 self.gpa = 0.0

The fetchAll () method, at lines 20-26, is a simple event-controlled loop that
builds and returns a list of StudentRecord objects. This is done by repeatedly
calling the fetchRecord() method. Thus, the actual extraction of a record from
the text file is handled by the fetchRecord() method, as shown in lines 29-42.
To extract the student records from a file in which the data is stored in a different
format, we need only modify this method to accommodate the new format.

The Student File Reader ADT provides a framework that can be used to extract
any type of records from a text file. The only change required would be in the
fetchRecord() method to create the appropriate storage object and to extract
the data from the file in the given format.

Exercises

1.1 Complete the partial implementation of the Date class by implementing the
remaining methods: monthName (), isLeapYear (), numDays (), advanceBy (),



1.2

1.3

1.4

Programming Projects

and _isValidGregorian(). The _isValidGregorian() method should deter-
mine if the three components of the given Gregorian date are valid.

Add additional operations to the Date class:

(a) dayOfWeekName (): returns a string containing the name of the day.

(b) dayOfYear(): returns an integer indicating the day of the year. For ex-
ample, the first day of February is day 32 of the year.

isWeekday (): determines if the date is a weekday.

)
(d) isEquinox(): determines if the date is the spring or autumn equinox.
(e) isSolstice(): determines if the date is the summer or winter solstice.
(f) asGregorian(divchar = '/'): similar to the _str() method but uses

the optional argument divchar as the dividing character between the three
components of the Gregorian date.

Implement a function named printCalendar () that accepts a Date object
and prints a calendar for the month of the given date. For example, if the
Date object passed to the function contained the date 11/5/2007, the function
should print

November 2007
Su Mo Tu We Th Fr Sa
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
26 26 27 28 29 30

Modify the Date () constructor to make each of the three arguments optional,
with an initial value of zero. When no argument is supplied to the constructor,
the object should be initialized to the current date. Hint: You will need to
use Python’s date() function from the time.py module.

Programming Projects

1.1

1.2

A click counter is a small hand-held device that contains a push button and
a count display. To increment the counter, the button is pushed and the new
count shows in the display. Clicker counters also contain a button that can be
pressed to reset the counter to zero. Design and implement the Counter ADT
that functions as a hand-held clicker.

A Grab Bag ADT is similar to the Bag ADT with one difference. A grab
bag does not have a remove () operation, but in place of it has a grabItem()
operation, which allows for the random removal of an item from the bag.
Implement the Grab Bag ADT.
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A Counting Bag ADT is just like the Bag ADT but includes the numOf (item)
operation, which returns the number of occurrences of the given item in the
bag. Implement the Counting Bag ADT and defend your selection of data
structure.

The use of the Student File Reader ADT makes it easy to extract student
records from a text file no matter the format used to store the data. Implement
a new version of the ADT to extract the data from a text file in which each
record is stored on a separate line and the individual fields are separated by
commas. For example, the following illustrates the format of a sample file
containing three student records:

10015, John, Smith, 2, 3.01
10334, Jane, Roberts, 4, 3.81
10208, Patrick, Green, 1, 3.95

In the chapter, we defined and implemented the Student File Reader ADT for
extracting student records from an external source. We can define and use a
similar ADT for output.

(a) Design a Student File Writer ADT that can be used to display, or store to
an output device, student records contained in a StudentRecord object.

(b) Provide an implementation of your ADT to output the records by display-
ing them to the terminal in a neatly formatted fashion.

(¢) Provide an implementation of your ADT to output the records to a text
file using the same format described in the text.

(d) Design and implement a complete program that extracts student records
from a text file, sorts them by either student id or student name, and
displays them to the terminal using your ADT. The choice of sort keys
should be extracted from the user.

We can use a Time ADT to represent the time of day, for any 24-hour period,
as the number of seconds that have elapsed since midnight. Given the following
list of operations, implement the Time ADT.

m Time(hours, minutes, seconds): Creates a new Time instance and ini-
tializes it with the given time.

m hour (): Returns the hour part of the time.

m minutes(): Returns the minutes part of the time.

m seconds(): Returns the seconds part of the time.

m numSeconds ( otherTime ): Returns the number of seconds as a positive
integer between this time and the otherTime.

m isAM(): Determines if this time is ante meridiem or before midday (at or
before 12 o’clock noon).
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isPM(): Determines if this time is post meridiem or after midday (after
12 o’clock noon).

comparable (otherTime ): Compares this time to the otherTime to de-
termine their logical ordering. This comparison can be done using any of
the Python logical operators.

toString (): Returns a string representing the time in the 12-hour format
hh:mm:ss. Invoked by calling Python’s str() constructor.

1.7 Design and implement a TimeDate ADT that can be used to represent both
a date and time as a single entity.

1.8 A line segment is a straight line bounded by two endpoints. The Line Segment
ADT, whose operations are described below, represents a line segment defined
by points in the two-dimensional Cartesian coordinate system. Use the Point
class from Appendix D and implement the Line Segment ADT.

LineSegment (ptA, ptB): Creates a new Line Segment instance defined
by the two Point objects.

endPointA(): Returns the first endpoint of the line.
endPointB(): Returns the second endpoint of the line.

length (): Returns the length of the line segment given as the Euclidean
distance between the two endpoints.

toString (): Returns a string representation of the line segment in the
format (Ax, Ay)#(Bx, By).

isVertical(): Is the line segment parallel to the y-axis?
isHorizontal(): Is the line segment parallel to the x-axis?
isParallel( otherLine ): Is this line segment parallel to the otherLine?

isPerpendicular ( otherLine ): Is this line segment perpendicular to the
otherLine?

intersects(otherLine ): Does this line segment intersect the otherLine?
bisects(otherLine ): Does this line segment bisect the otherLine?

slope(): Returns the slope of the line segment given as the rise over the
run. If the line segment is vertical, None is returned.

shift(xInc, yInc): Shifts the line segment by xInc amount along the
x-axis and yInc amount along the y-axis.

midpoint (): Returns the midpoint of the line segment as a Point object.

1.9 A polygon is a closed geometric shape consisting of three or more line segments
that are connected end to end. The endpoints of the line segments are known
as vertices, which can be defined by points in the two-dimensional Cartesian
coordinate system.
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(a) Define a Polygon ADT to represent a geometric polygon and provide a set
of appropriate operations.

(b) Provide a Python implementation of your Polygon ADT.

Anyone who is involved in many activities typically uses a calendar to keep
track of the various activities. Colleges commonly maintain several calendars
such as an academic calendar, a school events calendar, and a sporting events
calendar. We have defined an Activities Calendar ADT below that can keep
track of one activity per day over a given range of dates. Select a data structure
and implement the ADT.

m ActivitiesCalendar(dateFrom, dateTo): Creates a new empty activ-
ities calendar initialized to the given range of dates. The date range can
be specified for any non-overlapping period. The only requirements are
that dateFrom must precede dateTo and dateTo cannot overlap the day
and month of dateFrom for the next year.

m length (): Returns the number of activities on the calendar.

m getActivity(date): Returns the string that describes the activity for
the given date if an activity exists for the given date; otherwise, None is
returned.

m addActivity(date, activity): Adds the given activity description to
the calendar for the given date. The date must be within the valid date
range for the calendar.

m displayMonth(month): Displays to standard output all activities for the
given month. The display includes the year and name of the month and
the list of activities for the month. The display of each activity includes
the day of the month on which the activity occurs and the description
of the activity.

Python provides a numeric class for working with floating-point values. But
not all real numbers can be represented precisely on a computer since they are
stored as binary values. In applications where the precision of real numbers
is important, we can use rational numbers or fractions to store exact values.
A fraction, such as %, consists of two parts, both of which are integers. The
top value, which can be any integer value, is known as the numerator. The
bottom value, which must be greater than zero, is known as the denominator.

(a) Define a Fraction ADT to represent and store rational numbers. The ADT
should include all of the common mathematical and logical operations. In
addition, your ADT should provide for the conversion between floating-
point values and fractions and the ability to produce a string version of
the fraction.

(b) Provide a Python implementation of your Fraction ADT.




2.1

Arrays

The most basic structure for storing and accessing a collection of data is the array.
Arrays can be used to solve a wide range of problems in computer science. Most
programming languages provide this structured data type as a primitive and allow
for the creation of arrays with multiple dimensions. In this chapter, we implement
an array structure for a one-dimensional array and then use it to implement a
two-dimensional array and the related matrix structure.

The Array Structure

At the hardware level, most computer architectures provide a mechanism for creat-
ing and using one-dimensional arrays. A one-dimensional array, as illustrated
in Figure 2.1, is composed of multiple sequential elements stored in contiguous
bytes of memory and allows for random access to the individual elements.

The entire contents of an array are identified by a single name. Individual
elements within the array can be accessed directly by specifying an integer subscript
or index value, which indicates an offset from the start of the array. This is similar
to the mathematics notation (z;), which allows for multiple variables of the same
name. The difference is that programming languages typically use square brackets
following the array name to specify the subscript, x[i].

O EEEHEEERE

0 1 2 3 4 5 6 7 8 9 10

Figure 2.1: A sample 1-D array consisting of 11 elements.
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Why Study Arrays?

You will notice the array structure looks very similar to Python’s list structure.
That’s because the two structures are both sequences that are composed of multiple
sequential elements that can be accessed by position. But there are two major
differences between the array and the list. First, an array has a limited number of
operations, which commonly include those for array creation, reading a value from
a specific element, and writing a value to a specific element. The list, on the other
hand, provides a large number of operations for working with the contents of the
list. Second, the list can grow and shrink during execution as elements are added
or removed while the size of an array cannot be changed after it has been created.

You may be wondering, if Python provides the list structure as its mutable
sequence type, why are we bothering to discuss the array structure, much less plan
to implement an abstract data type for working with arrays in Python? The short
answer is that both structures have their uses. There are many problems that
only require the use of a basic array in which the number of elements is known
beforehand and the flexible set of operations available with the list is not needed.

The array is best suited for problems requiring a sequence in which the maxi-
mum number of elements are known up front, whereas the list is the better choice
when the size of the sequence needs to change after it has been created. As you
will learn later in the chapter, a list contains more storage space than is needed to
store the items currently in the list. This extra space, the size of which can be up
to twice the necessary capacity, allows for quick and easy expansion as new items
are added to the list. But the extra space is wasteful when using a list to store
a fixed number of elements. For example, suppose we need a sequence structure
with 100, 000 elements. We could create a list with the given number of elements
using the replication operator:

values = [ None ] x 100000

But underneath, this results in the allocation of space for up to 200,000 elements,
half of which will go to waste. In this case, an array would be a better choice.

The decision as to whether an array or list should be used is not limited to
the size of the sequence structure. It also depends on how it will be used. The
list provides a large set of operations for managing the items contained in the list.
Some of these include inserting an item at a specific location, searching for an
item, removing an item by value or location, easily extracting a subset of items,
and sorting the items. The array structure, on the other hand, only provides a
limited set of operations for accessing the individual elements comprising the array.
Thus, if the problem at hand requires these types of operations, the list is the better
choice.

The Array Abstract Data Type

The array structure is commonly found in most programming languages as a prim-
itive type, but Python only provides the list structure for creating mutable se-
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quences. We can define the Array ADT to represent a one-dimensional array for
use in Python that works similarly to arrays found in other languages. It will be
used throughout the text when an array structure is required.

etine R

A one-dimensional array is a collection of contiguous elements in which individual
elements are identified by a unique integer subscript starting with zero. Once an
array is created, its size cannot be changed.

m Array(size): Creates a one-dimensional array consisting of size elements
with each element initially set to None. size must be greater than zero.

m length (): Returns the length or number of elements in the array.

m getitem(index ): Returns the value stored in the array at element position
index. The index argument must be within the valid range. Accessed using
the subscript operator.

m setitem(index, value): Modifies the contents of the array element at po-
sition index to contain value. The index must be within the valid range.
Accessed using the subscript operator.

m clearing(value): Clears the array by setting every element to value.

m iterator (): Creates and returns an iterator that can be used to traverse the
elements of the array.

Some computer scientists consider the array a physical structure and not an
abstraction since arrays are implemented at the hardware level. But remember,
there are only three basic operations available with the hardware-implemented
array. As part of our Array ADT, we have provided for these operations but have
also included an iterator and operations for obtaining the size of the array and for
setting every element to a given value. In this case, we have provided a higher level
of abstraction than that provided by the underlying hardware-implemented array.

The following simple program illustrates the creation and use of an array object
based on the Array ADT. Comments are provided to highlight the use of the
operator methods.

# Fill a 1-D array with random values, then print them, one per line.

from array import Array
import random

# The constructor is called to create the array.
valuelList = Array( 100 )
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# Fill the array with random floating-point values.
for i in range( len( valuelList ) )
valuelList[ i ] = random.random()

# Print the values, one per line.
for value in valuelist :
print( value )

As a second example, suppose you need to read the contents of a text file and
count the number of letters occurring in the file with the results printed to the
terminal. We know that characters are represented by the ASCII code, which
consists of integer values. The letters of the alphabet, both upper- and lowercase,
are part of what’s known as the printable range of the ASCII code. This includes
the ASCII values in the range [32...126] along with some of the codes with smaller
values. The latter are known control characters and can include the tab, newline,
and form-feed codes. Since all of the letters will have ASCII values less than 127,
we can create an array of this size and let each element represent a counter for
the corresponding ASCII value. After processing the file, we can traverse over the
elements used as counters for the letters of the alphabet and ignore the others.
The following program provides a solution to this problem using the Array ADT:

#Count the number of occurrences of each letter in a text file.
from array import Array

# Create an array for the counters and initialize each element to 0.
theCounters = Array( 127 )
theCounters.clear( 0 )

# Open the text file for reading and extract each line from the file
# and iterate over each character in the line.
theFile = open( 'atextfile.txt', 'r' )
for line in theFile :
for letter in line :

code = ord( letter )

theCounters[code] +=1
# Close the file
theFile.close()

# Print the results. The uppercase letters have ASCII values in the
# range 65..90 and the lowercase letters are in the range 97..122.
for i in range( 26 )
print( "%c - %4d %C - %4d" % \
(chr(65+i), theCounters[65+i], chr(97+i), theCounters[97+i]) )

Implementing the Array

Python is a scripting language built using the C language, a high-level language
that requires a program’s source code be compiled into executable code before it can
be used. The C language is a very powerful programming language that provides
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syntax for working with the complete functionality available by the underlying
hardware. That syntax, however, can be somewhat cryptic compared to Python,
especially for a Python programmer who may not be familiar with C.

The ctypes Module

Many of the data types and classes available in Python are actually implemented
using appropriate types from the C language. While Python does not provide the
array structure as part of the language itself, it now includes the ctypes module as
part of the Python Standard Library. This module provides access to the diverse set
of data types available in the C language and the complete functionality provided
by a wide range of C libraries.

The ctypes module provides the capability to create hardware-supported ar-
rays just like the ones used to implement Python’s string, list, tuple, and dictionary
collection types. But the ctypes module is not meant for everyday use in Python
programs as it was designed for use by module developers to aide in creating more
portable Python modules by bridging the gap between Python and the C language.
Much of the functionality provided by the ctypes module requires some knowledge
of the C language. Thus, the technique provided by the module for creating an
array should not typically be used directly within a Python program. But we can
use it within our Array class to provide the functionality defined by the Array
ADT since the details will be hidden within the class.

Creating a Hardware Array

The ctypes module provides a technique for creating arrays that can store refer-
ences to Python objects. The following code segment

import ctypes

ArrayType = ctypes.py_object * 5
slots = ArrayType()

creates an array named slots that contains five elements

slots | @

each of which can store a reference to an object. After the array has been created,
the elements can be accessed using the same integer subscript notation as used
with Python’s own sequence types. For the slots array, the legal range is [0. .. 4].

The elements of the array have to be initialized before they can be used. If we
attempt to read the contents of an element in the slots array before it has been
initialized

print( slots[0] )
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an exception would be raised in the same way as if we tried to print the value of
a variable sum, that had not previously been assigned a value. Thus, the array
should be initialized immediately after it has been created by assigning a value to
each element using the subscript notation. Any value can be used, but a logical
choice is to assign None to each element:

for i in range( 5 )
slots[i] = None

The elements of the array can now be treated like any other variable in Python
that contains a null reference:

slots | e ° ° ° ° °

You may have noticed that we used the literal 5 with the range() function
to indicate the number of elements to be initialized. This was necessary because
a hardware-supported array does not keep track of the array size; it’s up to the
programmer to remember or maintain this value. Likewise, the programmer must
also ensure they do not access an element outside the legal range.

References to any type of Python object can be stored in any element of the
array. For example, the following code segment stores three integers in various
elements of the array:

slots[1] = 12
slots[3] = 54
slots[4] = 37

the result of which is illustrated here:

sIotsE_ ° .

0 1 2 3 4

The operations provided by the array only allow for setting a given element
to a given reference or accessing a reference stored in a given element. To remove
an item from the array, we simply set the corresponding element to None. For
example, suppose we want to remove value 54 from the array

slots[3] = None

which results in the following change to the slots array:

slots |: ° ° °

0 1 2 3 4
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The size of the array can never change, so removing an item from an array
has no effect on the size of the array or on the items stored in other elements.
The array does not provide any of the list type operations such as appending or
popping items, searching for a specific item, or sorting the items. To use such an
operation with an array, you would have to provide the necessary code yourself.

The Class Definition

The implementation of the Array ADT using a hardware-supported array created
with the use of the ctypes module is provided in Listing 2.1.

Listing 2.1 The array.py module with the Array class.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

# Implements the Array ADT using array capabilities of the ctypes module.
import ctypes

class Array :

# Creates an array with size elements.

def __init__( self, size ):
assert size > 0, "Array size must be > 0"
self._size = size
# Create the array structure using the ctypes module.
PyArrayType = ctypes.py_object * size
self._elements = PyArrayType()
# Initialize each element.
self.clear( None )

# Returns the size of the array.
def __len__( self ):
return self._size

# Gets the contents of the index element.

def __getitem__( self, index ):
assert index >= 0 and index < len(self), "Array subscript out of range"
return self._elements[ index ]

# Puts the value in the array element at index position.

def __setitem__( self, index, value ):
assert index >= 0 and index < len(self), "Array subscript out of range"
self._elements[ index ] = value

# Clears the array by setting each element to the given value.
def clear( self, value ):
for i in range( len(self) )
self._elements[i] = value

# Returns the array's iterator for traversing the elements.
def __iter__( self ):
return _Arraylterator( self._elements )

# An iterator for the Array ADT.
class _ArrayIterator :
(Listing Continued)
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40
41
42
43
44
45
46
47
48
49
50
51
52
53

def __init__( self, theArray ):
self._arrayRef = theArray
self._curNdx = 0

def __iter__( self ):
return self

def __next__( self ):
if self._curNdx < len( self._arrayRef )
entry = self._arrayRef[ self._curNdx ]
self._curNdx += 1
return entry
else :
raise StopIteration

The constructor, as shown in lines 6—13, handles the creation and initialization
of the array using the technique described earlier. It also defines two data fields
needed for the implementation of the Array ADT: one to store a reference to the
array structure and another to store the number of elements allocated for the
array. The latter is needed since hardware-supported arrays do not keep track of
this value. The initialization of the array is done by calling the clear () method.

The clear () method is used to set each element of the array to a given value,
which it does by iterating over the elements using an index variable. The __len__
method, which returns the number of elements in the array, simply returns the
value of _size that was saved in the constructor. The __iter__ method creates
and returns an instance of the _ArrayIterator private iterator class, which is
provided in lines 39-53 of Listing 2.1.

The definition of the Array ADT calls for the implementation of the subscript
operator, which allows for the use of array objects in a manner similar to other
Python collection types. In Python, as in most languages, the subscript notation
can be used to read the contents of an array element or to modify an element. Thus,
there are two different methods that must be defined, as shown in lines 20-27. First,
the __getitem__ operator method takes the array index as an argument and returns
the value of the corresponding element. The precondition must first be verified to
ensure the subscript is within the valid range.

When the subscript notation is used in a program, y = x[i], Python will call
the __getitem__ method, passing the value of i to the index parameter. Since
Python expects the __getitem__ method to return a value, it is your responsibility
to make sure this occurs.

The __setitem__ operator method is used to set or change the contents of a
specific element of the array. It takes two arguments: the array index of the element
being modified and the new value that will be stored in that element. Before the
element is modified, the precondition must be tested to verify the subscript is
within the valid range. Python automatically calls the __setitem__ method when
the subscript notation is used to assign a value to a specific element, x[i] = v.
The index, i, specified in the subscript is passed as the first argument and the
value to be assigned is passed as the second argument, __setitem__(1i,y).
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The Python List

Python, as indicated earlier, is built using the C language with many of the data
types and classes available in Python actually implemented using appropriate types
available in C. Python’s list structure is a mutable sequence container that can
change size as items are added or removed. It is an abstract data type that is
implemented using an array structure to store the items contained in the list.

In this section, we examine the implementation of Python’s list, which can
be very beneficial not only for learning more about abstract data types and their
implementations but also to illustrate the major differences between an array and
Python’s list structure. We explore some of the more common list operations and
describe how they are implemented using an array structure.

Creating a Python List

Suppose we create a list containing several values:

pyList = [ 4, 12, 2, 34, 17 ]

which results in the 1ist () constructor being called to create a list object and fill
it with the given values. When the 1ist () constructor is called, an array structure
is created to store the items contained in the list. The array is initially created
bigger than needed, leaving capacity for future expansion. The values stored in the
list comprise a subarray in which only a contiguous subset of the array elements
are actually used.

Figure 2.2 illustrates the abstract and physical views of our sample list. In
the physical view, the elements of the array structure used to store the actual
contents of the list are enclosed inside the dashed gray box. The elements with
null references shown outside the dashed gray box are the remaining elements of
the underlying array structure that are still available for use. This notation will be
used throughout the section to illustrate the contents of the list and the underlying
array used to implement it.

abstract view

oaaaa
0 1 2 3 4

physical view

EEE
E 0 1 2 3 4

S5 6 7

Figure 2.2: The abstract and physical views of a list implemented using an array.
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The length of the list, obtained using len(), is the number of items currently
in the subarray and not the size of the underlying array. The size or capacity of
the array used to implement the list must be maintained in order to know when
the array is full. Python does not provide a method to access the capacity value
since that information is not part of the list definition.

Appending ltems

What happens when a new item is appended to the end of a list as in the following
statement?

pyList.append( 50 )

If there is room in the array, the item is stored in the next available slot of the
array and the length field is incremented by one. The result of appending 50 to
pyList is illustrated in Figure 2.3.

Figure 2.3: Result of appending value 50 to the list.

What happens when the array becomes full and there are no free elements in
which to add a new list item? For example, consider the following list operations:

pyList.append( 18 )
pyList.append( 64 )
pyList.append( 6 )

After the second statement is executed, the array becomes full and there is no
available space to add more values as illustrated in Figure 2.4.

By definition, a list can contain any number of items and never becomes full.
Thus, when the third statement is executed, the array will have to be expanded to
make room for value 6. From the discussion in the previous section, we know an
array cannot change size once it has been created. To allow for the expansion of

Figure 2.4: A full array resulting after appending three values.
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the list, the following steps have to be performed: (1) a new array is created with
additional capacity, (2) the items from the original array are copied to the new
array, (3) the new larger array is set as the data structure for the list, and (4) the
original smaller array is destroyed. After the array has been expanded, the value
can be appended to the end of the list. In Python, the amount by which the size
of the array is increased is proportional to the current array size. For illustration
purposes, we assume an expansion creates a new array that is double the size of
the original. The result of expanding the array and appending value 6 to the list
is shown in Figure 2.5.

(1) A new array, double the size of the original, is created.

tempArray

element-by-element copy

‘ L ° ° ° ° ° °

(3) The new array replaces the original in the list.

Figure 2.5: The steps required to expand the array to provide space for value 6.
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Extending A List

A list can be appended to a second list using the extend () method as shown in
the following example:

pyListA = [ 34, 12 ]
pyListB [ 4, 6, 31, 9 1]
pyListA.extend( pyListB )

If the list being extended has the capacity to store all of the elements from
the second list, the elements are simply copied, element by element. If there is not
enough capacity for all of the elements, the underlying array has to be expanded as
was done with the append () method. Since Python knows how big the array needs
to be in order to store all of the elements from both lists, it only requires a single
expansion of the destination list, pyListA. The new array will be created larger
than needed to allow more items to be added to the list without first requiring an
immediate expansion of the array. After the new array is created, elements from
the destination list are copied to the new array followed by the elements from the
source list, pyListB, as illustrated in Figure 2.6.

{pyListA (pyListB
Gl 1] [EEAC) -]
0 1.2 3 .0 1 2 3:4 5 6 7
& " 4
i T
AR
.0 1 2 3 4 5.6 7

Figure 2.6: The result of extending pyListA with pyListB.

Inserting ltems

An item can be inserted anywhere within the list using the insert () method. In
the following example

pyList.insert( 3, 79 )

we insert the value 79 at index position 3. Since there is already an item at that
position, we must make room for the new item by shifting all of the items down
one position starting with the item at index position 3. After shifting the items,
the value 79 is then inserted at position 3 as illustrated in Figure 2.7. If there are
no free slots for the new item, the list will be expanded in the same fashion as
described earlier.
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Figure 2.7: Inserting an item into a list: (a) the array elements are shifted to the right one
at a time, traversing from right to left; (b) the new value is then inserted into the array at
the given position; (c) the result after inserting the item.

Removing ltems

An item can be removed from any position within the list using the pop () method.
Consider the following code segment, which removes both the first and last items
from the sample list:

pyList.pop( 0 ) # remove the first item
pyList.pop() # remove the last item

The first statement removes the first item from the list. After the item is
removed, typically by setting the reference variable to None, the items following it
within the array are shifted down, from left to right, to close the gap. Finally, the
length of the list is decremented to reflect the smaller size. Figure 2.8 on the next
page illustrates the process of removing the first item from the sample list. The
second pop () operation in the example code removes the last item from the list.
Since there are no items following the last one, the only operations required are to
remove the item and decrement the size of the list.

After removing an item from the list, the size of the array may be reduced using
a technique similar to that for expansion. This reduction occurs when the number
of available slots in the internal array falls below a certain threshold. For example,
when more than half of the array elements are empty, the size of the array may be
cut in half.

2.2.5 List Slice

Slicing is an operation that creates a new list consisting of a contiguous subset of
elements from the original list. The original list is not modified by this operation.
Instead, references to the corresponding elements are copied and stored in the
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Figure 2.8: Removing an item from a list: (a) a copy of the item is saved; (b) the array
elements are shifted to the left one at a time, traversing left to right; and (c) the size of the
list is decremented by one.

new list. In Python, slicing is performed on a list using the colon operator and
specifying the beginning element index and the number of elements included in the
subset. Consider the following example code segment, which creates a slice from
our sample list:

aSlice = theVector[2:3]
To slice a list, a new list is created with a capacity large enough to store the
entire subset of elements plus additional space for future insertions. The elements

within the specified range are then copied, element by element, to the new list.
The result of creating the sample slice is illustrated in Figure 2.9.

Figure 2.9: The result of creating a list slice.
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Two-Dimensional Arrays

Arrays are not limited to a single dimension. Some problems require the use of
a two-dimensional array, which organizes data into rows and columns similar
to a table or grid. The individual elements are accessed by specifying two indices,
one for the row and one for the column, [i,j]. Figure 2.10 shows an abstract view
of both a one- and a two-dimensional array.

While computer architectures provide a mechanism at the hardware level for
creating and using one-dimensional arrays, they do not typically support arrays of
higher dimensions. Instead, programming languages typically provide their own
mechanism for creating and managing arrays that consist of multiple dimensions.
In this section, we explore two-dimensional arrays while arrays of higher dimensions
are discussed later in the chapter.

columns
0 1 2 3 4

elements 0
0 1 2 3 4 5

rows

w

Figure 2.10: Sample arrays: (left) a 1-D array viewed as a sequential list and (right) a
2-D array viewed as a rectangular table or grid.

The Array2D Abstract Data Type

As we saw earlier, Python does not directly support built-in arrays of any dimen-
sion. But, in the previous section, we were able to use the ctypes module to create
a one-dimensional hardware-supported array that we used to implement the Array
ADT. Two-dimensional arrays are also very common in computer programming,
where they are used to solve problems that require data to be organized into rows
and columns. Since 2-D arrays are not provided by Python, we define the Array2D
abstract data type for creating 2-D arrays. It consists of a limited set of operations
similar to those provided by the one-dimensional Array ADT.

Define  EEEEFCL

A two-dimensional array consists of a collection of elements organized into rows
and columns. Individual elements are referenced by specifying the specific row and
column indices (r,c), both of which start at 0.

m Array2D(nrows, ncols): Creates a two-dimensional array organized into
rows and columns. The nrows and ncols arguments indicate the size of the
table. The individual elements of the table are initialized to None.

m numRows (): Returns the number of rows in the 2-D array.
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m numCols(): Returns the number of columns in the 2-D array.
m clear(value): Clears the array by setting each element to the given value.

m getitem( 4y, 22): Returns the value stored in the 2-D array element at the
position indicated by the 2-tuple (i1,i2), both of which must be within the
valid range. Accessed using the subscript operator: y = x[1,2].

m setitem(iy, i, value): Modifies the contents of the 2-D array element
indicated by the 2-tuple (i1,72) with the new value. Both indices must be
within the valid range. Accessed using the subscript operator: x[0,3] = vy.

To illustrate the use of a 2-D array, suppose we have a collection of exam
grades stored in a text file for a group of students that we need to process. For
example, we may want to compute the average exam grade for each student or the
average grade for each exam, or both. A sample text file is illustrated on the left in
Figure 2.11. The file contains the grades for multiple students, each of whom have
grades for multiple exams. The first line indicates the number of students for whom
we have grades, and the second line indicates the number of exams for which each
student has a grade. The remaining lines contain the actual exam grades. Each
line contains the grade for an individual student, with the grades listed in exam
order.

Since we have multiple grades for multiple students, we can store the grades in
a 2-D array in which each row contains the grades for an individual student and
each column contains the grades for a given exam. A 2-D array used to store the
exam grades from the sample file is illustrated on the right in Figure 2.11.
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Figure 2.11: Exam grades: (left) stored in a text file; and (right) stored in a 2-D array.
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The following code segment shows the implementation needed to extract the
exam grades from the text file and store them into a 2-D array. Notice that we
create the array after extracting the first two values from the file. These values
indicate the number of students and the number of exams that correspond to the
number of rows and columns needed in the array.
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from array import Array2D

# Open the text file for reading.
gradeFile = open( filename, "r" )

# Extract the first two values which indicate the size of the array.
numExams = int( gradeFile.readline() )
numStudents = int( gradeFile.readline() )

# Create the 2-D array to store the grades.
examGrades = Array2D( numStudents, numExams )

# Extract the grades from the remaining lines.
i=0
for student in gradeFile :

grades = student.split()

for j in range( numExams ):

examGrades[i,j] = int( grades[j] )

i+=1
# Close the text file.
gradeFile.close()

With the grades extracted from the file and stored in the 2-D array, we can
now process the grades as needed. Suppose we want to compute and display each
student’s exam grade, which we can do with the following code:

# Compute each student's average exam grade.
for i in range( numStudents )
# Tally the exam grades for the ith student.
total = 0
for j in range( numExams )
total += examGrades[i,j]

# Compute average for the ith student.
examAvg = total / numExams
print( "%2d: %6.2f" % (i+1, examAvg) )

Implementing the 2-D Array

We now turn our attention to the implementation of the 2-D array. There are
several approaches that we can use to store and organize the data for a 2-D array.
Two of the more common approaches include the use of a single 1-D array to
physically store the elements of the 2-D array by arranging them in order based on
either row or column, whereas the other uses an array of arrays. We are going to
use the latter approach to implement the Array2D abstract data type and delay
discussion of the former approach until later in the chapter.

When using an array of arrays to store the elements of a 2-D array, we store
each row of the 2-D array within its own 1-D array. Then, another 1-D array
is used to store references to each of the arrays used to store the row elements.
Figure 2.12 shows the abstract view of a 2-D array and the physical storage of that
2-D array using an array of arrays.
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Figure 2.12: A sample 2-D array: (a) the abstract view organized into rows and columns
and (b) the physical storage of the 2-D array using an array of arrays.

Some languages that use the array of arrays approach for implementing a 2-D
array provide access to the individual arrays used to store the row elements. Having
access to the given 1-D array, these languages use the subscript notation x[r][c]
for referencing an individual element. To be consistent in our approach of hiding
the implementation details, we do not provide access to any of the 1-D arrays used
to store the elements of the 2-D array. Thus, our implementation requires the use
of the subscript notation x[r,c].

The implementation of the Array2D abstract data type using an array of arrays
is provided in Listing 2.2. The constructor creates a data field named _theRows
to which an Array object is assigned. This is the main array used to store the
references to the other arrays that are created for each row in the 2-D array.

(R [ 2l The array.py module with the Array2D class.

1 # Implementation of the Array2D ADT using an array of arrays.

O~NO O WN

(o]
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22
23
24

class Array2D :

# Creates a 2-D array of size numRows x numCols.

def __init__( self, numRows, numCols ):
# Create a 1-D array to store an array reference for each row.
self._theRows = Array( numRows )

# Create the 1-D arrays for each row of the 2-D array.
for i in range( numRows )
self._theRows[i] = Array( numCols )

# Returns the number of rows in the 2-D array.
def numRows( self ):
return len( self._theRows )

# Returns the number of columns in the 2-D array.
def numCols( self ):
return len( self._theRows[0] )

# Clears the array by setting every element to the given value.
def clear( self, value ):
for row in range( self.numRows() ):
row.clear( value )
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# Gets the contents of the element at position [i, j]
def __getitem__( self, ndxTuple ):
assert len(ndxTuple) == 2, "Invalid number of array subscripts."
row = ndxTuple[0]
col = ndxTuple[l]
assert row >= 0 and row < self.numRows() \
and col >= 0 and col < self.numCols(), \
"Array subscript out of range."
theldArray = self._theRows[row]
return theldArray[col]

# Sets the contents of the element at position [1i,j] to value.
def __setitem__( self, ndxTuple, value ):

assert len(ndxTuple) == 2, "Invalid number of array subscripts."

row = ndxTuple[0]

col = ndxTuple[l]

assert row >= 0 and row < self.numRows() \

and col >= 0 and col < self.numCols(), \
"Array subscript out of range."
theldArray = self._theRows[row]
theldArray[col] = value

Basic Operations

Note that the size of the array that is passed as arguments to the constructor is
not saved in data fields. The numRows () method can obtain the number of rows by
checking the length of the main array, which contains an element for each row in the
2-D array. To determine the number of columns in the 2-D array, the numCols ()
method can simply check the length of any of the 1-D arrays used to store the
individual rows.

The clear () method can set every element to the given value by calling the
clear () method on each of the 1-D arrays used to store the individual rows. This
is easily done by iterating over the array stored in _theRows.

Element Access

Access to individual elements within an 2-D array requires a 2-tuple or two-
component subscript, one for each dimension. In mathematics, the 2-tuple sub-
script is generally notated as x,.. In modern programming languages, a 2-tuple
subscript is given either as x[r] [c] or x[r,c]. In Python, we can use the latter
notation in conjunction with the __getitem__and __setitem__ subscript operators.
This will allow for a more natural use of the two-dimensional array instead of
having to invoke a named method.

The Python subscript operator method __getitem__, which is shown in lines
27-35, takes a single index argument as specified in the method definition. This
does not restrict the subscript to a single index value, however. When a multi-
component subscript is specified (i.e., y = x[1,j]), Python automatically stores
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the components in a tuple in the order listed within the brackets and passes the
tuple to the ndxTuple argument of the __getitem _ method.

The contents of the ndxTuple are used to extract the contents of the given
element. After verifying both subscripts are within the valid range, we extract,
from the data field _theRows, the reference to the array used to store the given
row. With this reference stored in the local variable theldArray, we can then
apply the subscript operator to the 1-D array using the column value.

You may notice a second assert statement within the __getitem__ method at
line 28. This is needed because Python does not examine the number of compo-
nents specified in the subscript before passing the tuple to the subscript operator
method. For example, there is nothing to prevent us from incorrectly supplying
three components such as box[1i,j,k] instead of two. In fact, Python would have
no way of knowing that we only need two components for the 2-D array subscript.
Thus, we must first check to make sure the subscript tuple passed to the method
contains only two elements.

When making the assertion about the size of the ndxTuple, we assume a tu-
ple is passed to the subscript operator and use the len() function to verify its
length. When a single-component subscript x[0] is supplied to a subscript op-
erator method, as is done with the Array class, the argument is a single integer
value. The len() method can only be used with the collection types and not in-
dividual values. It does generate its own error, however, when used improperly.
Thus, Python’s 1en() function is used to ensure two components are supplied for
all Array2D objects.

The __setitem__ operator method can be implemented in a similar fashion to
_getitem__. The major differences are that this method requires a second argu-
ment to receive the value to which an element is set and it modifies the indicated
element with the new value instead of returning a value.

The Matrix Abstract Data Type

In mathematics, a matrix is an m X n rectangular grid or table of numerical values
divided into m rows and n columns. Matrices, which are an important tool in areas
such as linear algebra and computer graphics, are used in a number of applications,
including representing and solving systems of linear equations. The Matrix ADT
is defined next.

EELTS Matrix ADT

A matriz is a collection of scalar values arranged in rows and columns as a rectan-
gular grid of a fixed size. The elements of the matrix can be accessed by specifying
a given row and column index with indices starting at 0.

m Matrix(rows, ncols): Creates a new matrix containing nrows and ncols
with each element initialized to 0.

m numRows (): Returns the number of rows in the matrix.
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m numCols(): Returns the number of columns in the matrix.

m getitem(row, col): Returns the value stored in the given matrix element.
Both row and col must be within the valid range.

m setitem(row, col, scalar): Setsthe matrix element at the given row and
col to scalar. The element indices must be within the valid range.

m scaleBy( scalar): Multiplies each element of the matrix by the given scalar
value. The matrix is modified by this operation.

m transpose(): Returns a new matrix that is the transpose of this matrix.

m add (rhsMatrix): Creates and returns a new matrix that is the result of
adding this matrix to the given rhsMatrix. The size of the two matrices must
be the same.

m subtract (rhsMatrix): The same as the add() operation but subtracts the
two matrices.

m multiply (rhsMatrix): Creates and returns a new matrix that is the result
of multiplying this matrix to the given rhsMatrix. The two matrices must be
of appropriate sizes as defined for matrix multiplication.

Matrix Operations

A number of operations can be performed on matrices. We first describe some of
the more common ones and provide examples as a review of matrix arithmetic.

Addition and Subtraction. Two m x n matrices can be added or subtracted to
create a third m x n matrix. When adding two m X n matrices, corresponding
elements are summed as illustrated here. Subtraction is performed in a similar
fashion but the corresponding elements are subtracted instead of summed.

0 1 6 7 0+6 147 6 8
2 3(+|8 9|=|2+8 3+9 |=|10 12
4 5 10 441 540 5 5

Scaling. A matrix can be uniformly scaled, which modifies each element of the
matrix by the same scale factor. A scale factor of less than 1 has the effect of
reducing the value of each element whereas a scale factor greater than 1 increases
the value of each element. Scaling a matrix by a scale factor of 3 is illustrated here:

6 7 3x6 3Ix7 18 21
318 9| =3x8 3x9 | =1|24 27
1 0 3x1 3x0 3 0
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Multiplication. Matrix multiplication is only defined for matrices where the num-
ber of columns in the matrix on the lefthand side is equal to the number of rows
in the matrix on the righthand side. The result is a new matrix that contains the
same number of rows as the matrix on the lefthand side and the same number of
columns as the matrix on the righthand side. In other words, given a matrix of size
m x n multiplied by a matrix of size n X p, the resulting matrix is of size m x p. In
multiplying two matrices, each element of the new matrix is the result of summing
the product of a row in the lefthand side matrix by a column in the righthand side
matrix. In the example matrix multiplication illustrated here, the row and column
used to compute entry (0,0) of the new matrix is shaded in gray.

0 1
6 7 8
2 3 | =
9 1 0
| 4 5
[(0%6+1%9) (0%x7+1%1) (0%x8+1%0)
= (2x6+3%9) (2%7+3%1) (2x8+4+3x0)
(4*6—|—5*9) (4%T7+5x1) (4%8+5%0)
= 39 17 16
| 69 33 32

Viewing matrix multiplication based on the element subscripts can help you
to better understand the operation. Consider the two matrices from above and
assume they are labeled A and B, respectively.

Ao Aon
’ ’ B B B
A=| A A e i
1,0 1,1 1,2

Asg Az

The computation of the individual elements resulting from multiplying A and B
(C = A = B) is performed as follows:

Coo = Aoo*Boo+Ag1*DBip
Con = AogoxBo1+ A1 *Bi;
Co2 = Aoo*Bo2+ Ao Bip
Cio = Aio*xBoo+Ai1xBip
Cin = AiogxBo1+A11*B1;
Cip = Aiog*xBo2+A11*DB12
Coo = AsoxBoo+Az1%Bip
Cy1 = Aso*Bgg+ A1 %By,

Coo = Asog*Bpa+As1*DBio
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resulting in

(Ao,0 * Bo,o+ Ao1*B1o) (Aoo*Boi+ Ao *Bi1) (Aoo* Boa+ A1 *Bi)
C=| (A190*Boo+A11%B1g) (A10%Bo1+A11*B11) (A1o*Boo+ A11 % B12)
(Ag,0* Boo+ A21%B1g) (AagxBoi1+ Az1+B11) (A20% Boa+ A1 % Bi)

Transpose. Another useful operation that can be applied to a matrix is the
matrix transpose. Given a m X n matrix, a transpose swaps the rows and columns
to create a new matrix of size n x m as illustrated here:

T

01

0 2 4
23 :l135]
4 5

Implementing the Matrix

There are a number of ways to organize the data for the Matrix ADT, but the most
obvious is with the use of a two-dimensional array or rectangular grid. Having
defined and implemented the Array2D ADT, we can utilize it to implement the
Matrix ADT as shown in Listing 2.3.

(NS (WP The matrix.py module.

1 # Implementation of the Matrix ADT using a 2-D array.

O~NOOTPA WN

from array import Array2D

class Matrix :
# Creates a matrix of size numRows x numCols initialized to 0.
def __init__( self, numRows, numCols ):
self._theGrid = Array2D( numRows, numCols )
self._theGrid.clear( 0 )

# Returns the number of rows in the matrix.
def numRows( self ):
return self._theGrid.numRows ()

# Returns the number of columns in the matrix.
def numCols( self ):
return self._theGrid.numCols()

# Returns the value of element (i, j): x[1,]]
def __getitem__( self, ndxTuple ):
return self._theGrid[ ndxTuple[0], ndxTuple[l] )

# Sets the value of element (i,j) to the value s: x[i,j] = s
def __setitem__( self, ndxTuple, scalar ):
self._theGrid[ ndxTuple[0], ndxTuple[l] ] = scalar
(Listing Continued)
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# Scales the matrix by the given scalar.
def scaleBy( self, scalar ):
for r in range( self.numRows() )
for c in range( self.numCols() )
self[ r, ¢ ] *= scalar

# Creates and returns a new matrix that is the transpose of this matrix.
def tranpose( self ):

# Creates and returns a new matrix that results from matrix addition.
def __add__( self, rhsMatrix ):
assert rhsMatrix.numRows() == self.numRows() and \
rhsMatrix.numCols() == self.numCols(), \
"Matrix sizes not compatible for the add operation."
# Create the new matrix.
newMatrix = Matrix( self.numRows(), self.numCols() )
# Add the corresponding elements in the two matrices.
for r in range( self.numRows() )
for c in range( self.numCols() )
newMatrix[ r, ¢ ] = self[ r, ¢ 1 + rhsMatrix[ r, c 1]
return newMatrix

# Creates and returns a new matrix that results from matrix subtraction.
def __sub__( self, rhsMatrix ):

# Creates and returns a new matrix resulting from matrix multiplication.
def __mul__( self, rhsMatrix ):

A Matrix object only requires one data field for storing the 2-D array. After
creating the array, its elements must be set to zero as specified by the definition of
the Matrix ADT. The constructor is provided in lines 6-8.

The numRows () and numCols() methods are straightforward. They need only
return the length of the corresponding dimension of the 2-D array. The element
access methods are also rather simple as they need only call the corresponding
method from the Array2D class. Note that we do not check for valid indices in
these methods even though it is a precondition as defined by the Matrix ADT.
The validation of the precondition is omitted here since we know the corresponding
methods of the Array2D class have the same preconditions and they are verified
by that class. If this were not the case, we would have to validate the indices and
raise an exception directly within the methods of the Matrix class.

The scaling matrix operation, shown in lines 27-30, involves multiplying each
element in the matrix by the given scalar value. The Matrix ADT calls for this
operation to modify the matrix on which it is applied instead of creating a new
matrix resulting from the multiplication. The matrix add operation, on the other
hand, creates and returns a new Matrix object that is the result of adding the
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two given matrices. The first step is to ensure the two matrices are the same
size as required by the rules of matrix addition. After verifying the sizes, a new
Matrix object is created and its elements set by iterating over and summing the
corresponding elements from the two sources. The new matrix resulting from this
operation is then returned. The implementation of the remaining methods, which
is left as an exercise, can be done in a similar fashion.

Application: The Game of Life

The game of Life, devised by British mathematician John H. Conway, is a Solitaire-
type game that is analogous with “the rise, fall and alternations of a society of living
organisms.” The game, which is actually a zero-player game, was first introduced
by Martin Gardner in his Mathematical Games column in the October 1970 issue
of Scientific American. Since its introduction, Life has attracted much attention
and has been widely studied as it can be used to observe how complex systems
or patterns can evolve from a simple set of rules. The game of Life was an early
example of a problem in the modern field of mathematics called cellular automata.

Rules of the Game

The game uses an infinite-sized rectangular grid of cells in which each cell is either
empty or occupied by an organism. The occupied cells are said to be alive, whereas
the empty ones are dead. The game is played over a specific period of time with each
turn creating a new “generation” based on the arrangement of live organisms in
the current configuration. The status of a cell in the next generation is determined
by applying the following four basic rules to each cell in the current configuration:

1. If a cell is alive and has either two or three live neighbors, the cell remains
alive in the next generation. The neighbors are the eight cells immediately
surrounding a cell: vertically, horizontally, and diagonally.

2. A living cell that has no live neighbors or a single live neighbor dies from
isolation in the next generation.

3. A living cell that has four or more live neighbors dies from overpopulation in
the next generation.

4. A dead cell with exactly three live neighbors results in a birth and becomes
alive in the next generation. All other dead cells remain dead in the next
generation.
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The game starts with an initial configuration supplied by the user. Successive
generations are created by applying the set of rules simultaneously to each cell in
the grid. Interesting patterns can develop as the population of organisms undergoes
changes by expanding or eventually dying out. To illustrate the game of Life,
consider the following simple configuration of live organisms:

[
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Applying the rules to this configuration creates the next generation. This results
in two organisms dying (shown below as the light gray boxes) based on rule 2, one
remaining alive based on rule 1, and the generation of a new organism based on
rule 4 (the black box marked with an x).
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If we evolve the next generation, the system dies out since both live cells in the
first generation have a single live neighbor.

While some systems may eventually die out, others can evolve into a “stable”
state. Consider the following initial configuration and its first generation. The
result is a stable state since the four live cells each have three neighbors and no
dead cell has exactly three neighbors in order to produce a new live cell.
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Another interesting patterns is the “two-phase oscillator,” which alternates
between successive generations:
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2.5.2 Designing a Solution

The game of Life requires the use of a grid for storing the organisms. A Life Grid
ADT can be defined to add a layer of abstraction between the algorithm for “play-
ing” the game and the underlying structure used to store and manipulate the data.

EETIT Life Grid ADT

A life grid is used to represent and store the area in the game of Life that contains
organisms. The grid contains a rectangular grouping of cells of a finite size divided
into rows and columns. The individual cells, which can be alive or dead, are
referenced by row and column indices, both of which start at zero.

m LifeGrid(nrows, ncols): Creates a new game grid consisting of nrows and
ncols. All cells in the grid are set to dead.

m numRows (): Returns the number rows in the grid.
m numCols(): Returns the number of columns in the grid.

m configure( coordList ): Configures the grid for evolving the next genera-
tion. The coordList argument is a sequence of 2-tuples with each tuple
representing the coordinates (r, ¢) of the cells to be set as alive. All remaining
cells are cleared or set to dead.

m clearCell(row, col): Clears the individual cell (row, col) and sets it to
dead. The cell indices must be within the valid range of the grid.

m setCell(row, col): Sets the indicated cell (row, col) to be alive. The cell
indices must be within the valid range of the grid.

m isLiveCell(row,col): Returns a boolean value indicating if the given cell
(row, col) contains a live organism. The cell indices must be within the valid
range of the grid.

m numLiveNeighbors(row, col): Returns the number of live neighbors for the
given cell (row, col). The neighbors of a cell include all of the cells immediately
surrounding it in all directions. For the cells along the border of the grid, the
neighbors that fall outside the grid are assumed to be dead. The cell indices
must be within the valid range of the grid.

We now develop a program for the game of Life using the Life Grid ADT. The
implementation of the program provided in Listing 2.4 on the next page was de-
veloped using a top-down design consisting of several functions. The main routine
creates the game grid and evolves new generations of organisms. It relies on two
additional functions: draw() and evolve().

The draw() routine, the implementation of which is left as an exercise, prints
a text-based representation of the game grid. The evolve() function generates
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(WS (WX The gameoflife.py program.
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# Program for playing the game of Life.
from life import LifeGrid

# Define the initial configuration of live cells.
INIT_CONFIG = [ (1,1), (1,2), (2,2), (3,2) ]

# Set the size of the grid.
GRID_WIDTH = 5
GRID_HEIGHT = 5

# Indicate the number of generations.
NUM_GENS = 8

def main():
# Construct the game grid and configure 1it.
grid = LifeGrid( GRID_WIDTH, GRID_HEIGHT )
grid.configure( INIT_CONFIG )

# Play the game.

draw( grid )

for i in range( NUM_GENS ):
evolve( grid )
draw( grid )

# Generates the next generation of organisms.

def evolve( grid ):
# List for storing the live cells of the next generation.
liveCells = list()

# Iterate over the elements of the grid.
for i in range( grid.numRows() )
for j in range( grid.numCols() )

# Determine the number of live neighbors for this cell.
neighbors = grid.numLiveNeighbors( i, j )

# Add the (1i,j) tuple to liveCells if this cell contains
# a live organism in the next generation.
if (neighbors == 2 and grid.isLiveCell( i, j )) or \
(neighbors == )
liveCells.append( (i, j) )

# Reconfigure the grid using the liveCells coord list.
grid.configure( liveCells )

# Prints a text-based representation of the game grid.
def draw( grid ):

# Executes the main routine.
main()
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a new configuration of organisms based on the rules of the game. A list is used
within evolve () to store the coordinates of live cells in the next generation. After
iterating over all the cells, the grid is reconfigured using this list of coordinates.
This is necessary since the current configuration stored in the game grid cannot be
modified with the next generation until the neighbor count has been computed for
each cell in the current generation.

The program also defines several constant variables. These are used to specify
the grid size, the number of generations to be created, and the set of initial live cells.
Using constant variables allows for easy modifications to any of these parameters
as needed without having to modify other parts of the program. Of course, this
information could be extracted from the user or a text file instead. The results of
executing the gameoflife.py program are illustrated graphically in Figure 2.13.
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Figure 2.13: The results of using the gameoflife.py program on a sample grid config-
uration. Configurations after the eighth generation produce a two-phase oscillator, alter-
nating between the configuration of the seventh and eighth generations.

Implementation

The actual game of Life specifies a rectangular grid of infinite size. When develop-
ing a computer solution for such a problem, we are limited to grids of a fixed size.
The game of Life can still be implemented, however, by using a finite size for the
grid. If the system grows too large where it does not fit into the space, it can be
“played” again, with a larger grid.

Before implementing the LifeGrid class, we must decide how the data should
be organized and select an appropriate structure. The most obvious is the use of a
two-dimensional array to represent the grid. Next, we must decide what values to
store in the grid to represent the organisms, both dead and alive. Any pair of values
can be used. We are going to use the value 0 to represent the dead cells and the
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Figure 2.14: The game grid representation with live and dead cells: (left) the abstract
view and (right) the physical view using a 2-D array of 0's and 1’s.

value 1 for the live cells. This choice is based on the ease it creates when counting
the number of neighbors for a given cell. Figure 2.14 illustrates the abstract and
physical views of the game grid.

The LifeGrid class is implemented in Listing 2.5. At the top of the class
definition, before specifying the constructor, two constant variables are initialized
to store the values used to mark the cells within the game grid. These constants are
defined within the class itself and outside of the methods since they are not actual
data fields of a LifeGrid object. By using the named constants, the code is easier to
read and the values used to represent the cell status could easily be changed if we
were so inclined.

The constructor, shown in lines 10-14, creates a 2-D array for the grid using
the Array2D class defined earlier in the chapter. The cells are cleared as the ADT
definition requires by calling the configure() method with an empty coordinate
list. The grid dimension accessor methods are easily implemented using the cor-
responding methods of the Array2D class. The three cell modification routines
are also straightforward. Note that the ADT definition requires the cell indices
specified for the clearCell() and setCell() methods must be valid. Since this
is also the precondition required of the Array2D element access methods, we omit
the direct specification of assertions in these methods. The configure() method,
shown in lines 2529, clears the grid cells by setting each to a dead organism. It
then iterates through the coordinate list and uses the setCell() method to set
the live cells.

The numLiveNeighbors () method is left as an exercise. Note, however, since
we used the integer values 0 and 1 to represent the state of a cell, counting the
number of live neighbors is as simple as summing the contents of the neighboring
cells. Working with a fixed-size grid introduces the problem of how to deal with the
cells around the border. A border cell will not have all eight neighbors since some
of them lie outside the grid. Different approaches can be taken when a border cell

Constant Variables. Constant variables defined within a class are ac-

tually class variables that are unique to the class and not to individual
objects. To reference a class constant variable, use the name of the class in
place of the self keyword (i.e., print ( GameGrid.DEAD_CELL) ).

NOTE
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is examined. The most common is to assume any neighboring cell lying outside
the grid contains a dead organism.

(R (VP23 The 1ife.py module.

1 # Implements the LifeGrid ADT for use with the game of Life.
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from array import Array2D

class LifeGrid :
# Defines constants to represent the cell states.
DEAD_CELL = 0
LIVE_CELL =1

# Creates the game grid and initializes the cells to dead.
def __init__( self, numRows, numCols ):
# Allocate the 2-D array for the grid.
self._grid = Array2D( numRows, numCols )
# Clear the grid and set all cells to dead.
self.configure( list() )

# Returns the number of rows in the grid.
def numRows( self ):
return self._grid.numRows ()

# Returns the number of columns in the grid.
def numCols( self ):
return self._grid.numCols()

# Configures the grid to contain the given live cells.
def configure( self, coordList ):
# Clear the game grid.
for i in range( numRows ):
for j in range( numCols ):
self.clearCell( i, j )

# Set the indicated cells to be alive.
for coord in coordList :
self.setCell( coord[0], coord[1l] )

# Does the indicated cell contain a live organism?
def islLiveCell( self, row, col ):
return self._grid[row, col] == GameGrid.LIVE_CELL

# Clears the indicated cell by setting it to dead.
def clearCell( self, row, col ):
self._grid[row, col] = GameGrid.DEAD_CELL

# Sets the indicated cell to be alive.
def setCell( self, row, col ):
self._grid[row, col] = GameGrid.LIVE_CELL

# Returns the number of live neighbors for the given cell.
def numLiveNeighbors( self, row, col ):
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Exercises

2.1

2.2

2.3

24

2.5

Complete the Matrix class by implementing the remaining methods: __sub__,
_mult__, and transpose().

Implement the numLiveNeighbors() method of the LifeGrid class.

Complete the implementation of the gameoflife.py program by implement-
ing the draw() function. The output should look similar to the following,
where dead cells are indicated using a period and live cells are indicated using
the @ symbol.

Modify the gameoflife.py program to prompt the user for the grid size and
the number of generations to evolve.

Use your program from Exercise 2.4 to experiment with the initial configura-
tions shown in Figure 2.15. Answer the following questions for each configu-
ration using a variety of grid sizes and assuming no more than 10 generations.

Figure 2.15: Sample game of Life configurations.
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2.6 As indicated in the chapter, when a list is created using the replication op-
erator values = [ None ] * 10000 the size of the underlying array used to
implement the list can be up to twice the size actually needed. This extra
space is beneficial to the list itself, but it can be quite wasteful when a list is
used to implement some abstract data types. Consider the implementation of
the Array2D abstract data type as described in the chapter. If we had used
a list of lists to implement the ADT, instead of the array of arrays, a large
amount of extra storage space would be allocated that would never be used.
Calculate the number of elements that will be allocated when using an array
of arrays implementation and a list of lists implementation of the Array2D
abstract data type for each of the following 2-D array sizes:

(a) 75 x 100 (b) 10,000 x 25 (c) 10,000 x 10,000

Programming Projects

2.1 While Python provides the built-in list type for constructing and managing
mutable sequences, many languages do not provide such a structure, at least
not as part of the language itself. To help in further understanding how
Python’s built-in list works, implement the Vector ADT using the Array class
implemented in the chapter. Your implementation should produce a mutable
sequence type that works like Python’s list structure. When the underlying
array needs to be expanded, the new array should double the size of the
original. The operations that can be performed on the ADT are described
below. Assume the size of the underlying array never decreases.

m Vector(): Creates a new empty vector with an initial capacity of two
elements.

m length (): Returns the number of items contained in the vector.
m contains (item): Determines if the given item is contained in the vector.

m getitem(ndx): Returns the item stored in the ndx element of the list.
The value of ndx must be within the valid range.

m setitem(ndx, item): Sets the element at position ndx to contain the
given item. The value of ndx must be within the valid range, which
includes the first position past the last item.

m append(item): Adds the given item to the end of the list.

m insert(ndx, item): Inserts the given item in the element at position
ndx. The items in the elements at and following the given position are
shifted down to make room for the new item. ndx must be within the
valid range.

m remove(ndx): Removes and returns the item from the element from the
given ndx position. The items in the elements at and following the given
position are shifted up to close the gap created by the removed item. ndx
must be within the valid range.
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2.2

2.3
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m index0f (item): Returns the index of the vector element containing the
given item. The item must be in the list.

m extend( otherVector ): Extends this vector by appending the entire con-
tents of the otherVector to this vector.

m subVector(from, to): Creates and returns a new vector that contains
a subsequence of the items in the vector between and including those
indicated by the given from and to positions. Both the from and to
positions must be within the valid range.

m iterator (): Creates and returns an iterator that can be used to traverse
the elements of the vector.

In a typical Vector ADT, the size of the underlying array decreases after a
sufficient number of items have been removed. Devise a strategy for decreasing
the size of the array as items are removed. Modify your implementation of the
Vector ADT from the previous question to include your reduction strategy.

A grayscale digital image is a two-dimensional raster image in which the pic-
ture elements, or pixels, store a single value representing a shade of gray that
varies from black to white. In a discrete grayscale image, the shades of gray are
represented by integer values in the range [0...255], where 0 is black and 255
is white. We can define the Grayscale Image ADT for storing and manipulat-
ing discrete grayscale digital images. Given the description of the operations,
provide a complete implementation of the ADT using a 2-D array.

m GrayscaleImage(nrows, ncols): Creates a new instance that consists
of nrows and ncols of pixels each set to an initial value of 0.

m width(): Returns the width of the image.
m height(): Returns the height of the image.

m clear(value): Clears the entire image by setting each pixel to the given
intensity value. The intensity value will be clamped to 0 or 255 if it is less
than 0 or greater than 255, respectively.

m getitem(row, col): Returns the intensity level of the given pixel. The
pixel coordinates must be within the valid range.

m setitem(row, col, value): Sets the intensity level of the given pixel
to the given value. The pixel coordinates must be within the valid range.
The intensity value is clamped to 0 or 255 if it is outside the valid range.

Playing board games on a computer is very common. We can use abstraction
to aide in the design of a board game by separating the game logic from the
actual user interaction required to play the game. No matter the type of user
interface provided to play the game (i.e., text based, desktop windowing en-
vironment, or web browser), the underlying logic remains the same. Consider
the game of Reversi, which was invented in 1893 but has a more modern set
of rules dating back to the 1970s. Reversi is played by two players on a game
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board divided into 64 squares arranged in 8 rows and 8 columns and a set of
64 chips. Each chip is painted a dark color on one side and a light color on the
other, with each color belonging to one of the two players. The players place
their chips on the board and flip the chips of their opponent with the goal of
having the most chips of their color on the board at the end of the game. The
game starts with a configuration as shown in part (a) of Figure 2.16.
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Figure 2.16: Moves in the game of Reversi.

The players take turns placing chips on the board with their color facing up. A
chip can only be played in a square that is adjacent to a chip of the other player
and that forms a straight line of attack (vertical, horizontal, or diagonal). A
line of attack is formed between two squares containing the player’s own chips
in which there is one or more of the opponent’s chips in between the two. For
example, if player 1 (black) goes first, he has four options as shown in part
(b). Suppose player 1 places a chip in the square marked with an x. After
placing his chip, player 1 flips all of the chips of player 2 (white) that are in
the line of attack. In this case, he flips the chip immediately below the new
chip as shown in part (¢). Player 2 then places one of her chips. She has
three options from which to choose as shown by the dark squares in part (c).
If player 2 places her chip in the square marked x, she flips the black chip
below the new chip as shown in part (d). If there are multiple lines of attack
that result from the placement of a chip, then all of the opponent’s chips that
are in all of the lines of attack are flipped. For example, suppose player 1
places a chip in the square marked with an x as shown in part (d). Then he
flips both white chips, the one to the left and the one diagonally down to the
left as shown in part (e). Play alternates between the players until all of the
squares are filled or neither player can move. If one player cannot move but
the other can, play proceeds with the other player. The winner is the player
with the most chips at the end of the game. Given the following description
of the operations, provide a complete implementation for the Reversi Game
Logic ADT.

m ReversiGameLogic(): Creates a new instance of the Reversi game logic
with the initial configuration.

m whoseTurn(): Returns the player number (1 or 2) for the current player
or 0 if no player can move.
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numChips ( player ): Returns the number of chips on the board belonging
to the indicated player. The value of player must be 1 or 2.

numOpenSquares(): Returns the number of squares still open and avail-
able for play.

getWinner (): Returns the player number (1 or 2) for the player who has
won the game or 0 if the game is not finished.

isLegalMove(row, col): Returns True or False to indicate if the cur-
rent player can place their chip in the square at position (row, col).

occupiedBy(row, col): Which player has a chip in the given square?
Returns the player number (1 or 2) or 0 if the square is empty.

makeMove (row, col): The current player places one of his chips in the
square at position (row, col). All chips on the board that should be
flipped based on the rules of Reversi are flipped.

2.5 Implement a text-based version of the Reversi game using your game logic
ADT from the previous question.

2.6 Define a game logic ADT, similar to that of the Reversi Game Logic ADT, for
the game of checkers.
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CHAPTER 3

Sets and Maps

In the previous chapters, we studied several complex abstract data types that
required the use of a data structure for their implementation. In this chapter, we
continue exploring abstract data types with a focus on several common containers.
Two of these are provided by Python as part of the language itself: sets and
dictionaries. Nevertheless, it’s still important to understand how they work and
some of the common ways in which they are implemented.

Your experience in programming will likely not be limited to the Python lan-
guage. At some point in the future, you may use one if not several other common
programming languages. While some of these do provide a wide range of abstract
data types as part of the language itself or included in their standard library, oth-
ers, like C, do not. Thus, it’s important that you know how to implement a set or
dictionary ADT if necessary, when one is not available as part of the language.

Further, both the set and dictionary types provide excellent examples of ab-
stract data types that can be implemented using different data structures. As you
learned in Chapter 1, there may be multiple data structures and ways to organize
the data in those structures that are suitable for implementing an abstract data
type. Thus, it’s not uncommon for language libraries to provide multiple imple-
mentations of an abstract data type, which allows the programmer to choose the
best option for a given problem. Your ability to choose from among these various
implementations will depend not only on your knowledge of the abstract data type
itself, but also on understanding the pros and cons of the various implementations.

Sets

The Set ADT is a common container used in computer science. But unlike the
Bag ADT introduced in Chapter 1, a set stores unique values and represents the
same structure found in mathematics. It is commonly used when you need to store
a collection of unique values without regard to how they are stored or when you
need to perform various mathematical set operations on collections.
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The Set Abstract Data Type

The definition of the set abstract data type is provided here, followed by an im-
plementation using a list. In later chapters, we will provide and evaluate alternate
implementations for the Set ADT.

3.1.1

Define ___EEWUH

A set is a container that stores a collection of unique values over a given comparable
domain in which the stored values have no particular ordering.

Set (): Creates a new set initialized to the empty set.

length (): Returns the number of elements in the set, also known as the
cardinality. Accessed using the len() function.

contains (element ): Determines if the given value is an element of the set
and returns the appropriate boolean value. Accessed using the in operator.

add( element ): Modifies the set by adding the given value or element to the
set if the element is not already a member. If the element is not unique, no
action is taken and the operation is skipped.

remove ( element ): Removes the given value from the set if the value is con-
tained in the set and raises an exception otherwise.

equals ( setB): Determines if the set is equal to another set and returns a
boolean value. For two sets, A and B, to be equal, both A and B must contain
the same number of elements and all elements in A must also be elements in
B. If both sets are empty, the sets are equal. Access with == or !=.

isSubset0f ( setB): Determines if the set is a subset of another set and re-
turns a boolean value. For set A to be a subset of B, all elements in A must
also be elements in B.

union( setB): Creates and returns a new set that is the union of this set and
setB. The new set created from the union of two sets, A and B, contains all
elements in A plus those elements in B that are not in A. Neither set A nor
set B is modified by this operation.

intersect(setB): Creates and returns a new set that is the intersection
of this set and setB. The intersection of sets A and B contains only those
elements that are in both A and B. Neither set A nor set B is modified by
this operation.

difference(setB): Creates and returns a new set that is the difference of
this set and setB. The set difference, A — B, contains only those elements that
are in A but not in B. Neither set A nor set B is modified by this operation.
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m iterator (): Creates and returns an iterator that can be used to iterate over
the collection of items.

Example Use

To illustrate the use of the Set ADT, we create and use sets containing the courses
currently being taken by two students. In the following code segment, we create
two sets and add elements to each. The results are illustrated in Figure 3.1.

smith = Set()
smith.add( "CSCI-112"

)
smith.add( "MATH-121" )
smith.add( "HIST-340" )
smith.add( "ECON-101" )

roberts = Set()
roberts.add( "POL-101" )

roberts.add( "ANTH-230" )
roberts.add( "CSCI-112" )
roberts.add( "ECON-101" )
smith set roberts set

“CSCI-112”
“POL-101"

“CSCI-112”
“‘MATH-121"
“ECON-101”

“HIST-340"

“ECON-101"
“ANTH-230"

Figure 3.1: Abstract view of the two sample sets.

Next, we determine if the two students are taking the exact same courses. If
not, then we want to know if they are taking any of the same courses. We can do
this by computing the intersection between the two sets.

if smith == roberts :
print( "Smith and Roberts are taking the same courses." )
else :

sameCourses = smith.intersection( roberts )
if sameCourses.isEmpty()
print( "Smith and Roberts are not taking any of "\
+ "the same courses." )
else :
print( "Smith and Roberts are taking some of the "\
+ "same courses:" )
for course in sameCourses :
print( course )
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3.1.2

3.1.3

In this case, the two students are both taking CSCI-112 and ECON-101. Thus,
the results of executing the previous code segment will be

Smith and Roberts are taking some of the same courses:
CSCI-112 ECON-101

Suppose we want to know which courses Smith is taking that Roberts is not
taking. We can determine this using the set difference operation:

uniqueCourses = smith.difference( roberts )
for course in sameCourses :
print( course )

This example reinforces one of the advantages of working with an abstraction
by focusing on what functionality the ADT provides instead of how that function-
ality is implemented. By hiding the implementation details, we can use an ADT
independent of its implementation. In fact, the choice of implementation for the
Set ADT will have no effect on the instructions in our example program.

Selecting a Data Structure

To implement the Set ADT, we must select a data structure based on the same
criteria we used for the Bag ADT from Chapter 1. Since we are trying to replicate
the functionality of the set structure provided by Python, we don’t want to use that
structure. That leaves the array, list, and dictionary containers for consideration
in implementing the Set ADT. The storage requirements for the bag and set are
very similar with the difference being that a set cannot contain duplicates. The
dictionary would seem to be the ideal choice since it can store unique items, but it
would waste space in this case. Remember, the dictionary stores key/value pairs,
which requires two data fields per entry. We could store the individual items of the
set in the key fields and leave the value fields empty, but that would use twice the
amount of storage than necessary. This waste does not occur with an array or list.
An array could be used to implement the set, but a set can contain any number
of elements and by definition an array has a fixed size. To use the array structure,
we would have to manage the expansion of the array when necessary in the same
fashion as it’s done for the list. Since the list can grow as needed, it seems ideal
for storing the elements of a set just as it was for the bag and it does provide for
the complete functionality of the ADT. Since the list allows for duplicate values,
however, we must make sure as part of the implementation that no duplicates are
added to our set.

List-Based Implementation

Having selected the list structure, we can now implement the Set ADT as shown
in Listing 3.1. Some of the operations of the set are very similar to those of the
Bag ADT and are implemented in a similar fashion. Sample instances for the two
sets from Figure 3.1 are illustrated in Figure 3.2.



3.1 Sets

smith roberts

q—El theElements <—E|
] i

Set W Set .——»[W]
—{ “MATH-121" —{ "ANTH-230" |
2 .__,[W 2 .——»| “CSCI-112” |
3 ._ 3 | «——{ “ECON-101" ]

Figure 3.2: Two instances of the Set class implemented as a list.

theElements

!

1
1

Listing 3.1 The linearset.py module.

1 # Implementation of the Set ADT container using a Python list.

2 class Set :

3 # Creates an empty set instance.

4 def __init__( self ):

5 self._theElements = list()

6

7 # Returns the number of items in the set.
8 def __len__( self ):

9 return len( self._theElements )

10

11 # Determines if an element is in the set.
12 def __contains__( self, element ):

13 return element in self._theElements

14

15 # Adds a new unique element to the set.
16 def add( self, element ):

17 if element not in self :

18 self._theElements.append( element )

19

20 # Removes an element from the set.

21 def remove( self, element ):

22 assert element in self, "The element must be in the set."
23 self._theElements.remove( item )

24

25 # Determines if two sets are equal.

26 def __eq__( self, setB ):

27 if len( self ) !'= len( setB )

28 return False

29 else :

30 return self.isSubsetOf( setB )

31

(Listing Continued)
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Listing 3.1 Continued ...

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

# Determines if this set is a subset of setB.
def isSubsetOf( self, setB ):
for element in self :
if element not in setB :
return False
return True

# Creates a new set from the union of this set and setB.
def union( self, setB ):

newSet = Set()

newSet._theElements.extend( self._theElements )

for element in setB :

if element not in self :
newSet._theElements.append( element )
return newSet

# Creates a new set from the intersection: self set and setB.
def interset( self, setB ):

# Creates a new set from the difference: self set and setB.
def difference( self, setB ):

# Returns an iterator for traversing the list of items.
def __iter__( self ):
return _SetlIterator( self._theElements )

Adding Elements

As indicated earlier, we must ensure that duplicate values are not added to the set
since the list structure does not handle this for us. When implementing the add
method, shown in lines 16-18, we must first determine if the supplied element is
already in the list or not. If the element is not a duplicate, we can simply append
the value to the end of the list; if the element is a duplicate, we do nothing. The
reason for this is that the definition of the add() operation indicates no action
is taken when an attempt is made to add a duplicate value. This is known as a
noop, which is short for no operation and indicates no action is taken. Noops are
appropriate in some cases, which will be stated implicitly in the definition of an
abstract data type by indicating no action is to be taken when the precondition
fails as we did with the add() operation.

Comparing Two Sets

For the operations that require a second set as an argument, we can use the oper-
ations of the Set ADT itself to access and manipulate the data of the second set.
Consider the “equals” operation, implemented in lines 26-30 of Listing 3.1, which
determines if both sets contain the exact same elements. We first check to make
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Avoid Reinventing the Wheel. Using operations provided by an ADT

o to implement other methods of that same ADT allows you to take ad-

= vantage of the abstraction and avoid “reinventing the wheel” by duplicating
code in several places.

sure the two sets contain the same number of elements; otherwise, they cannot be
equal. It would be inefficient to compare the individual elements since we already
know the two sets cannot be equal. After verifying the size of the lists, we can test
to see if the self set is a subset of setB by calling self.isSubset0f(setB). This
is a valid test since two equal sets are subsets of each other and we already know
they are of the same size.

To determine if one set is the subset of another, we can iterate over the list
of elements in the self set and make sure each is contained in setB. If just one
element in the self set is not in setB, then it is not a subset. The implementation
of the isSubset0f () method is shown in lines 33-37.

The Set Union

Some of the operations create and return a new set based on the original, but the
original is not modified. This is accomplished by creating a new set and populating
it with the appropriate data from the other sets. Consider the union() method,
shown in lines 40-46, which creates a new set from the self set and setB passed
as an argument to the method.

Creating a new set, populated with the unique elements of the other two sets,
requires three steps: (1) create a new set; (2) fill the newSet with the elements
from setB; and (3) iterate through the elements of the self set, during which each
element is added to the newSet if that element is not in setB. For the first step,
we simply create a new instance of the Set class. The second step is accomplished
with the use of the list extend() method. It directly copies the entire contents
of the list used to store the elements of the self set to the list used to store the
elements of the newSet. For the final step, we iterate through the elements of
setB and add those elements to the the newSet that are not in the self set. The
unique elements are added to the newSet by appending them to the list used to
store the elements of the newSet. The remaining operations of the Set ADT can
be implemented in a similar fashion and are left as exercises.

Maps

Searching for data items based on unique key values is a very common application
in computer science. An abstract data type that provides this type of search
capability is often referred to as a map or dictionary since it maps a key to
a corresponding value. Consider the problem of a university registrar having to
manage and process large volumes of data related to students. To keep track of the
information or records of data, the registrar assigns a unique student identification
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3.2.1

number to each individual student as illustrated in Figure 3.3. Later, when the
registrar needs to search for a student’s information, the identification number is
used. Using this keyed approach allows access to a specific student record. If
the names were used to identify the records instead, then what happens when
multiple students have the same name? Or, what happens if the name was entered
incorrectly when the record was initially created?

10210

Brown

10175 —

Smith ]

10142 —

Roberts ]

10015 —

Smith ]
John ]
14 East Main St

Somewhere
VA
99155

Figure 3.3: Unique key/data pairs.

In this section, we define our own Map ADT and then provide an implementa-
tion using a list. In later chapters, we will implement and evaluate the map using
a variety of data structures. We use the term map to distinguish our ADT from
the dictionary provided by Python. The Python dictionary is implemented using a
hash table, which requires the key objects to contain the __hash__ method for gen-
erating a hash code. This can limit the type of problems with which a dictionary
can be used. We define our Map ADT with the minimum requirement that the
keys are comparable, which will allow it to be used in a wider range of problems.
It’s not uncommon to provide multiple implementations of an ADT as is done with
many language libraries. We will explore the implementation details of Python’s
dictionary later in Chapter 11 when we discuss hash tables and the design of hash
functions.

The Map Abstract Data Type

The Map ADT provides a great example of an ADT that can be implemented using
one of many different data structures. Our definition of the Map ADT, which is
provided next, includes the minimum set of operations necessary for using and
managing a map.
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A map is a container for storing a collection of data records in which each record
is associated with a unique key. The key components must be comparable.

m Map(): Creates a new empty map.

length (): Returns the number of key/value pairs in the map.

m contains (key): Determines if the given key is in the map and returns True
if the key is found and False otherwise.

m add(key, value): Adds a new key/value pair to the map if the key is not
already in the map or replaces the data associated with the key if the key is in
the map. Returns True if this is a new key and False if the data associated
with the existing key is replaced.

m remove(key): Removes the key/value pair for the given key if it is in the
map and raises an exception otherwise.

m valueOf (key): Returns the data record associated with the given key. The
key must exist in the map or an exception is raised.

m iterator (): Creates and returns an iterator that can be used to iterate over
the keys in the map.

List-Based Implementation

We indicated earlier that many different data structures can be used to implement
a map. Since we are trying to replicate the functionality of the dictionary provided
by Python, we don’t want to use that structure. That leaves the use of an array
or list. As with the Set ADT, both the array and list structures can be used, but
the list is a better choice since it does not have a fixed size like an array and it can
expand automatically as needed.

In the implementation of the Bag and Set ADTs, we used a single list to store
the individual elements. For the Map ADT, however, we must store both a key
component and the corresponding value component for each entry in the map.
We cannot simply add the component pairs to the list without some means of
maintaining their association.

One approach is to use two lists, one for the keys and one for the correspond-
ing values. Accessing and manipulating the components is very similar to that
used with the Bag and Set ADTs. The difference, however, is that the associa-
tion between the component pairs must always be maintained as new entries are
added and existing ones removed. To accomplish this, each key/value must be
stored in corresponding elements of the parallel lists and that association must be
maintained.
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Instead of using two lists to store the key/value entries in the map, we can use
a single list. The individual keys and corresponding values can both be saved in a
single object, with that object then stored in the list. A sample instance illustrating
the data organization required for this approach is shown in Figure 3.4.

. Smith
entryList [ o |

Map

0 o— 10015|| & I

—
1 ~— 10142|| & I
2 e——>110210 -I

Roberts
Susan

231 Quarry Rd
Nowhere

—
Jessica
3 o——>|10175|| & i Smith 231 Quarry Rd
— Jane Plains
MapEntry 81 Jefferson St TN

East End 30101

Figure 3.4: The Map ADT implemented using a single list.

The implementation of the Map ADT using a single list is provided in List-
ing 3.2. As we indicated earlier in Chapter 1, we want to avoid the use of tuples
when storing structured data since it’s better practice to use classes with named
fields. The MapEntry storage class, defined in lines 5659, will be used to store the
individual key /value pairs. Note this storage class is defined to be private since it’s
only intended for use by the Map class that provides the single list implementation
of the Map ADT.

(RS (Gl The linearmap.py module.

1 # Implementation of Map ADT using a single list.

class Map :
# Creates an empty map instance.
def __init__( self ):
self._entryList = list()

# Returns the number of entries in the map.
def __len__( self ):
return len( self._entrylList )

# Determines if the map contains the given key.
def __contains__( self, key ):

ndx = self._findPosition( key )

return ndx is not None

# Adds a new entry to the map if the key does exist. Otherwise, the
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# new value replaces the current value associated with the key.
def add( self, key, value ):
ndx = self._findPosition( key )
if ndx is not None : # if the key was found
self._entryList[ndx].value = value
return False
else : # otherwise add a new entry
entry = _MapEntry( key, value )
self._entryList.append( entry )
return True

# Returns the value associated with the key.
def valueOf( self, key ):
ndx = self._findPosition( key )
assert ndx is not None, "Invalid map key."
return self._entryList[ndx].value

# Removes the entry associated with the key.
def remove( self, key ):
ndx = self._findPosition( key )
assert ndx is not None, "Invalid map key."
self._entryList.pop( ndx )

# Returns an iterator for traversing the keys in the map.
def __iter__( self ):
return _MapIterator( self._entryList )

3.2 Maps

# Helper method used to find the index position of a category. If the

# key 1is not found, None is returned.
def _findPosition( self, key ):
# Iterate through each entry in the list.
for i in range( len(self) )
# Is the key stored in the ith entry?
if self._entryList[i].key == key :
return i
# When not found, return None.
return None

# Storage class for holding the key/value pairs.
class _MapEntry :
def __init__( self, key, value ):
self.key = key
self.value = value

Many of the methods require a search to determine if the map contains a given
key. In this implementation, the standard in operator cannot be used since the list
contains MapEntry objects and not simply key entries. Instead, we have to search
the list ourselves and examine the key field of each MapEntry object. Likewise, we

routinely have to locate within the list the position containing a specific

entry. Since these operations will be needed in several methods, we can create a

helper method that combines the two searches and use it where needed.

The _findPosition() helper method searches the list for the given key. If

key /value

the key is found, the index of its location is returned; otherwise, the function
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3.3

returns None to indicate the key is not contained in the map. When used by
the other methods, the value returned can be evaluated to determine both the
existence of the key and the location of the corresponding entry if the key is in
the map. By combining the two searches into a single operation, we eliminate the
need to first determine if the map contains the key and then searching again for
its location. Given the helper method, the implementation of the various methods
is straightforward. Implementation of the iterator method is left as an exercise.

Multi-Dimensional Arrays

In Chapter 2, we worked with one- and two-dimensional arrays, but arrays can be
larger than two dimensions. In fact, arrays can contain any number of dimensions
that may be needed for a given problem. A multi-dimensional array stores
a collection of data in which the individual elements are accessed with multi-
component subscripts: w;; or y; ;. Figure 3.5 illustrates the abstract view of a
two- and three-dimensional array. As we saw earlier, a two-dimensional array is
typically viewed as a table or grid consisting of rows and columns. An individual
element is accessed by specifying two indices, one for the row and one for the
column. The three-dimensional array can be visualized as a box of tables where
each table is divided into rows and columns. Individual elements are accessed by
specifying the index of the table followed by the row and column indices. Larger
dimensions are used in the solutions for some problems, but they are more difficult
to visualize.

\e5
columns 10 1 2
0 1 2 3 4
0 0
©n
Ly 2
3 3
0 1 2 3
columns

Figure 3.5: Sample multi-dimensional arrays: (left) a 2-D array viewed as a rectangular
table and (right) a 3-D array viewed as a box of tables.

Most high-level programming languages provide a convenient way to create and
manage multi-dimensional arrays while others require a more hands-on approach.
C++ and Java are two examples of languages that provide multi-dimensional arrays
as part of the language. Python, of course, does not directly support arrays of any
dimension. But that did not prevent us from defining and implementing abstract
data types in the previous chapter for one- and two-dimensional arrays. Likewise,
we can define an abstract data type for creating and using arrays of any dimension.
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3.3.1 The MultiArray Abstract Data Type

To accommodate multi-dimensional arrays of two or more dimensions, we define
the MultiArray ADT and as with the earlier array abstract data types, we limit the
operations to those commonly provided by arrays in most programming languages
that provide the array structure.

EEIT MultiArray ADT

A multi-dimensional array consists of a collection of elements organized into mul-
tiple dimensions. Individual elements are referenced by specifying an n-tuple or
a subscript of multiple components, (i1,1is2,...1,), one for each dimension of the
array. All indices of the n-tuple start at zero.

MultiArray(di,do,...d, ): Creates a multi-dimensional array of elements or-
ganized into n-dimensions with each element initially set to None. The number
of dimensions, which is specified by the number of arguments, must be greater
than 1. The individual arguments, all of which must be greater than zero,
indicate the lengths of the corresponding array dimensions. The dimensions
are specified from highest to lowest, where d; is the highest possible dimension
and d,, is the lowest.

dims (): Returns the number of dimensions in the multi-dimensional array.

length(dim): Returns the length of the given array dimension. The individ-
ual dimensions are numbered starting from 1, where 1 represents the first, or
highest, dimension possible in the array. Thus, in an array with three dimen-
sions, 1 indicates the number of tables in the box, 2 is the number of rows,
and 3 is the number of columns.

clear(value ): Clears the array by setting each element to the given value.

getitem (i1,792,...%,): Returns the value stored in the array at the element
position indicated by the n-tuple (i1,i2,...4,). All of the specified indices
must be given and they must be within the valid range of the corresponding
array dimensions. Accessed using the element operator: y = x[ 1, 2 ].

setitem (i1,i9,...1n, value): Modifies the contents of the specified array
element to contain the given value. The element is specified by the n-tuple
(41,12,...1,). All of the subscript components must be given and they must
be within the valid range of the corresponding array dimensions. Accessed
using the element operator: x[ 1, 2 1 =vy.

3.3.2 Data Organization

Most computer architectures provide a mechanism at the hardware level for creat-
ing and using one-dimensional arrays. Programming languages need only provide
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appropriate syntax to make use of a 1-D array. Multi-dimensional arrays are not
handled at the hardware level. Instead, the programming language typically pro-
vides its own mechanism for creating and managing multi-dimensional arrays.

As we saw earlier, a one-dimensional array is composed of a group of sequential
elements stored in successive memory locations. The index used to reference a
particular element is simply the offset from the first element in the array. In most
programming languages, a multi-dimensional array is actually created and stored
in memory as a one-dimensional array. With this organization, a multi-dimensional
array is simply an abstract view of a physical one-dimensional data structure.

Array Storage

A one-dimensional array is commonly used to physically store arrays of higher
dimensions. Consider a two-dimensional array divided into a table of rows and
columns as illustrated in Figure 3.6. How can the individual elements of the table
be stored in the one-dimensional structure while maintaining direct access to the
individual table elements? There are two common approaches. The elements
can be stored in row-major order or column-major order. Most high-level
programming languages use row-major order, with FORTRAN being one of the
few languages that uses column-major ordering to store and manage 2-D arrays.

0 1 2 3 4
s I
[@EE)E
FEEE

Figure 3.6: The abstract view of a sample 3 x 5 two-dimensional array.

&)

In row-major order, the individual rows are stored sequentially, one at a time,
as illustrated in Figure 3.7. The first row of 5 elements are stored in the first 5
sequential elements of the 1-D array, the second row of 5 elements are stored in
the next five sequential elements, and so forth.

In column-major order, the 2-D array is stored sequentially, one entire column
at a time, as illustrated in Figure 3.8. The first column of 3 elements are stored in
the first 3 sequential elements of the 1-D array, followed by the 3 elements of the
second column, and so on.

For larger dimensions, a similar approach can be used. With a three-dimensional
array, the individual tables can be stored contiguously using either row-major or
column-major ordering. As the number of dimensions grow, all elements within
a single instance of each dimension are stored contiguously before the next in-
stance. For example, given a four-dimensional array, which can be thought of as
an array of boxes, all elements of an individual box (3-D array) are stored before
the next box.
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0o 1 2 3 4
of 2 2D armay using ° ]
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080800

row 0 row [ row 2

8000000000000
0 1 2 3 4
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Figure 3.7: Physical storage of a sample 2-D array (top) in a 1-D array using row-major
order (bottom).

Index Computation

Since multi-dimensional arrays are created and managed by instructions in the
programming language, accessing an individual element must also be handled by
the language. When an individual element of a 2-D array is accessed, the compiler
must include additional instructions to calculate the offset of the specific element
within the 1-D array. Given a 2-D array of size m xn and using row-major ordering,
an equation can be derived to compute this offset.

To derive the formula, consider the 2-D array illustrated in Figure 3.7 and
observe the physical storage location within the 1-D array for the first element in
several of the rows. Element (0,0) maps to position 0 since it is the first element
in both the abstract 2-D and physical 1-D arrays. The first entry of the second
row (1,0) maps to position n since it follows the first n elements of the first row.
Likewise, element (2,0) maps to position 2n since it follows the first 2n elements
in the first two rows. We could continue in the same fashion through all of the
rows, but you would soon notice the position for the first element of the ¢th row is

Physical storage
of a 2-D array using 0

column-major order.
1

2

column 0 column 1 column 2 column 3 column 4
ClE)t e e e
o 1 2|3 4 5|6 7 8|9 10 11|12 13 14]

Figure 3.8: Physical storage of a sample 2-D array (top) in a 1-D array using column-
major order (bottom).
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n * 1. Since the subscripts start from zero, the ith subscript not only represents a
specific row but also indicates the number of complete rows skipped to reach the
ith row.

Knowing the position of the first element of each row, the position for any
element within a 2-D array can be determined. Given an element (i,7) of a 2-D
array, the storage location of that element in the 1-D array is computed as

indexy(i,7) =i*n+j (3.1)

The column index, j, is not only the offset within the given row but also the
number of elements that must be skipped in the ith row to reach the jth column.
To see this formula in action, again consider the 2-D array from Figure 3.7 and
assume we want to access element (2,3). Finding the target element within the
1-D array requires skipping over the first 2 complete rows of elements:
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and the first 3 elements within row 2:

Plugging the indices into the equation from above results in an index position of
13, which corresponds to the position of element (2,3) within the 1-D array used
to physically store the 2-D array.

Similar equations can be derived for arrays of higher dimensions. Given a 3-D
array of size dj X dy X ds, the 1-D array offset of element (i1,12,13) stored using
row-major order will be

indeX3(i1,i2,i3) =11 % (d2 * dg) + 9 x dg + 13 (3.2)

For each component (i) in the subscript, the equation computes the number of
elements that must be skipped within the corresponding dimension. For example,
the factor (dg * d3) indicates the number of elements in a single table of the cube.
When it’s multiplied by ¢; we get the number of complete tables to skip and in turn
the number of elements to skip in order to arrive at the first element of table 4.



3.3.3

3.3 Multi-Dimensional Arrays

3

e

3

The remaining part of the equation (i2 * d3 + i3) is equivalent to indexs(iz,i3),
which indicates the number of elements to skip within the i; table. As the number
of dimensions increase, additional products are added to the equation, one for each
new dimension. For example, the equation to compute the offset for a 4-D array is

indeX4(i1, ig, ig, i4) = il * (dg * d3 * d4) + ig * (dg * d4) + ig * d4 + i4 (3.3)

You may notice a pattern developing as the number of dimensions increase.
This pattern leads to a general equation for computing the 1-D array offset for
element (iy,142,...,%,) within an n-dimensional array:

index(il,ig, - ,in) =iy % fitiox fo+ - Fip 1% fn1+tinxl (34)

where the f; values are the factors representing the number of elements to be
skipped within the corresponding dimension and are computed using

fn=1 and f;= H dr, Yo<j<n (3.5)
k=j+1

The size of a multi-dimensional array is fixed at the time it’s created and cannot
change during execution. Likewise, the several f; products used in the equation
above will not change once the size of the array is set. This can be used to our
advantage to reduce the number of multiplications required to compute the element
offsets. Instead of computing the products every time an element is accessed, we
can compute and store the factor values and simply plug them into the equation
when needed.

Variable-Length Arguments

The definition of the MultiArray ADT requires a variable-length argument for
the constructor and the two element access methods. The number of arguments
passed to each method is supposed to equal the number of dimensions in the
array. Python functions and methods can be defined to accept a variable number
of arguments, which is exactly what we need to implement the MultiArray ADT.
Consider the following function, which accepts any number of arguments (assumed
to be numerical in this example) and then prints how many arguments were passed
and the sum of those arguments:
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def func( *args ):
print "Number of arguments: ", len( args )
sum = 0
for value in args :
sum += value
print( "Sum of the arguments: ", sum )

When using the function, we can pass a variable number of arguments for each
invocation. For example, all of the following are valid function calls:

func( 12 )
func( 5, 8, 2 )
func( 18, -2, 50, 21, 6 )

which results in the following output:

Number of arguments: 1
Sum of the arguments: 12
Number of arguments: 3
Sum of the arguments: 15
Number of arguments: 5
Sum of the arguments: 93

The asterisk next to the argument name (*args) tells Python to accept any
number of arguments and to combine them into a tuple. The tuple is then passed
to the function and assigned to the formal argument marked with the asterisk.
Note the asterisk is only used in the argument list to indicate that the function
or method can accept any number of arguments. It is not part of the argument
name. The len() operation can be applied to the tuple to determine the number
of actual arguments passed to the function. The individual arguments, which
are elements in the tuple, can be accessed by using the subscript notation or by
iterating the collection.

Implementing the MultiArray

To implement the MultiArray ADT, the elements of the multi-dimensional array
can be stored in a single 1-D array in row-major order. Not only does this create
a fast and compact array structure, but it’s also the actual technique used by
most programming languages. A partial implementation of the MultiArray class
is provided in Listing 3.3.

(RS (W The array . py module with the MultiArray class.

1 # Implementation of the MultiArray ADT using a 1-D array.
2 class MultiArray :

O ~NO Ol W

# Creates a multi-dimensional array.

def __init__( self, xdimensions ):
assert len(dimensions) > 1, "The array must have 2 or more dimensions."
# The variable argument tuple contains the dim sizes.
self._dims = dimensions
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# Compute the total number of elements in the array.
size =1
for d in dimensions

assert d > 0, "Dimensions must be > 0."

size *= d

# Create the 1-D array to store the elements.
self._elements = Array( size )

# Create a 1-D array to store the equation factors.
self._factors = Array( len(dimensions) )
self._computeFactors()

# Returns the number of dimensions in the array.

def numDims( self ):

return len(self._dims)

# Returns the length of the given dimension.

def length( self, dim ):

assert dim >= 1 and dim < len(self._dims),\
"Dimension component out of range."
return self._dims[dim - 1]

# Clears the array by setting all elements to the given value.

def clear( self, value ):

self._elements.clear( value )

# Returns the contents of element (i_1, i -2, ..., i_n).

def __getitem__( self, ndxTuple ):
assert len(ndxTuple) == self.numDims(), "Invalid # of array subscripts."

index = self._computeIndex( ndxTuple )
assert index is not None, "Array subscript out of range."
return self._elements[index]

# Sets the contents of element (i_1, i_2, ..., i_n).
def __setitem__( self, ndxTuple, value ):
assert len(ndxTuple) == self.numDims(), "Invalid # of array subscripts."

index = self._computeIndex( ndxTuple )
assert index is not None, "Array subscript out of range."

self._elements[index] = value
# Computes the 1-D array offset for element (i_1, i 2, ... 1i_n)
# using the equation 1.1 x f_.1 + 1 2 x f 2+ ... +1.n* f.n

def _computeIndex( self, idx ):

offset = 0
for j in range( len(idx) ):
# Make sure the index components are within the legal range.
if idx[j] < @ || idx[j] >= self._dims[j]
return None
else : # sum the product of i_j = f_j.
offset += idx[j] * self._factors[j]
return offset

# Computes the factor values used in the index equation.

def _computeFactors( self ):
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Constructor

The constructor, which is shown in lines 4-19, defines three data fields: _dims
stores the sizes of the individual dimensions; _factors stores the factor values
used in the index equation; and _elements is used to store the 1-D array used as
the physical storage for the multi-dimensional array.

The constructor is defined to accept a variable-length argument as required in
the ADT definition. The resulting tuple will contain the sizes of the individual
dimensions and is assigned to the _dims field. The dimensionality of the array
must be verified at the beginning of the constructor as the MultiArray ADT is
meant for use with arrays of two dimensions or more.

The elements of the multi-dimensional array will be stored in a 1-D array. The
fixed size of the array can be computed as the product of the dimension lengths
by traversing over the tuple containing the variable-length argument. During the
traversal, the precondition requiring all dimension lengths be greater than zero is
also evaluated. The Array class defined earlier in the chapter is used to create the
storage array.

Finally, a 1-D array is created and assigned to the _factors field. The size of
the array is equal to the number of dimensions in the multi-dimensional array. This
array will be initialized to the factor values used in Equation 3.4 for computing
the element offsets. The actual computation and initialization is performed by the
_computeFactors () helper method, which is left as an exercise. A sample instance
of the MultiArray class is illustrated in Figure 3.9.
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elements
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MultiArray

Figure 3.9: A sample MultiArray object for the 2-D array from Figure 3.6.

Dimensionality and Lengths

In the multi-dimensional version of the array, there is no single length value. In-
stead, each dimension of the array has an associated size. Python’s len() function
cannot be used for this task since we must specify a particular dimension to obtain
its size. Instead, the length() method, as shown in lines 2629 of Listing 3.3,
is used. The method first verifies the given dimension index is between 1 and n,
which is the legal range specified in the ADT definition. The size of the requested
dimension is then returned using the appropriate value from the _dims tuple. The
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numDims () method returns the dimensionality of the array, which can be obtained
from the number of elements in the _dims tuple.

Element Access

Access to individual elements within an n-D array requires an n-tuple or multi-
component subscript, one for each dimension. As indicated in Section 2.3.2, when
a multi-component subscript is specified (i.e., y = x[i,j]), Python automatically
stores the components in a tuple in the order listed within the brackets and passes
the tuple to the ndxTuple argument.

The contents of the ndxTuple are passed to the _computeIndex () helper method
to compute the index offset within the 1-D storage array. The use of the helper
method reduces the need for duplicate code that otherwise would be required in
both element access methods. The __setitem__ operator method can be imple-
mented in a similar fashion. The major difference is that this method requires a
second argument to receive the value to which an element is set and modifies the
indicated element with the new value instead of returning a value.

Computing the Offset

The _computeIndex() helper method, shown in lines 51-59 of Listing 3.3, imple-
ments Equation 3.4, which computes the offset within the 1-D storage array. The
method must also verify the subscript components are within the legal range of the
dimension lengths. If they are valid, the offset is computed and returned; other-
wise, None is returned to flag an invalid array index. By returning None from the
helper method instead of raising an exception within the method, better informa-
tion can be provided to the programmer as to the exact element access operation
that caused the error.

Application: Sales Reports

LazyMart, Inc. is a small regional chain department store with locations in several
different cities and states. The company maintains a collection of sales records for
the various items sold and would like to generate several different types of reports
from this data. One such report, for example, is the yearly sales by store, as
illustrated in Figure 3.10 on the next page, while others could include total sales
across all stores for a specific month or a specific item.

The sales data of the current calendar year for all of LazyMart’s stores is
maintained as a collection of entries in a text file. For example, the following
illustrates the first several lines of a sample sales data text file:

8

100

5 11 85 45.23
1 4 26 128.93
1 8 75 39.77
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LazyMart Sales Report
Store #1
Item# Jan Feb Mar e Nov Dec
1 1237.56 1543.23 1011.00 2101.88 2532.99
2 829.85 974.18 776.54 802.50 643.21
3 3100.00 3218.25 3005.34 2870.50 3287.25
4 1099.45 1573.75 1289.21 1100.00 1498.25
99 704.00 821.30 798.00 532.00 699.50
100 881.25 401.00 375.00 732.00 500.00

Figure 3.10: A sample sales report

where the first line indicates the number of stores; the second line indicates the
number of individual items (both of which are integers); and the remaining lines
contain the sales data. Each line of the sales data consists of four pieces of in-
formation: the store number, the month number, the item number, and the sales
amount for the given item in the given store during the given month. For sim-
plicity, the store and item numbers will consist of consecutive integer values in the
range [1...max], where maz is the number of stores or items as extracted from
the first two lines of the file. The month is indicated by an integer in the range
[1...12] and the sales amount is a floating-point value.

Data Organization

While some reports, like the student report from Chapter 1, are easy to produce
by simply extracting the data and writing it to the report, others require that we
first organize the data in some meaningful way in order to extract the information
needed. That is definitely the case for this problem, where we may need to produce
many different reports from the same collection of data. The ideal structure for
storing the sales data is a 3-D array, as shown in Figure 3.11, in which one dimen-
sion represents the stores, another represents the items sold in the stores, and the
last dimension represents each of the 12 months in the calendar year. The 3-D
array can be viewed as a collection of spreadsheets, as illustrated in Figure 3.12.
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Figure 3.11: The sales data stored in a 3-D array.
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Figure 3.12: The sales data viewed as a collection of spreadsheets.

Each spreadsheet contains the sales for a specific store and is divided into rows and
columns where each row contains the sales for one item and the columns contain
the sales for each month.

Since the store, item, and month numbers are all composed of consecutive
integer values starting from 1, we can easily represent each by a unique index
that is one less than the given number. For example, the data for January will be
stored in column 0, the data for February will be stored in column 1, and so on.
Likewise, the data for item number 1 will be stored in row 0, the data for item
number 2 will be stored in row 1, and so on. We leave the actual extraction of
the data from a text file as an exercise. But for illustration purposes, we assume
this step has been completed resulting in the creation and initialization of the 3-D
array as shown here:

salesData = MultiArray( 8, 100, 12 )

Total Sales by Store

With the data loaded from the file and stored in a 3-D array, we can produce many
different types of reports or extract various information from the sales data. For
example, suppose we want to determine the total sales for a given store, which
includes the sales figures of all items sold in that store for all 12 months. The
following function computes this value:

# Compute the total sales of all items for all months in a given store.
def totalSalesByStore( salesData, store ):

# Subtract 1 from the store # since the array indices are 1 less

# than the given store #.
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s = store-1
# Accumulate the total sales for the given store.
total = 0.0

# Iterate over item.
for i in range( salesData.length(2) ):
# Iterate over each month of the i item.
for m in range( salesData.length(3) ):
total += salesDatals, i, m]

return total

Assuming our view of the data as a collection of spreadsheets, this requires travers-
ing over every element in the spreadsheet containing the data for the given store.
If store equals 1, this is equivalent to processing every element in the spreadsheet
shown at the front of Figure 3.12. Two nested loops are required since we must sum
the values from each row and column contained in the given store spreadsheet.
The number of rows (dimension number 2) and columns (dimension number 3) can
be obtained using the length() array method.

Total Sales by Month

Next, suppose we want to compute the total sales for a given month that includes
the sales figures of all items in all stores sold during that month. This value can
be computed using the following function:

# Compute the total sales of all items in all stores for a given month.
def totalSalesByMonth( salesData, month ):

# The month number must be offset by 1.

m = month - 1

# Accumulate the total sales for the given month.

total = 0.0

# Iterate over each store.
for s in range( salesData.length(1l) ):
# Iterate over each item of the s store.
for i in range( salesData.length(2) ):
total += salesData[s, i, m]

return total

This time, the two nested loops have to iterate over every row of every spread-
sheet for the single column representing the given month. If we use this function
to compute the total sales for the month of January, the elements of the 3-D array
that will be accessed are shown by the shaded area in Figure 3.13(a).

Total Sales by Item

Another value that we can compute from the sales data in the 3-D array is the
total sales for a given item, which includes the sales figures for all 12 months and
from all 8 stores. This is computed by the following function:
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# Compute the total sales of a single item in all stores over all months.

def totalSalesByItem( salesData, item ):
# The item number must be offset by 1.
m=item - 1

# Accumulate the total sales for the given month.
total = 0.0

# Iterate over each store.
for s in range( salesData.length(l) ):
# Iterate over each month of the s store.
for m in range( salesData.length(3) ):
total += salesDatals, i, m]

return total

The cells of the array that would be accessed when using this function to
compute the total sales for item number 5 are shown by the shaded area in Fig-
ure 3.13(b). Remember, the sales for each item are stored in a specific row of the
array and the index of that row is one less than the item number since the indices
start at 0.
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Figure 3.13: The elements of the 3-D array that must be accessed to compute the total
sales: (a) for the month of January and (b) for item number 5.

Monthly Sales by Store

Finally, suppose we want to compute the total monthly sales for each of the 12
months at a given store. While the previous examples computed a single value,
this task requires the computation of 12 different totals, one for each month. We
can store the monthly totals in a 1-D array and return the structure, as is done in
the following function:
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# Compute the total sales per month for a given store. A 1-D array 1is
# returned that contains the totals for each month.

def totalSalesPerMonth( salesData, store ):
# The store number must be offset by 1.
s = store -1

# The totals will be returned in a 1-D array.
totals = Array( 12 )

# Iterate over the sales of each month.
for m in range( salesData.length(3) ):
sum = 0.0

# Iterate over the sales of each item sold during the m month.
for i in range( salesData.length(2) ):
sum += salesData[s, i, m]

# Store the result in the corresponding month of the totals array.
totals[m] = sum

# Return the 1-D array.
return totals

Figure 3.14 illustrates the use of the 1-D array for storing the individual
monthly totals. The shaded area shows the elements of the 3-D array that are
accessed when computing the total sales for the month of April at store number 1.
The monthly total will be stored at index position 3 within the 1-D array since
that is the corresponding column in the 3-D array for the month of April.
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Figure 3.14: The elements the 3-D array that must be accessed to compute the monthly
sales for store number 1.



Exercises

Exercises

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Complete the Set ADT by implementing intersect() and difference().

Modify the Set() constructor to accept an optional variable argument to
which a collection of initial values can be passed to initialize the set. The
prototype for the new constructor should look as follows:

def Set( self, xinitElements = None )
It can then be used as shown here to create a set initialized with the given
values:

s = Set( 150, 75, 23, 86, 49 )
Add a new operation to the Set ADT to test for a proper subset. Given two

sets, A and B, A is a proper subset of B, if A is a subset of B and A does not
equal B.

Add the _str() method to the Set implementation to allow a user to print
the contents of the set. The resulting string should look similar to that of a
list, except you are to use curly braces to surround the elements.

Add Python operator methods to the Set class that can be used to perform
similar operations to those already defined by named methods:

Operator Method Current Method

__add__(setB) union(setB)
_mul__(setB) interset (setB)
__sub__(setB) difference(setB)
_1t__(setB) isSubsetOf (setB)

Add a new operation keyArray () to the Map class that returns an array con-
taining all of the keys stored in the map. The array of keys should be in no
particular ordering.

Add Python operators to the Map class that can be used to perform similar
operations to those already defined by named methods:
Operator Method Current Method
__setitem__(key, value) add (key, value)
__getitem__(key) valueOf (key)

Design and implement the iterator class _SetIterator for use with the Set
ADT implemented using a list.
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3.9 Design and implement the iterator class MapIterator for use with the Map
ADT implemented using a list.

3.10 Develop the index equation that computes the location within a 1-D array for
element (7, j) of a 2-D array stored in column-major order.

3.11 The 2-D array described in Chapter 2 is a simple rectan-
gular structure consisting of the same number of elements
in each row. Other layouts are possible and sometimes
required by problems in computer science. For example,

the lower triangular array shown on the right is organized
such that the rows are staggered with each successive row

consisting of one more element than the previous row.

(a) Derive an equation that computes the total number of elements in the
lower triangular table for a table of size m x n.

(b) Derive an index equation that maps an element of the lower triangular
table onto a one-dimensional array stored in row-major order.

3.12 Complete the implementation of the MultiArray class by implementing the
helper method _computeFactors().

Programming Projects

3.1 In this chapter, we implemented the Set ADT using a list. Implement the Set
ADT using a bag created from the Bag class. In your opinion, which is the
better implementation? Explain your answer.

3.2 Define a new class named TriangleArray to implement the lower triangular
table described in Exercise 3.11.

3.3 Given a collection of items stored in a bag, design a linear time algorithm that
determines the number of unique items in the collection.

3.4 Write a function that extracts the sales data from a text file and builds the
3-D array used to produce the various reports in Section 3.4. Assume the data
file has the format as described in the chapter.

3.5 Write a menu-driven program that uses your function from the previous ques-
tion to extract the sales data and can produce any of the following reports:

(a) Each of the four types of reports described in the chapter.

(b) The sales for a single store similar to that shown in Section 3.4 with the
data sorted by total sales.

(c¢) The total sales for each store sorted by total sales from largest to smallest.

(d) The total sales for each item sorted by item number.




4.1

CHAPTER 4

Algorithm Analysis

Algorithms are designed to solve problems, but a given problem can have many
different solutions. How then are we to determine which solution is the most
efficient for a given problem? One approach is to measure the execution time. We
can implement the solution by constructing a computer program, using a given
programming language. We then execute the program and time it using a wall
clock or the computer’s internal clock.

The execution time is dependent on several factors. First, the amount of data
that must be processed directly affects the execution time. As the data set size
increases, so does the execution time. Second, the execution times can vary de-
pending on the type of hardware and the time of day a computer is used. If
we use a multi-process, multi-user system to execute the program, the execution
of other programs on the same machine can directly affect the execution time of
our program. Finally, the choice of programming language and compiler used to
implement an algorithm can also influence the execution time. Some compilers
are better optimizers than others and some languages produce better optimized
code than others. Thus, we need a method to analyze an algorithm’s efficiency
independent of the implementation details.

Complexity Analysis

To determine the efficiency of an algorithm, we can examine the solution itself and
measure those aspects of the algorithm that most critically affect its execution time.
For example, we can count the number of logical comparisons, data interchanges,
or arithmetic operations. Consider the following algorithm for computing the sum
of each row of an n x n matrix and an overall sum of the entire matrix:

totalSum = 0 # Version 1
for i in range( n )
rowSum[i] = 0O
for j in range( n )
rowSum[i] = rowSum[i] + matrix[i,]]
totalSum = totalSum + matrix[i,]]
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Suppose we want to analyze the algorithm based on the number of additions
performed. In this example, there are only two addition operations, making this a
simple task. The algorithm contains two loops, one nested inside the other. The
inner loop is executed n times and since it contains the two addition operations,
there are a total of 2n additions performed by the inner loop for each iteration
of the outer loop. The outer loop is also performed n times, for a total of 2n?
additions.

Can we improve upon this algorithm to reduce the total number of addition
operations performed? Consider a new version of the algorithm in which the second
addition is moved out of the inner loop and modified to sum the entries in the
rowSum array instead of individual elements of the matrix.

totalSum = 0 # Version 2
for i in range( n )
rowSum[i] = O
for j in range( n )
rowSum[i] = rowSum[i] + matrix[i,]]
totalSum = totalSum + rowSum[i]

In this version, the inner loop is again executed n times, but this time, it only
contains one addition operation. That gives a total of n additions for each iteration
of the outer loop, but the outer loop now contains an addition operator of its own.
To calculate the total number of additions for this version, we take the n additions
performed by the inner loop and add one for the addition performed at the bottom
of the outer loop. This gives n + 1 additions for each iteration of the outer loop,
which is performed n times for a total of n? + n additions.

If we compare the two results, it’s obvious the number of additions in the second
version is less than the first for any n greater than 1. Thus, the second version will
execute faster than the first, but the difference in execution times will not be signif-
icant. The reason is that both algorithms execute on the same order of magnitude,
namely n?. Thus, as the size of n increases, both algorithms increase at approxi-
mately the same rate (though one is slightly better), as illustrated numerically in
Table 4.1 and graphically in Figure 4.1.

n 2n? n?+n
10 200 110
100 20,000 10,100
1000 2,000,000 1,001,000

10000 200,000,000 100,010,000
100000 | 20,000,000,000 | 10,000,100,000

Table 4.1: Growth rate comparisons for different input sizes.



4.1.1

4.1 Complexity Analysis

10*

10°

10?

10t

10°

10° 10! 10° 10° 10*

Figure 4.1: Graphical comparison of the growth rates from Table 4.1.

Big-O Notation

Instead of counting the precise number of operations or steps, computer scientists
are more interested in classifying an algorithm based on the order of magnitude
as applied to execution time or space requirements. This classification approx-
imates the actual number of required steps for execution or the actual storage
requirements in terms of variable-sized data sets. The term big-O, which is de-
rived from the expression “on the order of,” is used to specify an algorithm’s
classification.

Defining Big-O

Assume we have a function 7'(n) that represents the approximate number of steps
required by an algorithm for an input of size n. For the second version of our
algorithm in the previous section, this would be written as

Ty(n) =n*+n

Now, suppose there exists a function f(n) defined for the integers n > 0, such that
for some constant ¢, and some constant m,

T(n) <cf(n)
for all sufficiently large values of n > m. Then, such an algorithm is said to have a
time-complexity of, or executes on the order of, f(n) relative to the number of

operations it requires. In other words, there is a positive integer m and a constant
¢ (constant of proportionality) such that for all n > m, T'(n) < cf(n). The
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function f(n) indicates the rate of growth at which the run time of an algorithm
increases as the input size, n, increases. To specify the time-complexity of an
algorithm, which runs on the order of f(n), we use the notation

O( f(n))

Consider the two versions of our algorithm from earlier. For version one, the
time was computed to be Ty(n) = 2n?. If we let ¢ = 2, then

2n? < 2n?

for a result of O(n?). For version two, we computed a time of Ty(n) = n? + n.
Again, if we let ¢ = 2, then

n2+n§2n2

for a result of O(n?). In this case, the choice of ¢ comes from the observation that
when n > 1, we have n < n? and n? + n < n? + n?, which satisfies the equation in
the definition of big-O.

The function f(n) = n? is not the only choice for satisfying the condition
T(n) < cf(n). We could have said the algorithms had a run time of O(n?) or
O(n*) since 2n? < n? and 2n? < n* when n > 1. The objective, however, is
to find a function f(-) that provides the tightest (lowest) upper bound or limit
for the run time of an algorithm. The big-O notation is intended to indicate an
algorithm’s efficiency for large values of n. There is usually little difference in the
execution times of algorithms when n is small.

Constant of Proportionality

The constant of proportionality is only crucial when two algorithms have the same
f(n). It usually makes no difference when comparing algorithms whose growth
rates are of different magnitudes. Suppose we have two algorithms, L; and Lo,
with run times equal to n? and 2n respectively. L; has a time-complexity of O(n?)
with ¢ = 1 and Ls has a time of O(n) with ¢ = 2. Even though L; has a smaller
constant of proportionality, L is still slower and, in fact an order of magnitude
slower, for large values of n. Thus, f(n) dominates the expression cf(n) and the run
time performance of the algorithm. The differences between the run times of these
two algorithms is shown numerically in Table 4.2 and graphically in Figure 4.2.

Constructing T(n)

Instead of counting the number of logical comparisons or arithmetic operations, we
evaluate an algorithm by considering every operation. For simplicity, we assume
that each basic operation or statement, at the abstract level, takes the same amount
of time and, thus, each is assumed to cost constant time. The total number of
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n n? 2n
10 100 20
100 10,000 200
1000 1,000,000 2,000
10000 100,000,000 | 20,000
100000 | 10,000,000,000 | 200,000

Complexity Analysis

Table 4.2: Numerical comparison of two sample algorithms.
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Figure 4.2: Graphical comparison of the data from Table 4.2.

operations required by an algorithm can be computed as a sum of the times required

to perform each step:

T(n)= filn) + fo(n) + ...+ fr(n).

The steps requiring constant time are generally omitted since they eventually
become part of the constant of proportionality. Consider Figure 4.3(a), which
shows a markup of version one of the algorithm from earlier. The basic operations
are marked with a constant time while the loops are marked with the appropriate
total number of iterations. Figure 4.3(b) shows the same algorithm but with the
constant steps omitted since these operations are independent of the data set size.
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1 totalSum = 0
1 for i in range( n ) :
1 rowSum[i] = 0
(@ n 1 for j in range( n ) :
nll rowSum[i] = rowSum[i] + matrix[i,j]
1 totalSum = totalSum + matrix[i,]j]

for i in range( n )

(b) n
n|jor j in range( n )

Figure 4.3: Markup for version one of the matrix summing algorithm: (a) shows all oper-
ations marked with the appropriate time and (b) shows only the non-constant time steps.

Choosing the Function

The function f(n) used to categorize a particular algorithm is chosen to be the
dominant term within T'(n). That is, the term that is so large for big values of
n, that we can ignore the other terms when computing a big-O value. For example,
in the expression

n? + logan + 3n

the term n? dominates the other terms since for n > 3, we have

n? +n? 4+ n?

3n?

n? +logyn + 3n

<
n? +logyn +3n <
which leads to a time-complexity of O(n?). Now, consider the function T'(n) =
2n? 4 15n + 500 and assume it is the polynomial that represents the exact number
of instructions required to execute some algorithm. For small values of n (less
than 16), the constant value 500 dominates the function, but what happens as n
gets larger, say 100,000? The term n? becomes the dominant term, with the other
two becoming less significant in computing the final result.

Classes of Algorithms

We will work with many different algorithms in this text, but most will have a
time-complexity selected from among a common set of functions, which are listed
in Table 4.3 and illustrated graphically in Figure 4.4.

Algorithms can be classified based on their big-O function. The various classes
are commonly named based upon the dominant term. A logarithmic algorithm is
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f(-) | Common Name
1 constant
logn logarithmic
n linear
nlogn log linear
n? quadratic
n? cubic
a™ exponential

Table 4.3: Common big-O functions listed from smallest to largest order of magnitude.
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Figure 4.4: Growth rates of the common time-complexity functions.

any algorithm whose time-complexity is O(log, n). These algorithms are generally
very efficient since log, n will increase more slowly than n. For many problems
encountered in computer science a will typically equal 2 and thus we use the no-
tation logn to imply log, n. Logarithms of other bases will be explicitly stated.
Polynomial algorithms with an efficiency expressed as a polynomial of the form

W™ + Q1™ 4+ L+ aan® + ain + ag
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4.1.2

are characterized by a time-complexity of O(n™) since the dominant term is the
highest power of n. The most common polynomial algorithms are linear (m = 1),
quadratic (m = 2), and cubic (m = 3). An algorithm whose efficiency is char-
acterized by a dominant term in the form a” is called exponential. Exponential
algorithms are among the worst algorithms in terms of time-complexity.

Evaluating Python Code

As indicated earlier, when evaluating the time complexity of an algorithm or code
segment, we assume that basic operations only require constant time. But what
exactly is a basic operation? The basic operations include statements and func-
tion calls whose execution time does not depend on the specific values of the data
that is used or manipulated by the given instruction. For example, the assignment
statement

X =5

is a basic instruction since the time required to assign a reference to the given
variable is independent of the value or type of object specified on the righthand
side of the = sign. The evaluation of arithmetic and logical expressions

y = X
z X+Yy *x6
done = x > 0 and x < 100

are basic instructions, again since they require the same number of steps to perform
the given operations regardless of the values of their operands. The subscript
operator, when used with Python’s sequence types (strings, tuples, and lists) is
also a basic instruction.

Linear Time Examples
Now, consider the following assignment statement:

y = ex1l(n)

An assignment statement only requires constant time, but that is the time required
to perform the actual assignment and does not include the time required to execute
any function calls used on the righthand side of the assignment statement.

To determine the run time of the previous statement, we must know the cost of
the function call ex1(n). The time required by a function call is the time it takes
to execute the given function. For example, consider the ex1() function, which
computes the sum of the integer values in the range [0...n):

def ex1( n ):
total = 0
for i in range( n )
total += 1
return total
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Efficiency of String Operations. Most of the string operations have

a time-complexity that is proportional to the length of the string. For
most problems that do not involve string processing, string operations sel-
dom have an impact on the run time of an algorithm. Thus, in the text, we
assume the string operations, including the use of the print () function, only
require constant time, unless explicitly stated otherwise.

NOTE

The time required to execute a loop depends on the number of iterations per-
formed and the time needed to execute the loop body during each iteration. In this
case, the loop will be executed n times and the loop body only requires constant
time since it contains a single basic instruction. (Note that the underlying mech-
anism of the for loop and the range () function are both O(1).) We can compute
the time required by the loop as T'(n) = n % 1 for a result of O(n).

But what about the other statements in the function? The first line of the
function and the return statement only require constant time. Remember, it’s
common to omit the steps that only require constant time and instead focus on
the critical operations, those that contribute to the overall time. In most instances,
this means we can limit our evaluation to repetition and selection statements and
function and method calls since those have the greatest impact on the overall time
of an algorithm. Since the loop is the only non-constant step, the function ex1()
has a run time of O(n). That means the statement y = ex1(n) from earlier requires
linear time. Next, consider the following function, which includes two for loops:

def ex2( n ):
count = 0
for i in range( n )
count +=1
for j in range( n )
count +=1
return count

To evaluate the function, we have to determine the time required by each loop.
The two loops each require O(n) time as they are just like the loop in function
ex1() earlier. If we combine the times, it yields T'(n) = n+ n for a result of O(n).

Quadratic Time Examples

When presented with nested loops, such as in the following, the time required by
the inner loop impacts the time of the outer loop.

def ex3( n ):
count = 0
for i in range( n
for j in range(
count +=1
return count

)
n)
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Both loops will be executed n, but since the inner loop is nested inside the outer
loop, the total time required by the outer loop will be T'(n) = n * n, resulting in
a time of O(n?) for the ex3() function. Not all nested loops result in a quadratic
time. Consider the following function:

def ex4( n ):
count = 0
for i in range( n )
for j in range( 25 )
count +=1
return count

which has a time-complexity of O(n). The function contains a nested loop, but
the inner loop executes independent of the size variable n. Since the inner loop
executes a constant number of times, it is a constant time operation. The outer
loop executes n times, resulting in a linear run time. The next example presents a
special case of nested loops:

def ex5( n ):
count = 0
for i in range( n )
for j in range( i+l )
count +=1
return count

How many times does the inner loop execute? It depends on the current it-
eration of the outer loop. On the first iteration of the outer loop, the inner loop
will execute one time; on the second iteration, it executes two times; on the third
iteration, it executes three times, and so on until the last iteration when the inner
loop will execute n times. The time required to execute the outer loop will be the
number of times the increment statement count += 1 is executed. Since the inner
loop varies from 1 to n iterations by increments of 1, the total number of times
the increment statement will be executed is equal to the sum of the first n positive
integers:

nn+1) n?+n

T =="%—"="3

which results in a quadratic time of O(n?).

Logarithmic Time Examples

The next example contains a single loop, but notice the change to the modification
step. Instead of incrementing (or decrementing) by one, it cuts the loop variable
in half each time through the loop.

def ex6( n ):
count = 0
i=n
while i >=1 :
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count +=1
i=1//2
return count

To determine the run time of this function, we have to determine the number of
loop iterations just like we did with the earlier examples. Since the loop variable is
cut in half each time, this will be less than n. For example, if n equals 16, variable
i will contain the following five values during subsequent iterations (16, 8, 4, 2, 1).

Given a small number, it’s easy to determine the number of loop iterations.
But how do we compute the number of iterations for any given value of n? When
the size of the input is reduced by half in each subsequent iteration, the number
of iterations required to reach a size of one will be equal to

[logyn] +1

or the largest integer less than logs n, plus 1. In our example of n = 16, there are
logy 16 + 1, or four iterations. The logarithm to base a of a number n, which is
normally written as y = log,n, is the power to which a must be raised to equal
n, n = a¥. Thus, function ex6() requires O(logn) time. Since many problems in
computer science that repeatedly reduce the input size do so by half, it’s not un-
common to use logn to imply log, n when specifying the run time of an algorithm.

Finally, consider the following definition of function ex7(), which calls ex6 ()
from within a loop. Since the loop is executed n times and function ex6 () requires
logarithmic time, ex7 () will have a run time of O(nlogn).

def ex7( n ):
count = 0
for i in range(
count += ex6(
return count

)
)

n
n

Different Cases

Some algorithms can have run times that are different orders of magnitude for
different sets of inputs of the same size. These algorithms can be evaluated for
their best, worst, and average cases. Algorithms that have different cases can
typically be identified by the inclusion of an event-controlled loop or a conditional
statement. Consider the following example, which traverses a list containing integer
values to find the position of the first negative value. Note that for this problem,
the input is the collection of n values contained in the list.

def findNeg( intList ):
n = len(intList)
for i in range( n )
if intList[i] < O :
return i
return None
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4.2

At first glance, it appears the loop will execute n times, where n is the size of
the list. But notice the return statement inside the loop, which can cause it to
terminate early. If the list does not contain a negative value,

[ 72, 4, 90, 56, 12, 67, 43, 17, 2, 86, 33 ]
findNeg( L )

©
LIl

the return statement inside the loop will not be executed and the loop will ter-
minate in the normal fashion from having traversed all n times. In this case, the
function requires O(n) time. This is known as the worst case since the function
must examine every value in the list requiring the most number of steps. Now
consider the case where the list contains a negative value in the first element:

[ -12, 50, 4, 67, 39, 22, 43, 2, 17, 28 ]
findNeg( L )

-
o

There will only be one iteration of the loop since the test of the condition by the
if statement will be true the first time through and the return statement inside
the loop will be executed. In this case, the findNeg() function only requires O(1)
time. This is known as the best case since the function only has to examine the
first value in the list requiring the least number of steps.

The average case is evaluated for an expected data set or how we expect the
algorithm to perform on average. For the findNeg() function, we would expect the
search to iterate halfway through the list before finding the first negative value,
which on average requires n/2 iterations. The average case is more difficult to
evaluate because it’s not always readily apparent what constitutes the average
case for a particular problem.

In general, we are more interested in the worst case time-complexity of an
algorithm as it provides an upper bound over all possible inputs. In addition, we
can compare the worst case run times of different implementations of an algorithm
to determine which is the most efficient for any input.

Evaluating the Python List

We defined several abstract data types for storing and using collections of data in
the previous chapters. The next logical step is to analyze the operations of the
various ADTs to determine their efficiency. The result of this analysis depends on
the efficiency of the Python list since it was the primary data structure used to
implement many of the earlier abstract data types.

The implementation details of the list were discussed in Chapter 2. In this
section, we use those details and evaluate the efficiency of some of the more common
operations. A summary of the worst case run times are shown in Table 4.4.
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List Operation | Worst Case
v = list() 0(1)
v=[0]%n O(n)
v[i] = x 0(1)
v.append (x) O(n)
v.extend (w) O(n)
v.insert(x) O(n)
v.pop() O(n)
traversal O(n)

Table 4.4: Worst case time-complexities for the more common list operations.

List Traversal

A sequence traversal accesses the individual items, one after the other, in order to
perform some operation on every item. Python provides the built-in iteration for
the list structure, which accesses the items in sequential order starting with the
first item. Consider the following code segment, which iterates over and computes
the sum of the integer values in a list:

sum = 0
for value in valuelList :
sum = sum + value

To determine the order of complexity for this simple algorithm, we must first
look at the internal implementation of the traversal. Iteration over the contiguous
elements of a 1-D array, which is used to store the elements of a list, requires a
count-controlled loop with an index variable whose value ranges over the indices
of the subarray. The list iteration above is equivalent to the following;:

sum = 0
for i in range( len(valuelList) )
sum = sum + valuelList[i]

Assuming the sequence contains n items, it’s obvious the loop performs n it-
erations. Since all of the operations within the loop only require constant time,
including the element access operation, a complete list traversal requires O(n) time.
Note, this time establishes a minimum required for a complete list traversal. It
can actually be higher if any operations performed during each iteration are worse
than constant time, unlike this example.

List Allocation

Creating a list, like the creation of any object, is considered an operation whose
time-complexity can be analyzed. There are two techniques commonly used to
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create a list:

temp = list()
valueList = [ 0 ] * n

The first example creates an empty list, which can be accomplished in constant
time. The second creates a list containing n elements, with each element initialized
to 0. The actual allocation of the n elements can be done in constant time, but
the initialization of the individual elements requires a list traversal. Since there
are n elements and a traversal requires linear time, the allocation of a vector with
n elements requires O(n) time.

Appending to a List

The append() operation adds a new item to the end of the sequence. If the
underlying array used to implement the list has available capacity to add the new
item, the operation has a best case time of O(1) since it only requires a single
element access. In the worst case, there are no available slots and the array has to
be expanded using the steps described in Section 2.2. Creating the new larger array
and destroying the old array can each be done in O(1) time. To copy the contents
of the old array to the new larger array, the items have to be copied element by
element, which requires O(n) time. Combining the times from the three steps
yields a time of T'(n) = 1+ 1 + n and a worst case time of O(n).

Extending a List

The extend() operation adds the entire contents of a source list to the end
of the destination list. This operation involves two lists, each of which have
their own collection of items that may be of different lengths. To simplify the
analysis, however, we can assume both lists contain n items. When the destination
list has sufficient capacity to store the new items, the entire contents of the source
list can be copied in O(n) time. But if there is not sufficient capacity, the under-
lying array of the destination list has to be expanded to make room for the new
items. This expansion requires O(n) time since there are currently n items in the
destination list. After the expansion, the n items in the source list are copied to
the expanded array, which also requires O(n) time. Thus, in the worst case the
extend operation requires 7'(n) = n +n = 2n or O(n) time.

Inserting and Removing ltems

Inserting a new item into a list is very similar to appending an item except the new
item can be placed anywhere within the list, possibly requiring a shift in elements.
An item can be removed from any element within a list, which may also involve
shifting elements. Both of these operations require linear time in the worst case,
the proof of which is left as an exercise.
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4.3 Amortized Cost

Amortized Cost

The append () operation of the list structure introduces a special case in algorithm
analysis. The time required depends on the available capacity of the underlying ar-
ray used to implement the list. If there are available slots, a value can be appended
to the list in constant time. If the array has to be expanded to make room for
the new value, however, the append operation takes linear time. When the array
is expanded, extra capacity is added that can be used to add more items without
having to immediately expand the array. Thus, the number of times the append ()
operation actually requires linear time in a sequence of n operations depends on
the strategy used to expand the underlying array. Consider the problem in which
a sequence of n append operations are performed on an initially empty list, where
n is a power of 2.

L = list()
for i in range( 1, n+l )
L.append( i )

Suppose the array is doubled in capacity each time it has to be expanded and
assume the size of the underlying array for an empty list has the capacity for a
single item. We can tally or compute the total running time for this problem by
considering the time required for each individual append operation. This approach
is known as the aggregate method since it computes the total from the individual
operations.

Table 4.5 illustrates the aggregate method when applied to a sequence of 16 ap-
pend operations. s; represents the time required to physically store the i** value
when there is an available slot in the array or immediately after the array has been
expanded. Storing an item into an array element is a constant time operation. e;
represents the time required to expand the array when it does not contain available
capacity to store the item. Based on our assumptions related to the size of the
array, an expansion only occurs when ¢ — 1 is a power of 2 and the time incurred
is based on the current size of the array (i — 1). While every append operation
entails a storage cost, relatively few require an expansion cost. Note that as the
size of n increases, the distance between append operations requiring an expansion
also increases.

Based on the tabulated results in Table 4.5, the total time required to perform
a sequence of 16 append operations on an initially empty list is 31, or just under
2n. This results from a total storage cost (s;) of 16 and a total expansion cost
(e;) of 15. It can be shown that for any n, the sum of the storage and expansion
costs, s; + e;, will never be more than 7'(n) = 2n. Since there are relatively few
expansion operations, the expansion cost can be distributed across the sequence
of operations, resulting in an amortized cost of T'(n) = 2n/n or O(1) for the
append operation.

Amortized analysis is the process of computing the time-complexity for a
sequence of operations by computing the average cost over the entire sequence. For
this technique to be applied, the cost per operation must be known and it must
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i | s; | e | Size List Contents

1|1]-] 1

2 [1|1] 2

3|1 ]2 4 [z

sl1]-]

s|1|4| s |G2BlABITT]

6| 1|-| s |[2lals]e] [

701 -| 8 |[t]2]3][4]5]6]7] ]

8 | 1] -] 8 |[[1]2]3]4]5]6]7]8]

o |1|s| 16 |[2[3als 67 [s[o] T[T T 1]
10| 1] - | 16 |[l2[s]als]elr]s]ow] [ [ [
11| -] 16 |[1]2]3]4]5]6]7]8]ofwofua] | | [ [ |
121 -| 16 ||[1]2]3]4]5]6]7][s8]owofunfie] | [ | |
1301 -1] 16 |[1]2]3]4]5]6]7]8]9fwofr1f1213] [ [ |
14 1] -] 16 |[1]2]3]4]5]6]7]8]9]r0[11]12]13]14] [ |
151 -| 16 [[1]2]3]4]5]6]|7]8]9]10[11]12]13[14]15] |
16 | 1| -] 16 |[1]2]3]4][5]6]7]8]9]10[11]12]13]14[15[16]

Table 4.5: Using the aggregate method to compute the total run time for a sequence of
16 append operations.

vary in which many of the operations in the sequence contribute little cost and
only a few operations contribute a high cost to the overall time. This is exactly
the case with the append () method. In a long sequence of append operations, only
a few instances require O(n), while many of them are O(1). The amortized cost
can only be used for a long sequence of append operations. If an algorithm used a
single append operation, the cost for that one operation is still O(n) in the worst
case since we do not know if that’s the instance that causes the underlying array
to be expanded.

Amortized Cost Is Not Average Case Time. Do not confuse amor-

tized cost with that of average case time. In average case analysis,
the evaluation is done by computing an average over all possible inputs and
sometimes requires the use of statistics. Amortized analysis computes an
average cost over a sequence of operations in which many of those opera-
tions are “cheap” and relatively few are “expensive” in terms of contributing
to the overall time.

CAUTION
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4.4 Evaluating the Set ADT

We can use complexity analysis to determine the efficiency of the Set ADT opera-
tions as implemented in Section 3.1. For convenience, the relevant portions of that
implementation are shown again in Listing 4.1 on the next page. The evaluation is
quite simple since the ADT was implemented using the list and we just evaluated
the methods for that structure. Table 4.6 provides a summary of the worst case
time-complexities for those operations implemented earlier in the text.

Operation Worst Case
s = Set() 0O(1)
len(s) 0(1)
x in s O(n)
s.add(x) O(n)
s.isSubset0f (t) O(n?)
s == O(n?)
s.union(t) O(n?)
traversal O(n)

Table 4.6: Time-complexities for the Set ADT implementation using an unsorted list.

Simple Operations

Evaluating the constructor and length operation is straightforward as they simply
call the corresponding list operation. The __contains__ method, which determines
if an element is contained in the set, uses the in operator to perform a linear
search over the elements stored in the underlying list. The search operation, which
requires O(n) time, will be presented in the next section and we postpone its
analysis until that time. The add() method also requires O(n) time in the worst
case since it uses the in operator to determine if the element is unique and the
append () method to add the unique item to the underlying list, both of which
require linear time in the worst case.

Operations of Two Sets

The remaining methods of the Set class involve the use of two sets, which we label
A and B, where A is the self set and B is the argument passed to the given
method. To simplify the analysis, we assume each set contains n elements. A more
complete analysis would involve the use of two variables, one for the size of each
set. But the analysis of this more specific case is sufficient for our purposes.

The isSubset0f () method determines if A is a subset of B. It iterates over
the n elements of set A, during which the in operator is used to determine if the
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Listing 4.1 A partial listing of the 1inearset . py module from Listing 3.1.

class Set :

def __init__( self ):
self._theElements = list()

def __len__( self ):
return len( self._theElements )

def __contains__( self, element ):
return element in self._theElements

def add( self, element ):
if element not in self :
self._theElements.append( element )

def remove( self, element ):
assert element in self, "The element must be in the set."
self._theElements.remove( item )

def __eq__( self, setB ):
if len( self ) !'= len( setB )
return False
else :
return self.isSubsetOf( setB )

def isSubsetOf( self, setB ):
for element in self :
if element not in setB :
return False
return True

def union( self, setB ):
newSet = Set()
newSet._theElements.extend( self._theElements )
for element in setB :
if element not in self :
newSet._theElements.append( element )
return newSet

given element is a member of set B. Since there are n repetitions of the loop and
each use of the in operator requires O(n) time, the isSubset0f () method has a
quadratic run time of O(n?). The set equality operation is also O(n?) since it calls
isSubset0f () after determining the two sets are of equal size.

Set Union Operation

The set union() operation creates a new set, C, that contains all of the unique
elements from both sets A and B. It requires three steps. The first step creates
the new set C, which can be done in constant time. The second step fills set C
with the elements from set A, which requires O(n) time since the extend() list
method is used to add the elements to C. The last step iterates over the elements
of set B during which the in operator is used to determine if the given element
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4.5 Application: The Sparse Matrix

is a member of set A. If the element is not a member of set A, it’s added to
set C' by applying the append() list method. We know from earlier the linear
search performed by the in operator requires O(n) time and we can use the O(1)
amortized cost of the append () method since it is applied in sequence. Given that
the loop is performed n times and each iteration requires n + 1 time, this step
requires O(n?) time. Combining the times for the three steps yields a worst case
time of O(n?).

Application: The Sparse Matrix

A matrix containing a large number of zero elements is called a sparse matriz.
Sparse matrices are very common in scientific applications, especially those dealing
with systems of linear equations. A sparse matrix is formally defined to be an mxn
matrix that contains k non-zero elements such that £ < m xn. The 2-D array data
structure used to implement the Matrix ADT in Chapter 2 works well for general
matrices. But when used to store huge sparse matrices, large amounts of memory
can be wasted and the operations can be inefficient since the zero elements are also
stored in the 2-D array.

Consider the sample 5 x 8 sparse matrix in Figure 4.5. Is there a different
structure or organization we can use to store the elements of a sparse matrix that
does not waste space? One approach is to organize and store the non-zero elements
of the matrix within a single list instead of a 2-D array.

Figure 4.5: A sample sparse matrix with zero elements indicated with dots.

List-Based Implementation

In this section, we define and implement a class for storing and working with sparse
matrices in which the non-zero elements are stored in a list. The operations of a
sparse matrix are the same as those for a general matrix and many of them can be
implemented in a similar fashion as was done for the Matrix class in Listing 2.3.
This would be sufficient if our only objective was to reduce the storage cost, but we
can take advantage of only storing the non-zero elements to improve the efficiency of
several of the sparse matrix operations. The implementation of the SparseMatrix
class is provided in Listing 4.2 on the next page. Note the use of the new class
name to distinguish this version from the original Matrix ADT and to indicate it is
meant for use with sparse matrices. A sample instance of the class that corresponds
to the sparse matrix from Figure 4.5 is illustrated in Figure 4.6.

115



116 CHAPTER 4  Algorithm Analysis

(RS (Wl The sparsematrix.py module.

1 # Implementation of the Sparse Matrix ADT using a list.

O~NO O WwN

11
12
13
14
15
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21
22
23
24
25
26
27
28
29
30
31
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34
35
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37
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39
40
41
42
43
44
45
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48
49
50
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52
53
54

class SparseMatrix :

# Create a sparse matrix of size numRows x numCols initialized to 0.
def __init__( self, numRows, numCols ):

self._numRows = numRows

self._numCols = numCols

self._elementlList = list()

# Return the number of rows in the matrix.
def numRows( self ):
return self._numRows

# Return the number of columns in the matrix.
def numCols( self ):
return self._numCols

# Return the value of element (1, j): x[1,]]
def __getitem__( self, ndxTuple ):

# Set the value of element (i,j) to the value s: x[i,j] = s
def __setitem__( self, ndxTuple, scalar ):
ndx = self._findPosition( ndxTuple[0], ndxTuple[l] )

if ndx is not None : # if the element is found in the list.
if scalar !'= 0.0 :
self._elementList[ndx].value = scalar
else :
self._elementList.pop( ndx )
else : # if the element is zero and not in the list.
if scalar != 0.0 :

element = _MatrixElement( ndxTuple[0], ndxTuple[l], scalar )
self._elementList.append( element )

# Scale the matrix by the given scalar.
def scaleBy( self, scalar ):
for element in self._elementList :
element.value *= scalar

# The additional methods should be placed here.....
# def __add__( self, rhsMatrix ):
# def __sub__( self, rhsMatrix ):
# def __mul__( self, rhsMatrix ):

# Helper method used to find a specific matrix element (row,col) in the
# list of non-zero entries. None is returned if the element is not found.
def _findPosition( self, row, col ):

n = len( self._elementList )

for i in range( n )

if row == self._elementList[i].row and \
col == self._elementList[i].col:
return i # return the index of the element if found.
return None # return None when the element is zero.
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55 # Storage class for holding the non-zero matrix elements.
56 class _MatrixElement:

57
58
59
60

def __init__( self, row, col, value ):
self.row = row
self.col = col
self.value = value

Constructor

The constructor defines three attributes for storing the data related to the sparse
matrix. The _elementList field stores MatrixElement objects representing the
non-zero elements. Instances of the storage class contain not only the value for a
specific element but also the row and column indices indicating its location within
the matrix. The numRows and _numCols fields are used to store the dimensions of
the matrix. This information cannot be obtained from the element list as was done
with the Array2D used in the implementation of the Matrix ADT in Chapter 2.

Helper Method

Since the element list only contains the non-zero entries, accessing an individual
element is no longer as simple as directly referencing an element of the rectan-
gular grid. Instead, we must search through the list to locate a specific non-zero
element. The helper method _findPosition() performs this linear search by iter-
ating through the element list looking for an entry with the given row and column
indices. If found, it returns the list index of the cell containing the element; oth-
erwise, None is returned to indicate the absence of the element.

/ AN - ( ) .
elementList 0| e _MatrixElement

. row col value

numRows e @
:

nuols
a , \
SparseMatrix a1 e \
LG @)
S a(@0n)

w

[ )
g
()

N

(¢,

A
B
a

/

N

~
®
H
ﬂ
B
/

N

©

[ ]
a
H
B

/

Figure 4.6: A list of MatrixElement objects representing a sparse matrix.
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Modifying an Element

The __setitem__ method for the SparseMatrix class is a bit more involved than
that for the Matrix class. The value of an element cannot be directly set as was
done when using the 2-D array. Instead, there are four possible conditions:

1. The element is in the list (and thus non-zero) and the new value is non-zero.

2. The element is in the list, but the new value is zero, turning the element into
a zero element.

3. The element is not currently in the list and the new value is non-zero.

4. The element is not currently in the list, and the new value is zero.

The step in implementing the __setitem__ method, as shown in lines 23-33 of
Listing 4.2, is to determine if the element is in the list using the _findPosition()
helper method. If the entry is in the list, we either change the corresponding
element to the new value if it is non-zero or we remove the entry from the list
when the new value is zero. On the other hand, if there is no entry for the given
element, then a new MatrixElement object must be created and appended to the
list. Of course, this is only done if the new value is non-zero.

Matrix Scaling

Scaling a matrix requires multiplying each element of the matrix by a given scale
factor. Since the zero elements of the matrix are not affected by the scale factor,
the implementation of this operation for the sparse matrix is as simple as traversing
the list of MatrixElement objects and scaling the corresponding value.

Matrix Addition

In the add () method of the Matrix class implemented in Chapter 2, we iterated
over the 2-D array and added the values, element by element, and stored the
results in the corresponding element of the new matrix. We could use the same
loop structure shown here for the SparseMatrix class:

# Add the corresponding elements in the two matrices.
for r in range( self.numRows() )
for c in range( self.numCols() )
newMatrix[ r, ¢ 1 = self[ r, ¢ 1 + rhsMatrix[ r, c ]
return newMatrix

Given a matrix of size n X n, this implementation of the add operation requires
O(n?) time. If the sparse matrix contains a significant number of zero elements,
this can be inefficient. Instead, only the non-zero elements contained in the two
sparse matrices must be considered when adding to matrices. The nested loops can
be replaced with two separate loops to reduce the number of required iterations.
The new solution for sparse matrix addition requires four steps:
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. Verify the size of the two matrices to ensure they are the same as required by

matrix addition.

. Create a new SparseMatrix object with the same number of rows and columns

as the other two.
Duplicate the elements of the self matrix and store them in the new matrix.

Iterate over the element list of the righthand side matrix (rhsMatrix) to add
the non-zero values to the corresponding elements in the new matrix.

The implementation of the add operation is provided in Listing 4.3. The first

two steps of the add operation are straightforward. The third step of copying the
elements of the self matrix to the new matrix requires a list duplication, which is
handled by the first loop. The second loop handles the fourth step outlined above

by

iterating over the list of MatrixElement objects in the rhsMatrix and adding

their values to the corresponding values in the new sparse matrix. Note the use
of the _getitem_ _ and __setitem__ methods in the second loop. This is necessary
since the two methods properly manage any zero elements that may currently exist
in the newMatrix or that may result after adding corresponding elements.

Listing 4.3 Implementation of the SparseMatrix add operation.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

lass

C
# ...

def
a

n

f

f

r

SparseMatrix :
__add__( self, rhsMatrix ):
ssert rhsMatrix.numRows() == self.numRows() and \

rhsMatrix.numCols() == self.numCols(), \
"Matrix sizes not compatible for the add operation."

# Create the new matrix.
ewMatrix = SparseMatrix( self.numRows(), self.numCols() )

# Duplicate the lhs matrix. The elements are mutable, thus we must

# create new objects and not simply copy the references.

or element in self._elementList :

dupElement = _MatrixElement(element.row, element.col, element.value)
newMatrix._elementList.append( dupElement )

# Iterate through each non-zero element of the rhsMatrix.
or element in rhsMatrix._elementList :
# Get the value of the corresponding element in the new matrix.
value = newMatrix[ element.row, element.col ]
value += element.value
# Store the new value back to the new matrix.
newMatrix[ element.row, element.col ] = value

# Return the new matrix.
eturn newMatrix
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4.5.2

Efficiency Analysis

To evaluate the various operations of the sparse matrix, we can assume a square
n X n matrix since this would be the worst possible case. We begin with the
_findPosition() helper method, which performs a sequential search over the list
of non-zero entries. The worst case occurs when every item in the list is examined.
But how many iterations does that require? It depends on the size of the element
list. From the definition of a sparse matrix, we know it contains k non-zero elements
such that k < n2. Thus, the worst case run time of the helper method is O(k).

The __setitem__ method calls _findPosition(), which requires k time. It
then changes the value of the target entry, which is a constant time operation, or
either removes an entry from the list or appends a new entry. The list operations
require k time in the worst case, resulting in an overall time of O(k) for the set
operation. The __getitem__ method can be evaluated in the same fashion and also
has a worst case time of O(k).

To evaluate the operations that manipulate two SparseMatrix objects, we can
specify that both matrices are of the same size or that k will represent the size
of the larger of the two lists. Computing the worst case time for the new add ()
method requires that we first determine the complexity of the individual steps.

e The size verification and new matrix creation are constant steps.

e To duplicate the entries of the lefthand side sparse matrix requires k time
since append () has an amortized cost of O(1).

e The second loop iterates over the element list of the righthand side matrix,
which we have assumed also contains k elements. Since the get and set element
operations used within the loop each require & time in the worst case, the loop
requires 2k x k or 2k? time.

Combining this with the time for the previous steps, the add operation is O(k?) in
the worst case. Is this time better than that for the add operation from the Matrix
class implemented as a 2-D array? That depends on the size of k. If there were
no zero elements in either matrix, then k& = n?, which results in a worst case time
of O(n*). Remember, however, this implementation is meant to be used with a
sparse matrix in which £ < m x n. In addition, the add operation only depends on
the size of the element list, k. Increasing the value of m or n does not increase the
size of k. For the analysis of this algorithm, m and n simply provide a maximum
value for k and are not variables in the equation.

The use of a list as the underlying data structure to store the non-zero elements
of a sparse matrix is a much better implementation than the use of a 2-D array as
it can save significant storage space for large matrices. On the other hand, it intro-
duces element access operations that are more inefficient than when using the 2-D
array. Table 4.7 provides a comparison of the worst case time-complexities for sev-
eral of the operations of the Matrix class using a 2-D array and the SparseMatrix
class using a list. In later chapters, we will further explore the Sparse Matrix ADT
and attempt to improve the time-complexities of the various operations.
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Operation Matrix | Sparse Matrix
constructor O(n?) 0O(1)
s .numRows () O(1) 0(1)
s.numCols () O(1) O(1)
s.scaleBy(x) O(n?) O(k)
x = sli,j] O(1) O(k)
s[i,j] = x 0(1) O(k)
r=s+t O(n?) O(k?)

Table 4.7: Comparison of the worst case time-complexities for the Matrix class imple-
mented using a 2-D array and the SparseMatrix class using a list.

Exercises

4.1 Arrange the following expressions from slowest to fastest growth rate.

nlogon 4" klogyn  5n?  40logyn log,n  12n°

4.2 Determine the O(-) for each of the following functions, which represent the
number of steps required for some algorithm.

(a) T(n) =n®+400n +5 (e) T(n) = 3(2") +n® + 1024
(b) T'(n) =6Tn+ 3n (f) T'(n,k) = kn +logk

(c) T'(n) = 2n+ dnlogn + 100 (g) T(n,k) =9n+ klogn + 1000
(d) T(n) =logn + 2n? 4 55

4.3 What is the time-complexity of the printCalendar() function implemented
in Exercise 1.37

4.4 Determine the O(-) for the following Set operations implemented in Chapter 1:
difference(), intersect (), and remove().

4.5 What is the time-complexity of the proper subset test operation implemented
in Exercise 3.37

4.6 Prove or show why the worst case time-complexity for the insert() and
remove () list operations is O(n).
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4.7 Evaluate each of the following code segments and determine the O(-) for the

4.8

4.9

4.10

4.11

4.12

(a) sum = 0
for i in range( n )

best and worst cases. Assume an input size of n.

(c) for i in range( n )
if 1 %3 ==20 :

if 1 %2 == for j in range( n / 2 )
sum += i sum += j
elif i % 2 == 0 :
for j in range( 5 )
sum += j
(b) sum = 0 else :
1=n for j in range( n )
Whlle 1 >.0 . sum += _]
sum += i
i=1i7/2

The slice operation is used to create a new list that contains a subset of items
from a source list. Implement the slice() function:

def slice( thelList, first, last )

which accepts a list and creates a sublist of the values in theList. What is
the worst case time for your implementation and what is the best case time?

Implement the remaining methods of the SparseMatrix class: transpose(),
__getitem__, subtract(), and multiply().

Determine the worst case time-complexities for the SparseMatrix methods
implemented in the previous question.

Determine the worst case time-complexities for the methods of your
ReversiGameLogic class implemented in Programming Project 2.4.

Add Python operator methods to the SparseMatrix class that can be used in
place of the named methods for several of the operations.

Operator Method
__add__(rhsMatrix)
_mul__(rhsMatrix)

__sub__(rhsMatrix)

Current Method
add (rhsMatrix)
subtract (rhsMatrix)

multiply(rhsMatrix)

Programming Projects

4.1 The game of Life is defined for an infinite-sized grid. In Chapter 2, we defined
the Life Grid ADT to use a fixed-size grid in which the user specified the width
and height of the grid. This was sufficient as an illustration of the use of a 2-D
array for the implementation of the game of Life. But a full implementation
should allow for an infinite-sized grid. Implement the Sparse Life Grid ADT
using an approach similar to the one used to implement the sparse matrix.
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4.3

4.4

Programming Projects

m SparselLifeGrid(): Creates a new infinite-sized game grid. All cells in
the grid are initially set to dead.

m minRange(): Returns a 2-tuple (minrow, mincol) that contains the mini-
mum row index and the minimum column index that is currently occupied
by a live cell.

m maxRange(): Returns a 2-tuple (maxrow, maxcol) that contains the maxi-
mum row index and the maximum column index that is currently occupied
by a live cell.

m configure( coordList ): Configures the grid for evolving the first gen-
eration. The coordList argument is a sequence of 2-tuples with each
tuple representing the coordinates (7, ¢) of the cells to be set as alive. All
remaining cells are cleared or set to dead.

m clearCell(row, col): Clears the individual cell (row, col) and sets it
to dead. The cell indices must be within the valid range of the grid.

m setCell(row, col): Sets the indicated cell (row, col) to be alive. The
cell indices must be within the valid range of the grid.

m isLiveCell(row,col): Returns a boolean value indicating if the given
cell (row, col) contains a live organism. The cell indices must be within
the valid range of the grid.

m numLiveNeighbors(row, col): Returns the number of live neighbors for
the given cell (row, col). The neighbors of a cell include all of the cells
immediately surrounding it in all directions. For the cells along the border
of the grid, the neighbors that fall outside the grid are assumed to be dead.
The cell indices must be within the valid range of the grid.

Implement a new version of the gameoflife.py program to use your
SparseLifeGrid class from the previous question.

Repeat Exercise 2.5 from Chapter 2 but use your new version of the
gameoflife.py program from the previous question.

The digital grayscale image was introduced in Programming Project 2.3 and an
abstract data type was defined and implemented for storing grayscale images.
A color digital image is also a two-dimensional raster image, but unlike the
grayscale image, the pixels of a color image store data representing colors
instead of a single grayscale value. There are different ways to specify color,
but one of the most common is with the use of the discrete RGB color space.
Individual colors are specified by three intensity values or components within
the range [0...255], one for each of the three primary colors that represent
the amount of red, green, and blue light that must be added to produce the
given color. We can define the RGBColor class for use in storing a single color
in the discrete RGB color space.
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4.5

4.6

class RGBColor :
def __init__( self, red = 0, green = 0, blue =0 ):
self.red = red
self.green = green
self.blue = blue

Given the description of the operations for the Color Image ADT, implement
the abstract data type using a 2-D array that stores instances of the RGBColor
class. Note when setting the initial color in the constructor or when clearing
the image to a specific color, you can store aliases to one RGBColor object in
each element of the array.

m ColorImage(nrows, ncols): Creates a new instance that consists of
nrows and ncols of pixels each set to black.

m width(): Returns the width of the image.
m height(): Returns the height of the image.

m clear(color): Clears the entire image by setting each pixel to the given
RGB color.

m getitem(row, col): Returns the RGB color of the given pixel as an
RGBColor object. The pixel coordinates must be within the valid range.

m setitem(row, col, color): Setthe given pixel to the given RGB color.
The pixel coordinates must be within the valid range.

Color images can also be stored using three separate color channels in which
the values of each color component is stored in a separate data structure.
Implement a new version of the Color Image ADT using three 1-D arrays to
store the red, green, and blue components of each pixel. Apply the row-major
formula from Section 3.3 to map a specific pixel given by (row, col) to an
entry in the 1-D arrays.

A color image can be easily converted to a grayscale image by converting each
pixel of the color image, specified by the three components (R, G, B), to a
grayscale value using the formula

gray = round( 0.299 * R + 0.587 * G + 0.114 * B )

The proportions applied to each color component in the formula corresponds to
the levels of sensitivity with which humans see each of the three primary colors:
red, green and blue. Note the result from the equation must be converted
capped to an integer in the range [0...255]. Use the equation and implement
the function

def colorToGrayscale( colorImg ):

which accepts a ColorImage object as an argument and creates and returns a
new GrayscalelImage that is the grayscale version of the given color image.
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CHAPTER 5

Searching and Sorting

When people collect and work with data, they eventually want to search for specific
items within the collection or sort the collection for presentation or easy access.
Searching and sorting are two of the most common applications found in computer
science. In this chapter, we explore these important topics and study some of the
basic algorithms for use with sequence structures. The searching problem will be
discussed many times throughout the text as it can be applied to collections stored
using many different data structures, not just sequences. We will also further
explore the sorting problem in Chapters 12 and 13 with a discussion of more
advanced sorting algorithms.

Searching

Searching is the process of selecting particular information from a collection of
data based on specific criteria. You are familiar with this concept from your ex-
perience in performing web searches to locate pages containing certain words or
phrases or when looking up a phone number in the telephone book. In this text,
we restrict the term searching to refer to the process of finding a specific item in a
collection of data items.

The search operation can be performed on many different data structures. The
sequence search, which is the focus in this chapter, involves finding an item
within a sequence using a search key to identify the specific item. A key is
a unique value used to identify the data elements of a collection. In collections
containing simple types such as integers or reals, the values themselves are the keys.
For collections of complex types, a specific data component has to be identified as
the key. In some instances, a key may consist of multiple components, which is
also known as a compound key.
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5.1.1

The Linear Search

The simplest solution to the sequence search problem is the sequential or linear
search algorithm. This technique iterates over the sequence, one item at a time,
until the specific item is found or all items have been examined. In Python, a
target item can be found in a sequence using the in operator:

if key in theArray :

print( "The key is in the array." )
else :

print( "The key is not in the array." )

The use of the in operator makes our code simple and easy to read but it
hides the inner workings. Underneath, the in operator is implemented as a linear
search. Consider the unsorted 1-D array of integer values shown in Figure 5.1(a).
To determine if value 31 is in the array, the search begins with the value in the
first element. Since the first element does not contain the target value, the next
element in sequential order is compared to value 31. This process is repeated until
the item is found in the sixth position. What if the item is not in the array? For
example, suppose we want to search for value 8 in the sample array. The search
begins at the first entry as before, but this time every item in the array is compared
to the target value. It cannot be determined that the value is not in the sequence
until the entire array has been traversed, as illustrated in Figure 5.1(b).

(a) Searching for 31
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0 1 2 3 4 5 6 7 8 9 10

(b) Searching for 8
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Figure 5.1: Performing a linear search on an unsorted array: (a) the target item is found
and (b) the item is not in the array.

Finding a Specific Item

The function in Listing 5.1 implements the sequential search algorithm, which
results in a boolean value indicating success or failure of the search. This is the
same operation performed by the Python in operator. A count-controlled loop
is used to traverse through the sequence during which each element is compared
against the target value. If the item is in the sequence, the loop is terminated and
True is returned. Otherwise, a full traversal is performed and False is returned
after the loop terminates.
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Listing 5.1 Implementation of the linear search on an unsorted sequence.

1
2
3
4
5
6
7
8

def linearSearch( theValues, target )

n = len( theValues )
for i in range( n )
# If the target is in the ith element, return True
if theValues[i] == target
return True

return False # If not found, return False.

To analyze the sequential search algorithm for the worst case, we must first
determine what conditions constitute the worst case. Remember, the worst case
occurs when the algorithm performs the maximum number of steps. For a sequen-
tial search, that occurs when the target item is not in the sequence and the loop
iterates over the entire sequence. Assuming the sequence contains n items, the
linear search has a worst case time of O(n).

Searching a Sorted Sequence

A linear search can also be performed on a sorted sequence, which is a sequence
containing values in a specific order. For example, the values in the array illustrated
in Figure 5.2 are in ascending or increasing numerical order. That is, each value
in the array is larger than its predecessor.

Searching for 8
~~‘ ":‘ «“‘ "‘. "v "4,' \i "';

star%

0 1 2 3 4 5 6 7 8 9 10

Figure 5.2: The linear search on a sorted array.

A linear search on a sorted sequence works in the same fashion as that for
the unsorted sequence, with one exception. It’s possible to terminate the search
early when the value is not in the sequence instead of always having to perform a
complete traversal. For example, suppose we want to search for 8 in the array from
Figure 5.2. When the fourth item, which is value 10, is examined, we know value 8
cannot be in the sorted sequence or it would come before 10. The implementation
of a linear search on a sorted sequence is shown in Listing 5.2 on the next page.

The only modification to the earlier version is the inclusion of a test to deter-
mine if the current item within the sequence is larger than the target value. If a
larger value is encountered, the loop terminates and False is returned. With the
modification to the linear search algorithm, we have produced a better version, but
the time-complexity remains the same. The reason is that the worst case occurs
when the value is not in the sequence and is larger than the last element. In this
case, we must still traverse the entire sequence of n items.
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Listing 5.2 Implementation of the linear search on a sorted sequence.

1
2
3
4
5
6
7
8
9
0
1

1
1

def sortedLinearSearch( theValues, item )

n = len( theValues )
for i in range( n )
# If the target is found in the ith element, return True
if theValues[i] == item :
return True
# If target is larger than the ith element, it's not in the sequence.
elif theValues[i] > item :
return False

return False # The item is not in the sequence.

Finding the Smallest Value

Instead of searching for a specific value in an unsorted sequence, suppose we wanted
to search for the smallest value, which is equivalent to applying Python’s min ()
function to the sequence. A linear search is performed as before, but this time we
must keep track of the smallest value found for each iteration through the loop, as
illustrated in Listing 5.3.

To prime the loop, we assume the first value in the sequence is the smallest
and start the comparisons at the second item. Since the smallest value can occur
anywhere in the sequence, we must always perform a complete traversal, resulting
in a worst case time of O(n).

(NS (LW VICA I Searching for the smallest value in an unsorted sequence.

1 def findSmallest( theValues ):

2 n = len( theValues )

3 # Assume the first item is the smallest value.

4 smallest = theValues[0]

5 # Determine if any other item in the sequence is smaller.

6 for i in range( 1, n )

7 if theList[i] < smallest :

8 smallest = theValues[i]

9

10 return smallest # Return the smallest found.
5.1.2 The Binary Search

The linear search algorithm for a sorted sequence produced a slight improvement
over the linear search with an unsorted sequence, but both have a linear time-
complexity in the worst case. To improve the search time for a sorted sequence,
we can modify the search technique itself.

Consider an example where you are given a stack of exams, which are in alpha-
betical order, and are asked to find the exam for “Jessica Roberts.” In performing
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this task, most people would not begin with the first exam and flip through one at
a time until the requested exam is found, as would be done with a linear search.
Instead, you would probably flip to the middle and determine if the requested exam
comes alphabetically before or after that one. Assuming Jessica’s paper follows al-
phabetically after the middle one, you know it cannot possibly be in the top half of
the stack. Instead, you would probably continue searching in a similar fashion by
splitting the remaining stack of exams in half to determine which portion contains
Jessica’s exam. This is an example of a divide and conquer strategy, which
entails dividing a larger problem into smaller parts and conquering the smaller
part.

Algorithm Description

The binary search algorithm works in a similar fashion to the process described
above and can be applied to a sorted sequence. The algorithm starts by examining
the middle item of the sorted sequence, resulting in one of three possible conditions:
the middle item is the target value, the target value is less than the middle item,
or the target is larger than the middle item. Since the sequence is ordered, we
can eliminate half the values in the list when the target value is not found at the
middle position.

Consider the task of searching for value 10 in the sorted array from Figure 5.2.
We first determine which element contains the middle entry. As illustrated in
Figure 5.3, the middle entry contains 18, which is greater than our target of 10.
Thus, we can discard the upper half of the array from consideration since 10 cannot
possibly be in that part. Having eliminated the upper half, we repeat the process
on the lower half of the array. We then find the middle item of the lower half and
compare its value to the target. Since that entry, which contains 5, is less than the
target, we can eliminate the lower fourth of the array. The process is repeated on
the remaining items. Upon finding value 10 in the middle entry from among those
remaining, the process terminates successfully. If we had not found the target, the
process would continue until either the target value was found or we had eliminated
all values from consideration.

Figure 5.3: Searching for 10 in a sorted array using the binary search.

129



130

CHAPTER 5 Searching and Sorting

Implementation

The Python implementation of the binary search algorithm is provided in List-
ing 5.4. The variables 1low and high are used to mark the range of elements in the
sequence currently under consideration. When the search begins, this range is the
entire sequence since the target item can be anywhere within the sequence. The
first step in each iteration is to determine the midpoint of the sequence. If the
sequence contains an even number of elements, the mid point will be chosen such
that the left sequence contains one less item than the right. Figure 5.4 illustrates
the positioning of the low, high, and mid markers as the algorithm progresses.

(RS (LW VICK I Implementation of the binary search algorithm.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21

def binarySearch( theValues, target )

# Start with the entire sequence of elements.
low = 0
high = len(theValues) - 1

# Repeatedly subdivide the sequence in half until the target is found.
while low <= high :
# Find the midpoint of the sequence.
mid = (high + low) // 2
# Does the midpoint contain the target?
if theValues[mid] == target :
return True
# Or does the target precede the midpoint?
elif target < theValues[mid]
high = mid - 1
# Or does it follow the midpoint?
else :
low = mid + 1

# If the sequence cannot be subdivided further, we're done.
return False

After computing the midpoint, the corresponding element in that position
is examined. If the midpoint contains the target, we immediately return True.
Otherwise, we determine if the target is less than the item at the midpoint or
greater. If it is less, we adjust the high marker to be one less than the mid-
point and if it is greater, we adjust the low marker to be one greater than the
midpoint. In the next iteration of the loop, the only portion of the sequence con-
sidered are those elements between the low and high markers, as adjusted. This
process is repeated until the item is found or the low marker becomes greater
than the high marker. This condition occurs when there are no items left to be
processed, indicating the target is not in the sorted sequence.

Run Time Analysis

To evaluate the efficiency of the the binary search algorithm, assume the sorted se-
quence contains n items. We need to determine the maximum number of times the
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Figure 5.4: The steps performed by the binary search algorithm in searching for 10: (a)
initial range of items, (b) locating the midpoint, (c) eliminating the upper half, (d) midpoint
of the lower half, (e) eliminating the lower fourth, and (f) finding the target item.

while loop is executed. The worst case occurs when the target value is not in the
sequence, the same as for the linear search. The difference with the binary search
is that not every item in the sequence has to be examined before determining the
target is not in the sequence, even in the worst case. Since the sequence is sorted,
each iteration of the loop can eliminate from consideration half of the remaining
values. As we saw earlier in Section 4.1.2, when the input size is repeatedly re-
duced by half during each iteration of a loop, there will be logn iterations in the
worst case. Thus, the binary search algorithm has a worst case time-complexity of
O(logn), which is more efficient than the linear search.

Sorting

Sorting is the process of arranging or ordering a collection of items such that each
item and its successor satisfy a prescribed relationship. The items can be simple
values, such as integers and reals, or more complex types, such as student records
or dictionary entries. In either case, the ordering of the items is based on the value
of a sort key. The key is the value itself when sorting simple types or it can be a
specific component or a combination of components when sorting complex types.
We encounter many examples of sorting in everyday life. Consider the listings of
a phone book, the definitions in a dictionary, or the terms in an index, all of which
are organized in alphabetical order to make finding an entry much easier. As we
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saw earlier in the chapter, the efficiency of some applications can be improved when
working with sorted lists. Another common use of sorting is for the presentation
of data in some organized fashion. For example, we may want to sort a class roster
by student name, sort a list of cities by zip code or population, rank order SAT
scores, or list entries on a bank statement by date.

Sorting is one of the most studied problems in computer science and extensive
research has been done in this area, resulting in many different algorithms. While
Python provides a sort() method for sorting a list, it cannot be used with an
array or other data structures. In addition, exploring the techniques used by some
of the sorting algorithms for improving the efficiency of the sort problem may
provide ideas that can be used with other types of problems. In this section, we
present three basic sorting algorithms, all of which can be applied to data stored
in a mutable sequence such as an array or list.

Bubble Sort

A simple solution to the sorting problem is the bubble sort algorithm, which re-
arranges the values by iterating over the list multiple times, causing larger values
to bubble to the top or end of the list. To illustrate how the bubble sort algorithm
works, suppose we have four playing cards (all of the same suit) that we want to
order from smallest to largest face value. We start by laying the cards out face up
on a table as shown here:

8% S5& 9% 3%

®® 9

%3 %S %6 %€

The algorithm requires multiple passes over the cards, with each pass starting
at the first card and ending one card earlier than on the previous iteration. During
each pass, the cards in the first and second positions are compared. If the first is
larger than the second, the two cards are swapped.

8% 5% 9% 3%

ONIOIIONIE)

%3 %S %6 %e

Next, the cards in positions two and three are compared. If the first one is larger
than the second, they are swapped. Otherwise, we leave them as they were.

5% 8 9% 3%

ONIGIONIE),

%G %38 %6 e

This process continues for each successive pair of cards until the card with the
largest face value is positioned at the end.
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S5 8 9% 3

®®19]|C

%G %8 %6 we

S5 8¢ 3%

OGO

%S %93 ¢

The next two passes over the cards are illustrated below. In the second pass the
card with the second largest face value is positioned in the next-to-last position.
In the third and final pass, the first two cards will be positioned correctly.

(Pass 2) Repeat the process on the first S 8 3%
three cards. Compare the 5 and 8. @ @
Since 5 is less than 8, leave them as is. ws g o
—
5% 8 3%
Compare the 8 and 3. Since 8 is larger
than 3, swap the two cards. @ @
%G %3 *C
Qr
5% 3%
The second largest card (8) is now in its
ordered position. @ @ @
%G %e
—~
(Pass 3) Repeat the process on the first 54 3
two cards. Compare the 5 and 3. Since @ @ @
5 is larger than 3, swap the two cards. s we

‘-’
After swapping the two cards, all of the
cards are now in their proper order, from @ @ @
smallest to largest.

Listing 5.5 provides a Python implementation of the bubble sort algorithm.
Figure 5.5 illustrates the swaps performed during the first pass of the algorithm
when applied to an array containing 11 integer values. Figure 5.6 shows the order-
ing of the values within the array after each iteration of the outer loop.

The efficiency of the bubble sort algorithm only depends on the number of keys
in the array and is independent of the specific values and the initial arrangement
of those values. To determine the efficiency, we must determine the total number
of iterations performed by the inner loop for a sequence containing n values. The
outer loop is executed n — 1 times since the algorithm makes n — 1 passes over the
sequence. The number of iterations for the inner loop is not fixed, but depends on
the current iteration of the outer loop. On the first pass over the sequence, the
inner loop executes n — 1 times; on the second pass, n — 2 times; on the third,
n — 3 times, and so on until it executes once on the last pass. The total number
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Figure 5.5: First complete pass of the bubble sort algorithm, which places 64 in its correct
position. Black boxes represent values being compared; arrows indicate exchanges.

q

Listing 5.5 Implementation of the bubble sort algorithm.

=

1 # Sorts a sequence in ascending order using the bubble sort algorithm.
2 def bubbleSort( theSeq ):
n = len( theSeq )
# Perform n-1 bubble operations on the sequence
for i in range( n - 1) :
# Bubble the largest item to the end.
for j in range( i + n - 1) :
if theSeq[j] > theSeqlj + 1] : # swap the j and j+1 items.
tmp = theSeql[j]
theSeq[j] = theSeql[j + 1]
theSeq[j + 1] = tmp

H O OO0 ~NOOO W
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Figure 5.6: Result of applying the bubble sort algorithm to the sample sequence. The
gray boxes show the values that are in order after each outer-loop traversal.

of iterations for the inner loop will be the sum of the first n — 1 integers, which
equals
n(n —1) 1, 1
5 —-n= 2n + 2n

resulting in a run time of O(n?). Bubble sort is considered one of the most in-
efficient sorting algorithms due to the total number of swaps required. Given an
array of keys in reverse order, a swap is performed for every iteration of the inner
loop, which can be costly in practice.

The bubble sort algorithm as implemented in Listing 5.5 always performs n
iterations of the inner loop. But what if the sequence is already in sorted order?

2
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In this case, there would be no need to sort the sequence. But our implementation
still performs all n? iterations because it has no way of knowing the sequence is
already sorted.

The bubble sort algorithm can be improved by having it terminate early and
not require it to perform all n? iterations when the sequence is in sorted order.
We can determine the sequence is in sorted order when no swaps are performed
by the if statement within the inner loop. At that point, the function can return
immediately without completing the remaining iterations. If a value is out of sorted
order, then it will either be smaller than its predecessor in the sequence or larger
than its successor at which point the condition of the if statement would be true.
This improvement, which is left as an exercise, introduces a best case that only
requires O(n) time when the initial input sequence is in sorted order.

Selection Sort

A second sorting algorithm, which improves on the bubble sort and works in a
fashion similar to what a human may use to sort a list of values, is known as
the selection sort. We can again use the set of playing cards to illustrate the
algorithm and start by placing five cards face up on a table that are to be sorted
in ascending order.

8¢ 5% 9 3% 6
®9]C|®
%3 %S 6 %e %9

Instead of swapping the cards as was done with the bubble sort, we are going
to scan through the cards and select the smallest from among those on the table
and place it in our hand. For our set of cards, we identify the 3 as the smallest:

8 5% 9% 3% G
®9]Q] ®
%3 %G 6 e %9

We pick up the 3 and place it in our hand, leaving the remaining cards on the
table:

3% 8 5& 9% 6
©) ®O|®
%»C 3 G %06 %9
our hand cards on the table

We repeat the process and identify the 5 as the next smallest face value:

8 S5 9% G
G®1O9] ®
%3 %S %6 %9

cards on the table
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We pick up the 5 and add it to proper sorted position, which will be on the right
side since there are no cards with a smaller face value left on the table.

S5&
C) 8 9% 6

E-¥s ®@|®

%8 %6 %9

our hand cards on the table

This process is continued until all of the cards have been picked up and placed
in our hand in the correct sorted order from smallest to largest.

pick up the next pick up the next pickup the last
smallest card (6) smallest card (8) card (9)

the resulting hand

The process we used to sort the set of five cards is similar to the approach used
by the selection sort algorithm. But when implementing insertion sort in code, the
algorithm maintains both the sorted and unsorted values within the same sequence
structure. The selection sort, which improves on the bubble sort, makes multiple
passes over the sequence, but unlike the bubble sort, it only makes a single swap
after each pass. The implementation of the selection sort algorithm is provided in
Listing 5.6.

Listing 5.6 Implementation of the selection sort algorithm.

1 # Sorts a sequence in ascending order using the selection sort algorithm.
2 def selectionSort( theSeq ):

0O ~NO Ol W

11
12
13
14
15
16
17
18

n = len( theSeq )
for i in range( n - 1 ):
# Assume the ith element is the smallest.
smallNdx = i
# Determine if any other element contains a smaller value.
for j in range( i + 1, n ):
if theSeql[j] < theSeq[smallNdx]
smallNdx = j

Swap the ith value and smallNdx value only if the smallest value 1is
not already in its proper position. Some implementations omit testing
the condition and always swap the two values.

smallNdx !=1i :

tmp = theSeq[i]

theSeq[i] = theSeq[smallNdx]

theSeq[smallNdx] = tmp

=h H H
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The process starts by finding the smallest value in the sequence and swaps it
with the value in the first position of the sequence. The second smallest value
is then found and swapped with the value in the second position. This process
continues positioning each successive value by selecting them from those not yet
sorted and swapping with the values in the respective positions. Figure 5.7 shows
the results after each iteration of the algorithm when applied to the sample array
of integers. The grayed boxes represent those items already placed in their proper
position while the black boxes show the two values that are swapped.

The selection sort, which makes n — 1 passes over the array to reposition n — 1
values, is also O(n?). The difference between the selection and bubble sorts is that
the selection sort reduces the number of swaps required to sort the list to O(n).

Insertion Sort

Another commonly studied sorting algorithm is the insertion sort. Continuing
with our analogy of sorting a set of playing cards to illustrate the sorting algorithms,
consider five cards stacked in a deck face up:

3%

®

e
the deck

We pick up the top card from the deck and place it in our hand:

8

%8
our hand the deck

Since this is the first card, there is no decision to be made as to its position.
We again pick up the top card from the deck and compare it to the card already
in our hand and insert it into its proper sorted position:

8
, 5%
(T @
%G

our hand the deck

After placing the 8 into our hand, the process is repeated. This time, we pick
up the 5 and find its position within our hand and insert it in the proper place:

9

©

6
our hand the deck
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Figure 5.7: Result of applying the selection sort algorithm to our sample array. The gray
boxes show the values that have been sorted; the black boxes show the values that are
swapped during each iteration of the algorithm.
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This process continues, one card at a time, until all of the cards have been removed
from the table and placed into our hand in their proper sorted position.

E 9.). 54
(Y (©
%6

pick up the next pick up the )
card on top (9) last card (6) the resulting hand

The insertion sort maintains a collection of sorted items and a collection of
items to be sorted. In the playing card analogy, the deck represents the collection
to be sorted and the cards in our hand represents those already sorted. When
implementing insertion sort in a program, the algorithm maintains both the sorted
and unsorted collections within the same sequence structure. The algorithm keeps
the list of sorted values at the front of the sequence and picks the next unsorted
value from the first of those yet to be positioned. To position the next item, the
correct spot within the sequence of sorted values is found by performing a search.
After finding the proper position, the slot has to be opened by shifting the items
down one position. A Python implementation of the insertion sort algorithm is
provided in Listing 5.7.

Listing 5.7 Implementation of the insertion sort algorithm.

1 # Sorts a sequence in ascending order using the insertion sort algorithm.
2 def insertionSort( theSeq ):

n = len( theSeq )
# Starts with the first item as the only sorted entry.
for i in range( 1, n )
# Save the value to be positioned.
value = theSeq[i]
# Find the position where value fits in the ordered part of the list.
pos = 1
while pos > 0 and value < theSeq[pos - 1]
# Shift the items to the right during the search.
theSeq[pos] = theSeq[pos - 1]
pos -=

# Put the saved value into the open slot.
theSeq[pos] = value

The insertionSort () function starts by assuming the first item is in its proper
position. Next, an iteration is performed over the remaining items so each value
can be inserted into its proper position within the sorted portion of the sequence.
The ordered portion of the sequence is at the front while those yet to be inserted
are at the end. The i loop index variable marks the separation point between the
two parts. The inner loop is used to find the insertion point within the sorted
sequence and at the same time, shifts the items down to make room for the next
item. Thus, the inner loop starts from the end of the sorted subsequence and
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works its way to the front. After finding the proper position, the item is inserted.
Figure 5.8 illustrates the application of this algorithm on an array of integer values.

The insertion sort is an example of a sorting algorithm in which the best and
worst cases are different. Determining the different cases and the corresponding
run times is left as an exercise.
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Figure 5.8: Result of applying the insertion sort algorithm to the sample array. The gray
boxes show values that have been sorted; the black boxes show the next value to be
positioned; and the lighter gray boxes with black text are the sorted values that have to be
shifted to the right to open a spot for the next value.
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5.3.1

Working with Sorted Lists

The efficiency of some algorithms can be improved when working with sequences
containing sorted values. We saw this earlier when performing a search using the
binary search algorithm on a sorted sequence. Sorting algorithms can be used to
create a sorted sequence, but they are typically applied to an unsorted sequence
in which all of the values are known and the collection remains static. In other
words, no new items will be added to the sequence nor will any be removed.

In some problems, like the set abstract data type, the collection does not remain
static but changes as new items are added and existing ones are removed. If a
sorting algorithm were applied to the underlying list each time a new value is
added to the set, the result would be highly inefficient since even the best sorting
algorithm requires O(n log n) time. Instead, the sorted list can be maintained as the
collection changes by inserting the new item into its proper position without having
to re-sort the entire list. Note that while the sorting algorithms from the previous
section all require O(n?) time in the worst case, there are more efficient sorting
algorithms (which will be covered in Chapter 12) that only require O(nlogn) time.

Maintaining a Sorted List

To maintain a sorted list in real time, new items must be inserted into their proper
position. The new items cannot simply be appended at the end of the list as they
may be out of order. Instead, we must locate the proper position within the list
and use the insert () method to insert it into the indicated position. Consider
the sorted list from Figure 5.3. If we want to add 25 to that list, then it must be
inserted at position 7 following value 23.

To find the position of a new item within a sorted list, a modified version of the
binary search algorithm can be used. The binary search uses a divide and conquer
strategy to reduce the number of items that must be examined to find a target
item or to determine the target is not in the list. Instead of returning True or
False indicating the existence of a value, we can modify the algorithm to return
the index position of the target if it’s actually in the list or where the value should
be placed if it were inserted into the list. The modified version of the binary search
algorithm is shown in Listing 5.8.

Note the change to the two return statements. If the target value is contained
in the list, it will be found in the same fashion as was done in the original version
of the algorithm. Instead of returning True, however, the new version returns its
index position. When the target is not in the list, we need the algorithm to identify
the position where it should be inserted.

Consider the illustration in Figure 5.9, which shows the changes to the three
variables low, mid, and high as the binary search algorithm progresses in searching
for value 25. The while loop terminates when either the low or high range variable
crosses the other, resulting in the condition low > high. Upon termination of the
loop, the low variable will contain the position where the new value should be
placed. This index can then be supplied to the insert () method to insert the new
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Listing 5.8 Finding the location of a target value using the binary search.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15

# Modified version of the binary search that returns the index within
# a sorted sequence indicating where the target should be located.

def findSortedPosition( thelList, target ):

low = 0
high = len(thelList) -1
while low <= high :
mid = (high + low) // 2
if thelList[mid] == target :
return mid # Index of the target.
elif target < thelList[mid]
high = mid - 1
else :
low = mid + 1

return low # Index where the target value should be.

5.3.2

value into the list. The findOrderedPosition() function can also be used with
lists containing duplicate values, but there is no guarantee where the new value
will be placed in relation to the other duplicate values beyond the proper ordering
requirement that they be adjacent.

Merging Sorted Lists

Sometimes it may be necessary to take two sorted lists and merge them to create
a new sorted list. Consider the following code segment:

2, 8, 15, 23, 37 ]

4, 6, 15, 20 ]

newList = mergeSortedLists( listA, listB )
print( newlList )

which creates two lists with the items ordered in ascending order and then calls a
user-defined function to create and return a new list created by merging the other
two. Printing the new merged list produces

[2, 4, 6, 8, 15, 15, 20, 23, 37]

Problem Solution

This problem can be solved by simulating the action a person might take to merge
two stacks of exam papers, each of which are in alphabetical order. Start by choos-
ing the exam from the two stacks with the name that comes first in alphabetical
order. Flip it over on the table to start a new stack. Again, choose the exam from
the top of the two stacks that comes next in alphabetical order and flip it over and
place it on top of first one. Repeat this process until one of the two original stacks
is exhausted. The exams in the remaining stack can be flipped over on top of the
new stack as they are already in alphabetical order and alphabetically follow the
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Figure 5.9: Performing a binary search on a sorted list when searching for value 25.

last exam flipped onto the new stack. You now have a single stack of exams in
alphabetical order.

A similar approach can be used to merge two sorted lists. Consider the illus-
tration in Figure 5.10, which demonstrates this process on the sample lists created
in the example code segment from earlier. The items in the original list are not
removed, but instead copied to the new list. Thus, there is no “top” item from
which to select the smallest value as was the case in the example of merging two
stacks of exams. Instead, index variables are used to indicate the “top” or next
value within each list. The implementation of the mergeSortedLists () function
is provided in Listing 5.9.

The process of merging the two lists begins by creating a new empty list and
initializing the two index variables to zero. A loop is used to repeat the process
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Figure 5.10: The iterative steps for merging two sorted lists into a new sorted list. a and
b are index variables indicating the next value to be merged from the respective list.

of selecting the next largest value to be added to the new merged list. During the
iteration of the loop, the value at listA[a] is compared to the value listB[b].
The largest of these two values is added or appended to the new list. If the two
values are equal, the value from 1listB is chosen. As values are copied from the
two original lists to the new merged list, one of the two index variables a or b is
incremented to indicate the next largest value in the corresponding list.

This process is repeated until all of the values have been copied from one of the
two lists, which occurs when a equals the length of 1istA or b equals the length of
1istB. Note that we could have created and initialized the new list with a sufficient
number of elements to store all of the items from both listA and listB. While
that works for this specific problem, we want to create a more general solution that
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Listing 5.9 Merging two sorted lists.

1
2
3
4
5
6
-
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

# Merges two sorted lists to create and return a new sorted list.

def mergeSortedLists( listA, 1istB )

# Create the new list and initialize the list markers.
newList = list()

a 0

b 0

# Merge the two lists together until one is empty.
while a < len( listA ) and b < len( listB )
if listA[a] < listB[b]
newList.append( listA[a] )

a+=1

else :
newList.append( listB[b] )
b +=1

# If listA contains more items, append them to newlList.
while a < len( listA )

newlList.append( listA[a] )

a+=1

# Or if listB contains more items, append them to newlList.
while b < len( listB )

newlList.append( listB[b] )

b +=1

return newlList

we can easily modify for similar problems where the new list may not contain all
of the items from the other two lists.

After the first loop terminates, one of the two lists will be empty and one will
contain at least one additional value. All of the values remaining in that list must
be copied to the new merged list. This is done by the next two while loops, but
only one will be executed depending on which list contains additional values. The
position containing the next value to be copied is denoted by the respective index
variable a or b.

Run Time Analysis

To evaluate the solution for merging two sorted list, assume 1listA and 1istB each
contain n items. The analysis depends on the number of iterations performed by
each of the three loops, all of which perform the same action of copying a value
from one of the two original lists to the new merged list. The first loop iterates
until all of the values in one of the two original lists have been copied to the third.
After the first loop terminates, only one of the next two loops will be executed,
depending on which list still contains values.

e The first loop performs the maximum number of iterations when the selection
of the next value to be copied alternates between the two lists. This results
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5.4 The Set ADT Reuvisited

in all values from either 1istA or 1istB being copied to the newList and all
but one value from the other for a total of 2n — 1 iterations. Then, one of the
next two loops will execute a single iteration in order to copy the last value
to the newList.

e The minimum number of iterations performed by the first loop occurs when
all values from one list are copied to the newList and none from the other. If
the first loop copies the entire contents of 1istA to the newList, it will require
n iterations followed by n iterations of the third loop to copy the values from
listB. If the first loop copies the entire contents of 1istB to the newList, it
will require n iterations followed by n iterations of the second loop to copy
the values from listA.

In both cases, the three loops are executed for a combined total of 2n iterations.
Since the statements performed by each of the three loops all require constant time,
merging two lists can be done in O(n) time.

The Set ADT Revisited

The implementation of the Set ADT using a list was quick and rather simple, but
several of the operations require quadratic time in the worst case. This inefficiency
is due to the linear search used to find an element in the unsorted list that is
required by several of the operations. We saw earlier in the chapter the efficiency
of the search operation can be improved by using the binary search algorithm. To
use the binary search with the Set ADT, the list of elements must be in sorted
order and that order must be maintained. The definition of the Set ADT, however,
indicates the elements have no particular ordering. While this is true, it does not
preclude us from storing the elements in sorted order. It only means there is no
requirement that the items must be stored in a particular order.

A Sorted List Implementation

In using the binary search algorithm to improve the efficiency of the set operations,
the list cannot be sorted each time a new element is added because it would in-
crease the time-complexity of the add () operation. For example, suppose we used
one of the sorting algorithms presented earlier in the chapter to sort the list after
each element is added. Since those algorithms require O(n?) time in the worst case,
the add () operation would then also require quadratic time. Instead, the sorted
order must be maintained when new elements are added by inserting each into
its proper position. A partial implementation of the Set ADT using a sorted list
and the binary search algorithm is provided in Listing 5.10. There are no changes
needed in the constructor or the __len__ method, but some changes are needed in
the remaining methods.
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(RS (LWGIERTE The binaryset . py module.

1 # Implementation of the Set ADT using a sorted list.

2 class Set :

3 # Creates an empty set instance.

4 def __init__( self ):

5 self._theElements = list()

6

7 # Returns the number of items in the set.

8 def __len__( self ):

9 return len( self._theElements )

10

11 # Determines if an element is in the set.
12 def __contains__( self, element ):

13 ndx = self._findPosition( element )

14 return ndx < len( self ) and self._theElements[ndx] == element
15

16 # Adds a new unique element to the set.

17 def add( self, element ):

18 if element not in self :

19 ndx = self._findPosition( element )

20 self._theElements.insert( ndx, element )
21

22 # Removes an element from the set.

23 def remove( self, element ):

24 assert element in self, "The element must be in the set."
25 ndx = self._findPosition( element )

26 self._theElements.pop( ndx )

27

28 # Determines if this set is a subset of setB.
29 def isSubsetOf( self, setB ):

30 for element in self :

31 if element not in setB :

32 return False

33 return True

34

35 # The remaining methods go here.

36 # ...,

37

38 # Returns an iterator for traversing the list of items.
39 def __iter__( self ):

40 return _SetlIterator( self._theElements )
41

42 # Finds the position of the element within the ordered list.
43 def _findPosition( self, element ):

44 low = 0

45 high = len( thelList ) -1

46 while low <= high :

47 mid = (high + low) / 2

48 if thelList[ mid ] == target :

49 return mid

50 elif target < thelList[ mid ]

51 high = mid - 1

52 else :

53 low = mid + 1

54 return low
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Short-Circuit Evaluation. Most programming languages use short-

circuit evaluation when testing compound logical expressions. If the
result of the compound expression is known after evaluating the first compo-
nent, the evaluation ends and returns the result. For example, in evaluating
the logical expressiona > b and a < c,ifa > b is False, then there is no
need to continue the evaluation of the second component since the overall
expression must be False.

NOTE

Basic Operations

Performing a binary search to locate an element in the sorted list or to find the
position where an element belongs in the sorted list is needed in several methods.
Instead of reimplementing the operation each time, we implement the modified
version of the binary search algorithm from Listing 5.8 in the _findPosition()
helper method. The helper method does not detect nor distinguish between unique
and duplicate values. It only returns the index where the element is located within
the list or where it should be placed if it were added to the list. Thus, care must
be taken when implementing the various methods to check for the existence of an
element when necessary.

The __contains__ method is easily implemented using _findPosition(). The
index value returned by the helper method indicates the location where the element
should be within the sorted list, but it says nothing about the actual existence of
the element. To determine if the element is in the set, we can compare the element
at the ndx position within the list to the target element. Note the inclusion of
the condition ndx < len(self) within the compound expression. This is needed
since the value returned by _findPosition() can be one larger than the number
of items in the list, which occurs when the target should be located at the end
of the list. If this value were directly used in examining the contents of the list
without making sure it was in range, an out-of-range exception could be raised.
The __contains__ method has a worst case time of O(logn) since it uses the binary
search to locate the given element within the sorted list.

To implement the add() method, we must first determine if the element is
unique since a set cannot contain duplicate values. This is done with the use of
the in operator, which automatically calls the __contains__ operator method. If
the element is not already a member of the set, the insert () method is called to
insert the new element in its proper position within the ordered list. Even though
the __contains__ method has a better time-complexity when using a sorted list
and the binary search, the add() operation still requires O(n) time, the proof of
which is left as an exercise.

The remove () method requires that the target element must be a member of
the set. To verify this precondition, an assertion is made using the in operator.
After which, the _findPosition() helper method is called to obtain the location
of the element, which can then be used with the pop() list method to remove the
element from the underlying sorted list. Like the add operation, the remove ()
method still has a worst case time of O(n), the proof of which is left as an exercise.
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We can implement the isSubset0f () method in the same fashion as was done
in the original version that used the unsorted list as shown in lines 29-33 of List-
ing 5.10. To evaluate the efficiency of the method, we again assume both sets
contain n elements. The isSubsetO0f() method performs a traversal over the
self set during which the in operator is applied to setB. Since the in operator
requires O(logn) time and it’s called n times, isSubset0f () has a time-complexity
of O(nlogn).

A New Set Equals

We could also implement the set equals operation in the same fashion as was done
in the original version when using the unsorted list:

def __eq__( self, setB ):
if len( self ) !'= len( setB )
return False
else :
return self.isSubsetOf( setB )

But that implementation would have a time-complexity of O(nlogn) since it calls
the isSubset0f () method. A more efficient implementation of the equals opera-
tion is possible if we compare the elements in the list directly instead of using the
isSubset0f () method. Remember, for two sets to be equal, they must contain the
exact same elements. Since the lists for both sets are sorted, not only must they
contain the same elements, but those elements must be in corresponding positions
within the two lists for the sets to be equal.

The new implementation of the __eq__ method is provided in Listing 5.11. The
two lists are traversed simultaneously during which corresponding elements are
compared. If a single instance occurs where corresponding elements are not identi-
cal, then the two sets cannot be equal. Otherwise, having traversed the entire list
and finding no mismatched items, the two sets must be equal. The new implemen-
tation only requires O(n) time since it only involves one complete traversal of the
lists. A similar approach can be used to improve the efficiency of the isSubset0f ()
method to only require O(n) time, which is left as an exercise.

(WS LHGICANEE New implementation of the Set equals method.

1

lass Set :

C
# ...

def __eq__( self, setB ):
if len( self ) !'= len( setB )
return False
else :
for i in range( len(self) )
if self._theElements[i] '= setB._theElements[i]
return False
return True
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A New Set Union

The efficiency of the set union operation can also be improved from the original
version. Set union using two sorted lists is very similar to the problem of merging
two sorted lists that was introduced in the previous section. In that problem, the
entire contents of the two sorted lists were merged into a third list. For the Set
ADT implemented using a sorted list, the result of the set union must be a new
sorted list merged from the unique values contained in the sorted lists used to
implement the two source sets.

The implementation of the new union() method, which is provided in List-
ing 5.12, uses a modified version of the mergeSortedLists () function. The only
modification required is the inclusion of an additional test within the first loop to
catch any duplicate values by advancing both index variables and only appending
one copy to the new sorted list. The new implementation only requires O(n) time
since that is the time required to merge two sorted lists and the new test for du-
plicates does not increase that complexity. The set difference and set intersection
operations can also be modified in a similar fashion and are left as an exercise.

(RS (WA P New implementation of the Set union method.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

lass Set :

def union( self, setB ):
newSet = Set()
a 0
b 0
# Merge the two lists together until one is empty.
while a < len( self ) and b < len( setB )
valueA = self._theElements[a]
valueB = setB._theElements[b]
if valueA < valueB :
newSet._theElements.append( valueA )
a+=1
elif valueA > valueB :
newSet._theElements.append( valueB )

b+=1
else : # Only one of the two duplicates are appended.
newSet._theElements.append( valueA )
a+=1
b +=1

# If listA contains more items, append them to newlList.
while a < len( self )
newSet._theElements.append( self._theElements[a] )
a+=1

# Or if listB contains more, append them to newlList.
while b < len( otherSet )
newSet._theElements.append( setB._theElements[b] )
b +=1

return newSet
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5.4.2

Comparing the Implementations

The implementation of the Set ADT using an unsorted list was quick and easy,
but after evaluating the various operations, it became apparent many of them were
time consuming. A new implementation using a sorted list to store the elements
of the set and the binary search algorithm for locating elements improved the
__contains__ method. This resulted in better times for the isSubset0f () and
__eq-- methods, but the set union, intersection, and difference operations remained
quadratic. After observing several operations could be further improved if they
were implemented to directly access the list instead of using the __contains__
method, we were able to provide a more efficient implementation of the Set ADT.
Table 5.1 compares the worst case time-complexities for the Set ADT operations
using an unsorted list and the improved sorted list version using the binary search
and the list merging operation.

Operation Unordered | Improved
s = Set() O(1) O(1)
len(s) O(1) O(1)
x in s O(n) O(logn)
s.add(x) O(n) O(n)
s.isSubsetOf (t) O(n? O(n)
s == O(n?) O(n)
s.union(t) O(n?) O(n)

Table 5.1: Comparison of the two Set ADT implementations using an unsorted list and
the improved sorted list with binary search and list merging.

Exercises

5.1 Given an unsorted list of n values, what is the time-complexity to find the k'h
smallest value in the worst case? What would be the complexity if the list
were sorted?

5.2 What is the O(-) for the findSortedPosition() function in the worst case?

5.3 Consider the new implementation of the Set class using a sorted list with the
binary search.

(a) Prove or show the worst case time for the add () method is O(n).
(b) What is the best case time for the add() method?



5.4

5.5

5.6

5.7

5.8

5.9

5.10

Programming Projects

Determine the worst case time complexity for each method of the Map ADT
implemented in Section 3.2.

Modify the binary search algorithm to find the position of the first occurrence
of a value that can occur multiple times in the ordered list. Verify your
algorithm is still O(logn).

Design and implement a function to find all negative values within a given list.
Your function should return a new list containing the negative values. When
does the worst case occur and what is the run time for that case?

In this chapter, we used a modified version of the mergeSortedLists() func-
tion to develop a linear time union () operation for our Set ADT implemented
using a sorted list. Use a similar approach to implement new linear time ver-
sions of the isSubset0f (), intersect (), and difference() methods.

Given the following list of keys (80, 7, 24, 16, 43, 91, 35, 2, 19, 72), show the
contents of the array after each iteration of the outer loop for the indicated
algorithm when sorting in ascending order.

(a) bubble sort (b) selection sort (c) insertion sort

Given the following list of keys (3, 18, 29, 32, 39, 44, 67, 75), show the contents
of the array after each iteration of the outer loop for the

(a) bubble sort (b) selection sort (c) insertion sort

Evaluate the insertion sort algorithm to determine the best case and the worst
case time complexities.

Programming Projects

5.1

5.2

5.3

5.4

Implement the Bag ADT from Chapter 1 to use a sorted list and the binary
search algorithm. Evaluate the time complexities for each of the operations.

Implement a new version of the Map ADT from Section 3.2 to use a sorted
list and the binary search algorithm.

The implementation of the Sparse Matrix ADT from Chapter 4 can be im-
proved by storing the MatrixElement objects in a sorted list and using the
binary search to locate a specific element. The matrix elements can be sorted
based on the row and column indices using an index function similar to that
used with a 2-D array stored in a MultiArray. Implement a new version of
the Sparse Matrix ADT using a sorted list and the binary search to locate
elements.

Implement a new version of the Sparse Life Grid ADT from Chapter 4 to use
a sorted list and the binary search to lo